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Abstract

Some statistical methods which have been shown to have
direct neural network analogs are surveyed here; we discuss
sampling, optimization, and representation methods which
make them feasible when applied in conjunction with, or
in place of, neural networks. We present the foremost of
these, the Gibbs sampler, both in its successful role as a
convergence heuristic derived from statistical physics and
under its probabilistic learning interpretation. We then re-
view various manifestations of Gibbs sampling in Bayesian
learning; its relation to “traditional” simulated annealing;
specializations and instances such as EM; and its appli-
cation as a model construction technique for the Bayesian
network formalism. Next, we examine the ramifications of
recent advances in Markov chain Monte Carlo methods for
learning by backpropagation. Finally, we consider how
the Bayesian network formalism informs the causal rea-
soning interpretation of some neural networks, and how it
prescribes optimizations for efficient random sampling in
Bayesian learning applications.

1. Introduction and Background

1.1. Overview

Among statistical inference methods and their connec-
tionist learning analogs, some correspondences have been
understood well enough to support “pure probabilistic” in-
terpretations. That is, the architectures, learning rules, and
key properties (e.g., convergence) of many ANN methods
have been shown to admit emulation by random sampling
algorithms. Better understanding of the probabilistic theory
often provides not only the optimizations that lead to faster
empirical convergence, but the more significant advance
(even in applications) of improved semantic organization.
For instance, knowing how to encode symbolic information

in an ANN model and how to extract it from the trained
model is one benefit of having an intensional interpretation,
as Pearl terms it, of a connectionist system. [17, 19] Equally
important to the generation and usage of a causal model or
“domain theory” is the capability to account for the inter-
mediate state of the system, yielding the immediate benefit
of incremental learning. Other advantages accrue to inte-
gration with symbolic methods, from principled analysis of
ANN methods as random sampling. [11]

In this paper, we will discuss two primary issues con-
cerning the integration of probabilistic methods for learning
with their connectionist complements (via hybrid systems)
or equivalents (via alternative implementations). The for-
mer are typified by algorithms for inferring hidden causation
— especially by constructing Bayesian or belief networks
— and are often semantically better understood than the lat-
ter. Our first issue is how to develop a formal, prescriptive
framework (cf. Valiant’s quantitative PAC analysis for bias
in inductive learning). [7] The position we defend below
is that the “milieu” described by a random sampling prob-
lem is a determinant of computational learning complexity,
as are the concept and hypothesis “languages” in the PAC
framework. Our second issue is the problem, in uncertain
reasoning, of statistical learning with unknown data. We
identify a specific aspect of unknown data and survey short-
comings in current approaches, especially ANNs. Finally,
we consider how the capability to tolerate unknowns might
be furthered by better understanding of random sampling
analogues of ANN methods.

The foremost of these are the Markov chain Monte Carlo
methods: stochastic simulation algorithms which gener-
ate Markov chains with known, stationary distributions.
[20, 15] The Gibbs sampler, in turn, is one of the best known
Markov chain Monte Carlo techniques: it performs well in
Bayesian network learning [20, 8] and corresponds very
precisely to a auxiliary of simulated annealing (as used in
the Boltzmann machine architecture). [14, 20, 11, 1] Re-
search into Gibbs sampling and its maximum entropy rela-
tives, such as EM, has led to the development of generalized



and incremental variants of some now-classical algorithms
for Hidden Markov Model (HMM) learning. [15] Random
sampling analysis of learning by error backpropagation for
feedforward networks is also critical; it permits the develop-
ment of hybrid systems that have comparable or improved
convergence properties. [13]

A chief purpose for studying random sampling algo-
rithms that can emulate neural network learning is to develop
efficient, probabilistic methods that retain the data paral-
lelism of ANNs, while achieving a higher level of semantic
clarity. The Bayesian (belief) network formalism fits this
description well,and has recently been advanced by research
into annealing-based learning algorithms for Bayesian net-
works. [14] Here, we will examine primarily those ANN
architectures which admit dualities with Bayesian networks.
To take full advantage of our ability to interconvert between
representations, we apply network compilers that map to
and from each architecture. A master control mechanism,
then, is needed to optimize this opportunistic change of rep-
resentation for accuracy, semantic clarity (e.g., quality of
explanations and causal reasoning traces), and data paral-
lelism.

