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ABSTRACT
We present a novel framework for the problem of transfer learn-
ing between few-shot source and target domains, using synthetic
attributes in addition to convolutional neural networks that are
pre-trained on larger image corpora. In these corpora, no labeled
instances of the target domains are present, though they may con-
tain instances of their superclasses. Using probabilistic inference
over predicted classes and inferred attributes, we developed a meta-
learning ensemble method that builds upon that of [10]. This paper
introduces the new framework BCAT (Between-Class Attribute
Transfer), adapting inter-class attribute transfer designed for zero-
shot learning (ZSL), combined with fusing transfer learning and
probabilistic priors, and thereby extending and improving upon ex-
isting deep meta-learning models for FSL. We show how probabilis-
tic learning architectures can be adapted to use state-of-the-field
deep learning components in this framework. We applied our tech-
nique to four baseline convnet-based FSL ensembles and boosted
accuracy by up to 6.24% for 1-shot learning and up to 4.11% for
5-shot learning on the mini-ImageNet dataset, the best result of
which is competitive with the current state of the field; using the
same technique, we improved accuracy by up to 7.83% for 1-shot
learning and up to 3.67% for 5-shot learning on the tiered-ImageNet
dataset.
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1 INTRODUCTION
Meta-learning of class-specific features embeddings in vision tasks
like detecting and classifying objects achieved effective transfer
learning for few-shot domains [4, 11, 18], but a problem remains:
inter-class attribute transfer from source to rarely-seen target do-
mains (both of which may be few-shot) [10]. In this paper, we
present a novel synthesis of these two methods that incorporates
inter-class attribute transfer into a state-of-the-field meta-learning
convolutional neural network system. The purpose of this approach
is to improve generalization accuracy across both metric-based
classifiers (e.g., prototypical networks) and optimization-based reg-
ularized linear classifiers (e.g., SVM). Our method improves the
accuracy of current deep learning classifiers based on residual net-
works with meta-learning for parametric feature embedding [11]
and the probabilistic zero-shot attribute transfer methods that we
extend [10], outperforming both and establishing a framework for
further advances using between-class attribute transfer.

The performance of most state-of-the-field convolutional neural
networks for basic vision tasks is achieved through large quantities
of annotated samples such as labeled images [20]. While acquir-
ing large quantities of labeled images might be feasible in some
application domains, building such an image corpora in others [20]
remains difficult. Labeled images might be unavailable or prohib-
itively expensive to annotate even for subject matter experts or
crowdworkers. Few-shot learning (FSL) is significant to machine
learning for many reasons, one of which is reducing the effort in-
volved in collecting data. Because an FSL model requires less data
for training, the costs associated with collecting and labeling data
are greatly reduced. Because training models that can perform well
in FSL tasks is difficult, meta-learning frameworks such as those of
[2] were developed to transfer knowledge from the meta-training
stage to the meta-testing stage. This transfer of knowledge can be
further improved by adding knowledge obtained from attributes.

Meta-learning frameworks that incorporate existing convnets
have been proposed for FSL [4]. In such frameworks, FSL classi-
fication tasks are formulated by sampling from base categories
(meta-training), and a model is optimized to perform well on those
tasks. Typically, a task T consists of K-way and N -shot (which
means K classes and N support samples per K), and Q query sam-
ples for every class. The goal here is to classify all Q * K samples
into K classes based on only N * K support samples using a learned
model that represents the parametric inductive bias of an embed-
ding. This model is then applied to tasks that have been sampled
from novel categories (meta-testing). FSL techniques are evaluated
for small values of N where N ∈ {1, 5}.
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Our foremost novel contribution in this research is to develop
a new attribute-transfer technique for FSL in a meta-learning frame-
work. The authors of [10] present an attribute-transfer technique
for zero-shot learning (ZSL) which is nontrivial to apply to state-of-
the-art FSL models with mini-ImageNet and tiered-ImageNet in a
meta-learning framework because it pre-dates many convnet-based
learning representations. We improve this ZSL architecture to meet
these specific requirements: probabilistic inference on small sam-
ples to obtain inferred transferable attributes; fusion of probabilistic
estimates from the attribute predictor of [10] with those based on
labeled data; and metric scaling. In addition, we updated this entire
ensemble to use a more modern pre-training methodology [4].