1.2. Gibbs Sampling in Hopfield Networks and
Feedforward Network Learning

The Gibbs sampler is a stochastic simulation heuristic
which achieves maximum likelihood approximation of an
irreducible Markov chain (i.e., a model which has only one
equivalence class of reachability: all states communicate
with one another). [20, 8] The latter property (of the tar-
get model) is a necessary condition for convergence of the
algorithm which uses Gibbs sampling. The purpose is to
acquire parameters for (i.e., train) an approximating model
for some observable function. This learning problem is very
common in pattern recognition applications such as speech
and handwriting. Gibbs sampling originates in statistical
physics, where it is alternatively referred to as the heatbath
method.

Gibbs sampling applies both directly to Bayesian net-
works with full data parallelism (cf. Pearl’s “token passing”
model), and to generalized Hopfield networks with sim-
ulated annealing (i.e., asymmetric Boltzmann machines).
[14, 17, 3] The annealing function is enhanced by any Monte
Carlo sampler that meets the “Gibbs criterion”, and is typi-
cally used in conjunction with the Metropolis loop (a canoni-
cal sampling method for optimization by annealing). [16, 1]
Note that not all properties of discrete Hopfield networks
(DHNs) — e.g., the symmetric (bidirectional) weighting of
links — are retained in this generalization.

Neal has shown that learning by error backpropagation
for feedforward networks can be augmented by an adaptive
random sampling approach called the Hybrid Monte Carlo

algorithm. [13, 15] This results in faster convergence than
with traditional annealing, and retains the same benefits of
annealing over naive random sampling. The Hybrid Monte
Carlo algorithm is fully compatible with Gibbs sampling,
and is assumed to sample from a Gibbs distribution in the
default case.

1.3. Information Theoretic Foundations

EM (Expectation-Maximization, sometimes known as
“Estimate-and-Maximize” because of its two phases) is
a forward-backward relaxation algorithm that generates a
maximum likelihoodmodel from incomplete data (i.e., joint
priors). EM has become widely recognized in the connec-
tionist literature as a highly flexible learning method. Like
its more general relative, Gibbs sampling, it is often applied
in fields that use pure probabilistic learning, such as pattern
recognition with Hidden Markov Models (HMMs).

EM is shown to be a manifestation of the maximum
entropy principle. [4] Some related incarnations of EM ap-
pear in the probability theory literature under the title of
the Baum-Welch algorithm, which is specifically targeted
at HMM learning. Namely, we are given a set Q of (hid-
den) states and observable alphabet Σ, emitted according
to a probabilistic function over stochastic transitions among
states. Parameter acquisition algorithms discover, by source
modeling of a sequence of symbols from Σ, the transition
probabilities aij among (qi; qj) and output emission proba-
bilities bij(k) for tuples (qi; qj; � 2 Σ). A typical applica-
tion of a model learned using EM is discussed below.

2. Applications

2.1. Supervised Learning: A Case Study

Why use EM for pattern recognition? First, it has been
shown from its inception to be designed precisely for appli-
cations with unknown data. This is one of the most difficult
aspects of uncertain reasoning (from an intelligent systems
perspective) for noisy pattern recognition; but it is extremely
common. It manifests both through faults in input acqui-
sition (i.e., unreliable sensors, subjective data) and through
limitations of the statistical computation component (e.g.,
in window-based learning schemes as described below).

The Viterbi algorithm is a dynamic programming
method which computes maximum likelihoodpaths through
stochastic models learned using EM variants (especially
HMMs with transition probabilities acquired by the Baum-
Welch algorithm). This makes it well-suited to “linear” pat-
tern recognition problems (i.e., where one signal is mapped
to another, and supervised learning is applied). Examples
include prediction of protein secondary fold, a very difficult



problem to attack without extensive domain knowledge or
pure random sampling for specific subproblems. [5, 21]