2 RELATEDWORK: FEW-SHOT LEARNING
Research in FSL and meta-learning related to our own research
can be broadly categorized into three approaches: metric-based,
optimization-based, and semantics-based.

In the metric-based approach, the model extracts embeddings
using a feature-extractor; the embeddings are then used along a
distance-based prediction rule [4, 14, 18, 19]. One early work that
uses this approach is matching networks [19], where attention
and memory are used through an LSTM network. Another exam-
ple of this approach is the prototypical network [18], where each
class is represented by the mean embedding of the support set,
and Euclidean distance is then used to calculate the similarity val-
ues between that mean (prototypes) and the images in the query
set. Authors in [18] report that cosine similarity does not work
as well as the Euclidean distance to calculate similarity between
the prototypes and the query set. The authors in [14] proposed
using metric scaling, which sufficed to close the gap between the
Euclidean distance and cosine similarity as originally reported by
[18]. One advantage of the approach taken by [4] is that, in con-
trast to complex models, it represents a simple yet effective model
that achieves state of the art accuracy for FSL image classification
tasks. Their approach was simply to pre-train the feature-extractor
(with a classifier attached to it) on the base classes in a normal
classification set up, then remove the classifier and carry out train-
ing on the feature-extractor using meta-learning with support and
query sets, as well as a scaled cosine similarity measure between
them [4]. Most models coming after the Meta-Baseline adopted the
pre-training stage because it is simple and effective; we adopted
pre-training as well.

Unlike the metric-based approach, recent optimization-based
modeling approaches estimate parameters using a parameterized
predictor together with a feature-extractor [2, 11]. Authors in [2]
developed a deep neural network augmented with conventional
learning components. Specifically, they used ridge regression in
tandemwith a feature-extractor (the deep neural network), which at
the time achieved better performance thanmetric-based approaches.
Following in the footsteps of [2], the authors of “MetaOptNetSVM”
[11] used a support-vector machine instead of ridge regression for
meta-learning. Their approach was to formulate and solve dual
quadratic programming (QP) equations to learn linear classifiers
like SVM and ridge regression. They thus could solve the dual QP
equations using the differentiable GPU-based QP solver proposed
by [1].

Our approach fits into the semantics-based branch of FSL work
[5, 12, 21]. In semantics-based systems, textual semantic knowl-
edge helps improve the performance of the model. The Dual TriNet
Network [5] obtains feature representations from different lay-
ers of a ResNet-18 and treats them as different levels of abstract
semantic information fed into an encoder to encode into the se-
mantic space. These parameters are then decoded to implement
feature augmentation using the Semantic Gaussian and Seman-
tic Neighborhood methods [5]. The names of the base classes in
the meta-training task were used in [12] as attributes and fed into
a word-embedding model to extract semantic vectors for classes.
An adaptive margin generator then obtained a margin penalty for
each pair of classes. Finally, the classification loss was combined
with this margin penalty to obtain the proposed adaptive margin
loss [12]. Attributes extracted from WordNet [7] were used in [21]
along with a prototype-completion network, “ProtoComNet”. The
model worked side-by-side with a feature-extractor, resulting in a
hybrid system comprising their new model, ProtoComNet, used to
complete prototypes using attributes, and a second model similar
to the one in [4]. The outputs of the two models were then fused
using their probability fusion strategy, “GaussFusion”, based on
the assumption that the estimated prototypes follow a Multivari-
ate Gaussian Distribution (MGD) [21]. We used the same fusion
strategy in our approach.

While current semantics-based methods for FSL achieve leading-
edge performance, they suffer from two main limitations:

(1) Generalization.Most of thesemodels achieve FSL via direct
optimization and/or using specific embeddings, not through
inter-class attribute transfer, which could improve multiple
models. Thus, generalizing the transfer mechanism remains
a challenge.

(2) Complexity. Most of these models are based on complex
artificial neural network architectures to infer and/or incor-
porate attributes. This incurs greater computational costs for
training and inference and limits the semantic transparency
of the model itself.

Our framework overcomes the first limitation via attribute transfer
via a framework that imposes negligible overhead with respect to
the second limitation. In the following two sections, we discuss
related work on the attribute transfer subtasks of FSL for image
classification with known ground attributes. We then present our
system, which improves on existing meta-learning FSL systems by
solving these subtasks in a recombinable fashion.

3 ATTRIBUTE TRANSFER
The authors in [10] addressed the zero-shot learning (ZSL) problem
and its specific challenges in data-poor computer vision domains.
ZSL differs from FSL in the explicit necessity of attribute transfer
because ZSL has no instances of labeled training images (shots)
from some classes.

Other researchers in [10] proposed two different ways of trans-
ferring attributes in a ZSL setup. One is Indirect Attribute Prediction
(IAP) where attributes are inferred from known classes, and then
the inferred attributes are used to infer the class labels of the un-
seen classes. When training an IAP under zero-shot learning, an
ordinary multi-class classifier is used to predict known classes [10].
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When using this classifier with unseen classes, zl , attributes are
first inferred from seen classes, k , using the following equation [10]
with the attributes am and samples x :

p(am |x) =
K∑
k=1

p(am |yk )p(yk |x) (1)

where p(yk |x) is the probabilistic multi-class classifier’s estimates.
They set p(am |y) assuming a deterministic dependence between
attributes and classes. Then those attributes are transferred into
labels using the following equation [10]:

f (x) = arдmax
l=1, ...,L

M∏
m=1
=
p(a

zl
m |x)

p(a
zl
m )

(2)

where for the factor p(am ) they assume a factorial distribution
p(a) =

∏M
m=1 p(am ), using the empirical meansp(am ) = 1

k
∑K
k=1 a

yk
m

over the training classes as attribute priors.
We used an approach similar to the IAP method, hybridized

with both meta-learning of marginal posteriors for FSL [4, 11, 18]
and data-driven estimates of priors. In the following section, a
fusion method [21] is presented that further improves this means
of inferring transferable attributes.

4 PROBABILISTIC FUSION
The authors in [21] created two combined models using a proba-
bilistic fusion process they call GaussFusion [21]. The motivation
for this fusion strategy (refereed to as prototype fusing in [21])
because they observed that one model produced better estimates
(pk ) with more shots; while their proposed ProtoComNet produced
better estimates (p̂k ) with fewer shots. They thus discovered that
the two estimates complement each other and thereby identified a
need for their probabilistic fusion strategy in such situations [21].
In fusing prototypes, the authors in [21] applied Bayesian estima-
tion. They assumed that both prototypes pk and p̂k were sampled
from a Multivariate Gaussian Distribution (MGD), N (µk ,diaд(σ

2
k ))

and N (µ̂k ,diaд(σ̂
2
k )), where µk and µ̂k are the means and diaд(σ 2

k )

and diaд(σ̂ 2
k ) are the diagonal covariances. The goal is to calculate

a fused representation, N (µ̂ ′k ,diaд(σ̂
′2
k )), where µ̂ ′k is the MGD

mean anddiaд(σ̂ ′2
k ) is the diagonal covariance [21]. They calculated

the mean, µk , using the following equation [21]:

µk =
1∑

x ∈S∪Q
P(k |x)

∑
x ∈S∪Q

P(k |x)fθf (x) (3)

where P(y = k |x) is the probability of a sample x belonging to a
K class, S is the support set, Q is the query set, and fθf (x) is the
extracted embedding. µ̂k is calculated similarly using P̂(y = k |x).
To calculate σk the following equation [21] is used:

σk =

√√√ 1∑
x ∈S∪Q

P(k |x)