In research on protein folding that compares pure prob-
abilistic methods (simple HMM learning by EM, followed
by Viterbi-based matching) to traditional (feedforward with
backprop) and knowledge-based (KBANN, EBLANN) ANN
methods, EM has been shown to outperform extant connec-
tionist systems. [5] This is notable, considering that the
pure statistical approach is based only on fixed-width win-
dows. The best predictor at the time was a hybrid system
combining pure statistical, memory-based, and connection-
ist learning (backprop) with a connectionist front-end for
data fusion (also a feedforward net trained with backprop).
[21] Even compared to this system, EM achieved compara-
ble cross-validated prediction accuracy. [5]

2.2. Unsupervised HMM Learning

Supervised learning of parameters for HMMs is a pop-
ular method for training a pattern recognition system. In
spatiotemporal sequence modeling, however, it is often the
signal itself that we wish to predict (e.g., sensor output
in a high-uncertainty domain, such as biomedical moni-
toring). The general applicability of seminumerical (i.e.,
“subsymbolic”) systems, including ANNs, to spatiotempo-
ral sequence learning is witnessed by their ability to gen-
erate maximum likelihood estimates from incomplete sam-
ple data. Our current research examines the ability (or lack
thereof) of simple recurrent networks [6] to acquire temporal
regularities in observable Markov processes: e.g., duration
of runs, periodicities, etc.

Recent research into delay-based ANN emulation of the
Viterbi and EM algorithms has demonstrated that the Viterbi
algorithm can be adequately modeled by the Viterbi net-
work, a time-delay neural net with direct correspondence
between output units and HMM states. In addition, some
EM implementations (specifically, the Baum-Welch algo-
rithm) can be emulated by Alpha networks (named after
the iterative relaxation parameter in the forward pass). [4]
This integration effort between the “pure probabilistic” and
connectionist interpretations of has acted as a catalyst to
expose their information theoretic underpinnings (namely,
Kullback-Leibler divergence, a “cross-entropy” or mutual
information measure).

2.3. Gibbs Sampling: a Brief Survey

Gibbs sampling is a general heuristic, derived from sta-
tistical mechanics, that encompasses a very broad family
of Markov chain Monte Carlo algorithms, with a common
simulation constraint. It applies to problems where the input
consists of joint priors for a data vector (“multi-dimensional
parameter”) �, whose elements are random variables. These

random variables correspond to elements of a discrete Hop-
field or Bayesian network (not all DHNs are Bayesian net-
works, but we shall consider this distinction later). The
desired output is a sequence denoting a Markov chain (over
network states — i.e., conditional probabilities for activa-
tions or weights). We wish the simulation of this Markov
chain (i.e., random perturbations) to be amenable to anneal-
ing methods, with faster convergence.

Gibbs sampling selects �(t+1)
j as follows:

P (�(t+
1)

j jΘ(t+1)
<j ;Θ(t)

>j) (1)

where Θ(t)
<j = f�

(t)
i ji < jg, Θ(t)

>j = f�
(t)
i ji > jg, and

�
(t)
j is the observable distributionof the jth random variable

at time increment t (sampled from the given joint prior
probabilities) under the stationary Markov chain (i.e., state
transition model) Q(�).

Gibbs sampling is not always feasible for Bayesian op-
timization of neural networks, because conditional proba-
bilities for some �j cannot always be sampled from Q for
arbitrary groups of parameters. [16] This is referred to in
the study of intelligent systems (specifically, Bayesian net-
works) as locality. [17] In ANNs, locality is typically not
respected; often, the statistical character of the conditionals
is highly complex and multimodal. Gibbs sampling, how-
ever, has the desirable property of being fully compatible
with simulated annealing. This synergy makes it extensi-
ble to parallel (distributed) relaxation. It is used in two
classes of annealing algorithms: in supervised learning by
stochastic backpropagation, and to achieve convergence in
the pattern recognition phase of “associative memory” sys-
tems (especially Hopfield networks). Thus, the efficacy
of Gibbs sampling depends less on the application (learn-
ing versus “recall”) than on the distributed nature of the
inferential problem (modularity in the Bayesian networks
literature). [16, 17]

The stochastic modeling requirements are simply the ex-
istence of a stationary distribution for the sampled process
(i.e., positive recurrence and aperiodicity). For ANNs, the
process describes conditional probabilities of network com-
ponent states (weights for feedforward network learning;
neurons for Boltzmann machines), given (possibly incom-
plete) observed data. Even this sufficient condition may be
relaxed to the necessary condition of irreducibility. [20]