∑
x ∈S∪Q

P(k |x)(fθf (x) − µk )
2 (4)

σ̂k can be calculated similarly using µ̂k . Having calculated µk , µ̂k ,
σk , and σ̂k , we can then calculate

µ̂ ′k =
σk ⊙µ̂k+σ̂k ⊙µk

σ̂k ⊙σk
and diaд(σ̂ ′2

k ) = diaд(
σ 2
k ⊙σ̂

2
k

σ̂ 2
k ⊙σ

2
k
) which pro-

vides a new set of estimates, i.e., prototypes p̂′k , that can be used

to calculate new probabilities for the query samples P̂ ′(y = k |x),
which represent the fused probabilities [21].

5 OUR APPROACH
This section provides details on our approach as illustrated in Figure
1. Subsection 5.1 proposes the pre-training step that we used before
fine-tuning the model. Subsection 5.2 explains our own version of
the Indirect Attribute Prediction (IAP) and how we incorporated
the work in [10]. Subsection 5.3 explains how we used the fusion
strategy, and finally, we discuss scaling in subsection 5.4.

5.1 Step 1: Pre-training
We used the pre-training stage, proposed by [4], in our approach.
We found that pre-training is a very important step to boost the
results of the model to which we apply it. Pre-training by itself
does not always boost the performance of all models as we show
in section 7. When pre-training, we used a Resnet-12 [9] with a
linear classifier to classify the base classes. We then removed the
classifer and used the ResNet-12 [9] as a feature-extractor that we
fine tuned using steps 2-4.

5.2 Step 2: Indirect Attribute Prediction (IAP)
We previously introduced the IAP approach for zero-shot learning
that was proposed by [10]. Here, we propose a very similar approach
for few-shot learning. After pre-training the feature-extractor from
the previous step, we began fine-tuning the model using the proba-
bilistic multi-class classifier’s estimates p(yk |x) to infer attributes
with the following equation:

p(am |x) =
K∑
k=1

e(am |yk )
1
k
∑m
m=1 e(am |yk )

p(yk |x) (5)

where e(am |yk ) is a static encoding of attributes for every label. We
found that scaling the static encoding by dividing by 1

k
∑m
m=1 e(am |yk )

gave better results because the static encoding was converted into
a probability distribution. We calculated the attribute priors p(am )

using the scaled encoding of labels for every attribute, p(yk |am ):

p(am ) =
p(yk |am )∑k
k=1 p(yk |am )

(6)

Finally, we inferred new probabilistic multi-class estimates using
the following:

p(ŷk |x) =
m∑

m=1
p(am |x)p(am ) (7)

This was an estimator that we needed to combine in the next step.

5.3 Step 3: Fusion
In this step, we fused the new probabilistic multi-class estimates
p(ŷk |x) obtained from IAP with the original probabilistic estimates
p(yk |x) of the multi-class classifier, using the fusion strategy pro-
posed by [21]. Using Equation 3, we first calculated the multivari-
ate Gaussian distribution means µk and µ̂k for p(yk |x) and p(ŷk |x).
Next, using Equation 4, we calculated the covariancesσ 2

k and σ̂ 2
k . We

could then calculate new prototypes to use along a cosine function
to calculate similar logits in the query set.
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A Few-shot learning model
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Figure 1: Overview of our approach. We first pre-trained the feature extractor using base class labels in a normal classification
setting before using it in a few-shot learningmodel. Next, we inferred newprobabilistic estimates for the query set by inferring
attributes from the original probabilistic estimates for the query set. We then fused the inferred probabilistic estimates with
the original ones to produce prototypes that we use to calculate cosine similarity for the query set. Finally, we scaled the
similarities with a learnable scaling factor.

5.4 Step 4: Scaling
In this step, we used the metric scaling proposed in [14] because
we concluded with the cosine function in the previous fusing step
to calculate similarities. We made the scaling factor learnable by
the network.