In a review of typical learning problems served by Gibbs
sampling, York gives a proof of sufficiency for irreducibil-
ity, leading to the result that a Markov process induced by
Gibbs sampling yields maximum likelihoodestimates under
this condition. [20] This survey also discusses an interesting
application of the sampler to construction of a knowledge-
based system — relating the learning characteristic of the
Gibbs sampler to fusion and propagation in Pearl’s frame-
work of fusion, propagation, and structuring. [20, 17]



3. Theoretical Foundations

3.1. Gibbs Sampling and Annealing Methods

Gibbs sampling can be viewed as a variation on the “tra-
ditional” stochastic search algorithm of Metropolis et al as
applied to simulated annealing. [16, 9] The best known ap-
plication of Gibbs sampling is also one of the best known
annealing-based ANN methods — namely, the Boltzmann
machines of Hinton et al. Boltzmann machines are discrete
Hopfield networks that use simulated annealing with Gibbs
sampling as the ordering mechanism for simulation. This
distinguishes the Boltzmann machine from general Hopfield
networks (which use arbitrary Monte Carlo methods).

It is important to note that when Gibbs sampling is ap-
plied as part of the Hybrid Monte Carlo algorithm for feed-
forward network training, that it serves a learning function.
By contrast, training — in the machine learning sense —
has already occurred at the stage where Gibbs sampling is
applied in Boltzmann machines. Simulated annealing is
used to avoid local minima during the convergence phase,
where a pattern is presented and the network is stochasti-
cally updated until a stable attractor is reached. The use of
constraint satisfaction networks as associative memories in
the above method is generalizable over Bayesian and neural
networks.

3.2. Constraint Satisfaction in Bayesian Networks

Apolloni and DeFalco discuss a biologically plausible
specialization of parallel Boltzmann machines: their gen-
eralization to asymmetry. [3, 12] This stipulation turns out
to be extremely useful for the study of probabilistic seman-
tics of neural networks, because such constraint satisfaction
networks (with normalizations of the weight to probabili-
ties) dualize with causal, or Bayesian, networks. A simple
Bayesian network is shown in Figure 1; its sparse, bipartite
Boltzmann machine dual in Figure 2. Our only additional
caveat is an additional semantic issue: namely, that the use
of Bayesian networks as true causal reasoning, evidential
reasoning, or belief revision systems depends on the degree
of match between random variables and well-defined propo-
sitions about the system being modeled (events, predictions,
etc.). Merely observing that a subset of Boltzmann machines
can be interpreted as Bayesian networks does not automati-
cally respect this property of the probabilistic model!

3.3. Hybrid Stochastic Methods for Feedforward
Networks

The Hybrid Monte Carlo algorithm was investigated by
Neal as as method for overcoming several shortcomings of
traditional error backpropagation. [13] This new method for

stochastic training augments backpropagation, and is simi-
lar to the traditional Metropolis loop (simulated annealing).
The common idea is to perturb weights and to use weight
decay in order to lower susceptibility to local minima, at a
cost of slower convergence. The Hybrid Monte Carlo al-
gorithm differs from the Metropolis algorithm by using a
full Hamiltonian energy measure (“kinetic” as well as “po-
tential” energy). The purpose of this augmentation is to
account for effect of gradient on the total energy.

The new algorithm is amenable to the same weight per-
turbationand decay framework, and the resultingsystem has
better empirical performance than that of pure backpropaga-
tion and Gaussian approximation of learning by backprop-
agation. [10] In principle, annealing with Hybrid Monte
Carlo simulation facilitates arbitrarily close approximation
(as opposed to requiring approximator components to be
drawn from a family of Gaussian conditional distributions,
cf. MacKay). [10] The main benefit of the general Bayesian
framework is its avoidance of overfitting through regular-
ized weight decay. Finally, the further improvement given
by Gibbs sampling demonstrates the benefits of a “normal-
ized” information theoretic measure of “free energy” (ver-
sus the traditional entropy measure, both absolute and rela-
tive). [13, 20] This supports development of a much-needed,
higher-order metric for comparing across feedforward archi-
tectures with different learning rules and heuristics.