6 EXPERIMENT DESIGN
In Section 6.1, we introduce the baselines to which we applied our
approach. We discuss the sampling protocol in Section 6.2. We also
discuss the dataset used in these experiments in Section 6.3, and
We explain our experimental setup in Section 6.4.

6.1 Baselines
Prototypical Networks [18] are a metric-based approach that we
used as our first baseline. The authors [18] used a CNN network as
a feature-extractor; we used a ResNet-12 [9]. We used the imple-
mentation provided by [11]
MetaOptNetSVM/Ridge [11] are optimization-based approaches
that we used as our second and third baselines. We used the original
implementation provided by [11]
Meta-baseline [4] is a metric-based approach and was our fourth
baseline. Our implementation followed the implementation in [4].

6.2 Original Dataset
The Mini-ImageNet dataset was developed by [19] and has be-
come one of the most popular benchmark datasets for FSL. This
dataset is a subset of ImageNet [6]. It consists of 100 classes split
by [16] into three sets: a training set with 64 classes, a validation
set with 16 classes, and a testing set with 20 classes. Each category
contains 600 images that each are 84 by 84 pixels. We used the same
splits as specified by [16]. In addition to images, we used attributes
that we extracted from WordNet [7].
Tiered-ImageNet dataset was proposed by [17]. This dataset is
also a subset of ImageNet. It consists of 608 classes grouped into
34 high-level categories/clusters with a training set of 20 clusters,

validation set with 6 clusters, and testing set with 8 clusters. We
also extracted attributes for the images from WordNet [7].

6.3 Sampling Protocol for FSL With Attributes
In this research, we extended the sampler and data loaders devel-
oped and open-sourced by [8] and used by [11]. The sampling pro-
cess begins by randomly sampling K classes from the base classes
that are used to sample the meta-learning set for a task by sam-
pling S +Q images where S is the number of shots in the support
set and Q is the number of query images. The same process was
repeated for meta-validation and meta-testing. We also extended
their sampler to look up the hierarchical labeling of the K classes
from WordNet [7] by using the nltk [13] library. We used the hier-
archical labeling of a category as the attributes for all samples in
that category. Therefore, our attributes were per class and not per
sample. Per-class attributes was used in the research in [10].

6.4 Experimental Setup
In this work, we used PyTorch [15] as our primary development
framework. To apply attributes to the support set, we modified the
data loader and sampler provided by [8]. We extended the open-
source library developed by [11], which included implementations
of prototypical networks [18], MetaOptNetSVM [11], and MetaOpt-
NetRidge [11]. We implemented the open-source meta-baseline by
[4]. We replaced the Resnet-12 [9] implementation provided by [11]
with the implementation provided by [4].

For performing experiments, we also pre-trained ResNet-12
[9] for the baselines for fair comparisons. In pre-training, we fol-
lowed the same pre-training protocol used by [4]. During fine-
tuning, authors in [11] used a label smoothing of 0.5 with MetaOpt-
NetSVM/Ridge baselines, but we omitted this in our approach for
better results. The cosine scaling of the meta-baseline was set to
10, while the scaling factor in our approach was set to 50. We fine-
tuned the baselines and our approach and report the best results of
both in Section 7.
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7 RESULTS AND ANALYSIS
7.1 Meta-Learning/Fusion Ensemble
Table 1 lists, in columns from left to right, the original baseline re-
sults that cited authors reported in their respective papers, followed
by our results from running the baselines again using pre-trained
feature extractors, and finally our BCAT results and the commen-
surate increases in accuracy over the better of pre-trained and
published baselines. This shows the marginal gain for our approach
relative to all baselines. For brevity, we refer the reader to [21] for
results of other semantic models that they compare their system to
and which our system transitively outperforms.