Neal’s results strongly underscore the point that Markov
chain Monte Carlo approaches are applicable to pure feed-
forward architectures, and not just a small subset of ANNs
such as constraint satisfaction (e.g., Hopfield) networks.
Moreover, augmentation of backpropagation learning by
classical stochastic methods such as the Metropolis algo-
rithm is shown to be an oversimplified approach, leaving
much work (including theoretical developments) to be done
in the area.

4. Conclusions and Ramifications

4.1. Gibbs Sampling for Bayesian Learning

We have surveyed the Gibbs sampler and shown how
it is one of two optimizing improvements that can be ap-
plied in many annealing applications, as well as in learning
situations for Bayesian networks. We have also discussed
the orthogonal improvement of adding a momentum term to
annealing by random sampling, that is justified in the statis-
tical thermodynamics interpretation. These improvements
together generate the Hybrid Monte Carlo family of algo-
rithms. We have seen how Hybrid Monte Carlo is used to
enhance performance of backprop learning. Both the Gibbs
sampler and the Metropolis algorithm augmented with ki-
netic energy can be applied to other annealing problems,



including fusion and propagation for Bayesian networks (as
a subset of stochastic convergence for constraint networks).

4.2. Causal Reasoning and Constraint Satisfaction

Another crucial research objective that arises from the
interpretation of asymmetric parallel Boltzmann machines
as Bayesian networks is the causal reasoning interpretation
of this class of ANNs. First, this theory lends a much higher
level of proximity to symbolic intelligent systems and the
probabilistic basis of inductive learning. This improved
understanding leads, in turn, to advances in application of
Bayesian learning methods to such traditionally symbolic
endeavors as case-based problem solving and analogical rea-
soning by prototypes. [11] Finally, we expect the Bayesian
network interpretation to yield insights into incremental and
reinforcement learning for knowledge-based systems in un-
certain domains: problems to which ANNs have already
been applied in force, but rarely with remarkable success.

4.3. Network Efficiently Representable Functions

A quantitative characterization that has been envisioned
and recently sought after, also without extensive success,
is that of Network Efficiently Representable Functions or
NERFs. This term, employed by Russell and Norvig, refers
to the class of functions in a manifold which correspond to
those, in a dual manifold of neural networks, that meet cer-
tain (unspecified) complexity restrictions. [2, 18] Our cur-
rent research into spatiotemporal pattern recognitionconsid-
ers possible metrics for characterizing NERFs with respect
to some temporal regularity (especially duration or periodic-
ity). A potentially rich field of study in the theory of ANNs,
hinging on the development of improved probabilistic and
information theoretic semantics for certain ANN models, is
this quantitative theory of NERFs.

4.4. Current and Future Work

Our current research investigates the ramifications of the
Bayesian network/asymmetric Boltzmann machine duality
in terms of: practical application of Gibbs sampling for
supervised learning; extension of the known duality to tem-
poral (“persistent”) augmentations of Bayesian networks as
compared to recurrent networks; and extension of the full
Hybrid Monte Carlo approach (including the momentum-
based model) to recurrent networks, in a probabilistically
sound framework. We are focusing on the capability to ac-
quire spatiotemporal regularities in both Bayesian and sim-
ple recurrent networks, with adaptivity ranging from simple
persistence to more complex dynamical systems modeling.
We believe that a characterization of NERFs for these ca-
pabilities is both a motivation for and a gauge of progress,

in developing a theory for methods that integrate Bayesian
and neural networks.
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Season:
Spring
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Winter

Sprinkler On: True, False

Rain: None, Drizzle, Steady, Downpour

Ground Wet:
True, False

X5

Ground Slippery:
True, False

Figure 1. A Simple Bayesian Network

A bipartite Hopfield network is
generated by the dualization, or
network compilation,process.
This network is called anasymmetric
Boltzmann machine,because

wij = wji need not necessarily hold,
and because simulated annealing and
Gibbs sampling are applied for
convergence.

Left-hand side units in the ANN dual all
represent prior probabilities; right-hand side
units represent either priors for source
vertices (i.e., those with no parents), or
conditionals for vertices based on their
parents (by the principle ofd-separation).

This example is adapted from one used by
Pearl; the network compiler is based on a
duality researched by Myllymäki.
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Figure 2.
Boltzmann Machine
Dual Representation
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