Model Published Our pre-trained BCAT Increase

5-shot mini-ImageNet
Prototypical 68.20 ± 0.66 78.11 ± 0.14 82.22 ± 0.14 4.11

MetaOptNetSVM 78.63 ±0.46 77.21 ± 0.16 80.60 ± 0.14 1.97
MetaOptNetRidge 77.88 ±0.46 76.73 ± 0.15 81.14 ± 0.14 3.26
Meta-baseline 79.26 ±0.17 78.55 ± 0.15 81.85 ± 0.15 2.59

1-shot mini-ImageNet
Prototypical 49.42 ±0.78 60.46 ± 0.21 66.70 ± 0.22 6.24

MetaOptNetSVM 62.64 ±0.61 61.49 ± 0.22 65.19 ± 0.21 2.55
MetaOptNetRidge 61.41 ±0.61 61.61 ± 0.20 66.32 ± 0.21 4.71
Meta-baseline 63.17 ±0.23 62.30 ± 0.21 69.40 ± 0.22 6.23

5-shot tiered-ImageNet
Prototypical 72.69 ±0.74 83.09 ± 0.16 85.37 ± 0.16 2.28

MetaOptNetSVM 81.56 ±0.53 79.75 ± 0.17 84.77 ± 0.16 3.21
MetaOptNetRidge 81.34 ±0.52 81.82 ± 0.16 85.49 ± 0.16 3.67
Meta-baseline 83.74 ±0.18 83.84 ± 0.16 85.50 ± 0.16 1.66

1-shot tiered-ImageNet
Prototypical 53.31 ±0.89 65.49 ± 0.24 71.96 ± 0.24 6.47

MetaOptNetSVM 65.99 ±0.72 61.37 ± 0.24 70.90 ± 0.23 4.91
MetaOptNetRidge 65.36 ±0.71 65.61 ± 0.23 72.69 ± 0.24 7.08
Meta-baseline 68.62 ±0.27 67.78 ± 0.23 76.45 ± 0.23 7.83

Table 1: Analysis of mini-ImageNet and tiered-ImageNet.
Average 5-way accuracy (%) with 95% confidence interval

For the 5-shot/5-way mini-ImageNet experiments, pre-training
improved the accuracy of prototypical networks (in the first row of
Table 1) by 9.91%, while the accuracy of MetaOptNetSVM decreased
by 1.4%, MetaOptNetRidge decreased by 1.15%, and Meta-baseline
(which also relies on pre-training independently performed by the
authors) decreased by 1%. As the last column shows, our attribute
transfer approach augments the better of published and our pre-
trained prototypical networks by 4.11%, MetaOptNetSVM by 1.97%,
MetaOptNetRidge by 3.26%, and Meta-baseline by 2.59%. (Note
that this marginal improvement is a conservative underestimate
based on the slightly better accuracy of 79.26% that the authors
of [4] achieved and can only increase if our pre-trained model im-
proves.) In the case of 1-shot/5-way mini-ImageNet experiments,
pre-training improved The accuracy of prototypical networks by
11.05%, MetaOptNetRidge increased by 0.20%, but the accuracy
of MetaOptNetSVM decreased by 1.15%, and Meta-baseline de-
creased by 0.87%. Our attribute transfer approach augments the
better of published and our pre-trained prototypical networks by

6.24%, MetaOptNetSVM by 2.55%, MetaOptNetRidge by 4.71%, and
Meta-baseline by 6.23%. In the 5-shot/5-way tiered-ImageNet experi-
ments, pre-training improved the accuracy of prototypical networks
by 10.4%, MetaOptNetRidge increased by 0.48%, and Meta-baseline
increased by 0.1%, but the accuracy of MetaOptNetSVM decreased
by 1.81%. Our attribute transfer approach augmented the better
of published and our pre-trained prototypical networks by 2.28%,
MetaOptNetSVM by 2.21%, MetaOptNetRidge by 3.67%, and Meta-
baseline by 1.66%. For 1-shot/5-way tiered-ImageNet experiments,
pre-training improved The accuracy of prototypical networks by
12.18%, and MetaOptNetRidge increased by 0.25%. The accuracy of
MetaOptNetSVM, however, decreased by 4.62%, and Meta-baseline
decreased by 0.84%. Our attribute transfer approach augments the
better of published and our pre-trained prototypical networks by
6.47%, MetaOptNetSVM by 4.01%, MetaOptNetRidge by 7.08%, and
Meta-baseline by 7.83%.

For 5-shot learning on mini-ImageNet, our Prototypical + BCAT
ensemble, which achieved 82.22% accuracy, was competitive with
the state-of-the-field system of [21], ProtoComNet, which achieved
82.06% accuracy. The difference is not significant and largely attrib-
utable to our probabilistic fusion implementation. However, this
result establishes that attribute transfer can be improved within
BCAT, as our preliminary experiments showed.

7.2 Attribute Transfer
To test and then explore the potential benefits of attribute transfer
learning using the approach we describe in Section 3, we used the
hierarchical WordNet ontology as our attribute source. Figure 2
represents this hierarchy showing the label level L0 and internal
levels Li for i > 0. We experimented with including attributes from
different internal levels of the hierarchy, which correspond to the
union of all interior attributes in the subtree rooted at a node.

root

entity
living 
thing

Box rug Dog Cat

L8

L7

L2

L1

L0

Figure 2: A hierarchy example obtained fromWordNet

Evidence of transfer learning. In Figure 3 we show the marginal
improvements obtained at different hierarchical levels of abstraction
for our scheme added to the transfer of attributes. The local max-
ima of these improvements was observed at L7 for Meta-baseline +
BCAT (L8 is listed in Table 1). While these improvements are in-
cremental, this figure demonstrates that accuracy gain attributable
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to transfer is achieved when inferring new labels from inferred
attributes.

69.10%

69.15%

69.20%

69.25%

69.30%

69.35%

69.40%

69.45%

L1 L2 L3 L4 L5 L6 L7 L8

Meta-baseline + BCAT

Figure 3: Chart showing incremental increases in accu-
racy when adding more attributes by going up in the hi-
erarchy. This chart is produced by running Meta-Baseline
+ BCAT with 1-shot/5-way experiments on the mini-
ImageNet dataset.

8 CONCLUSION
Through experiments on mini-ImageNet and tiered-ImageNet, we
show that our technique of attribute transfer derived from zero-shot
learning can be applied to few-shot learning when used with the
meta-learning framework. Authors in [10] developed an attribute-
transfer technique for zero-shot learning before recent advances
using convnets. This technique does not work out of the box when
applied to state-of-the-art FSL models with mini-ImageNet and
tiered-ImageNet in a meta-learning framework. We successfully
developed a technique for attribute transfer derived from [10] and
adapted to FSL by using pre-training [4], probabilistic fusion [21],
and metric scaling [14].

Our results show our proposed attribute transfer framework not
only outperformed the baselines we applied it to, but also outper-
formed pre-trained versions in a completely supervised setting.
Moreover, when we applied the probabilistic fusion mechanism of
[21], we achieved results superior to meta-learning baselines and
competitive with the state of the art with the possibility of further
improvements using attribute transfer. As mentioned in the previ-
ous section, these results are comparable to the extant state of the
field on 5-shot mini-ImageNet task [21] using our streamlined, in-
dependent implementation, while admitting further improvements
to BCAT using both semi-supervised methods and tuning of hierar-
chical attribute ontologies and other representations as discussed
in Section 7.

Given our preliminary findings on choosing transferable at-
tributes from theWordNet hierarchy, a promising direction of future
research lies in leveraging unlabeled samples within our framework.
We are pursuing at least two main ways to explore this. First, we
can take advantage of unlabeled data using semi-supervised and un-
supervised methods, which may boost the performance of attribute
transfer, because generally speaking, semi-supervised approaches
provide better performance in this setting than their supervised
counterparts. Second, we can use this framework to experiment

with natural language processing methods like ontology extraction
from corpora or analogical learning cf. [3]. Here, mini-ImageNet
and tiered-ImageNet provide a data-driven basis for learning or
inferring transferable attributes, and WordNet itself can serve as a
starting point, because our existing attributes consist of words that
are hierarchical labelings obtained using WordNet [7].
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