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Abstract—This paper presents a novel use case of Graph
Convolutional Network (GCN) learning representations for
predictive data mining, specifically from user/task data in the
domain of high-performance computing (HPC). It outlines an
approach based on a coalesced data set: logs from the Slurm
workload manager, joined with user experience survey data
from computational cluster users. We introduce a new method of
constructing a heterogeneous unweighted HPC graph consisting
of multiple typed nodes after revealing the manifold relations
between the nodes. The GCN structure used here executes
two tasks: i) determining whether a job will complete or fail
and ii) predicting memory and CPU requirements by training
the GCN semi-supervised classification model and regression
models on the generated graph; the graph is partitioned
into partitions using graph clustering. We conducted extensive
experiments using the proposed model on our HPC log dataset,
and finally, we measured the performance of our predictions
against baselines using performance metrics such as test score,
F1-score, precision, recall for classification, and R1 score for
regression where our approach achieved significant results.

Index Terms—HPC, Slurm, GCN, Beocat, ReqCPUS, Re-
qMem, CPU Usage, Memory Usage

I. INTRODUCTION

Allocation of resources such as determining the needed
memory, number of CPU cores, CPUTimes, and number
of clusters, as well as exploiting data on user experience
with HPC systems are crucial to predicting the job status of
any job submitted to an HPC cluster [10]. The sufficiency
of requested resources and competency of users’ experience
level of using HPC systems determine whether the job will
succeed. Again, the ability to predict resource requirements
for a job to successfully execute in the cluster is necessary
before a user submits a job [11], [13]. In HPC systems, such
open-source software packages as the Sun Grid Engine (SGE)
[2] and Slurm [3] allow users and managers of computing
clusters to monitor the status of real-time jobs and efficiently
allocate requested system resources. However, we are still in
immense need to automate the process of HPC resource allo-
cation for submitted jobs because none of the existing cluster

resource management tools provide this feature. On the other
hand, several previous studies [4]–[8] show that effective use
of machine learning techniques strengthens decisions support
based on estimating computational resource needs to ensure
a job is successfully completed by training learning models
on historical log data. Although user experience has a part to
play in efficiently using HPC systems by offering an additive
gain along training with the respective HPC datasets, user
experience data is not easily obtainable. Therefore, training
a classification and a regression model with user experience
data must account for the scarcity of representative data.
However, supervised classifier and regression models need a
large amount of annotated/labeled data for training prediction
models to provide high accuracy; prediction models cannot
be confirmed as performing well using fewer user data for
predicting a job status and its resource needs. For this reason,
we sought to use a semi-supervised approach using GCN to
predict job status and estimate vital computational resources.

In this study, we introduce a graphical data model of the
HPC ecosystem with the historical log data of Beocat, which
is the primary HPC platform at Kansas State University.

Beocat maintains a queue for submitted jobs; for each
submission, the Beocat system requires user inputs of esti-
mated running time and amount of memory for each job.
User experience with the HPC ecosystem may positively
affect prediction accuracy for the status of each submitted job
as well as estimates of necessary computational resources.
Collecting user experience data, a recently added optional
feature in Beocat, helps answer some additional questions
related to user experience: i) how much experience does the
user have with an HPC system; ii) what rating do users give
themselves; iii) what courses or formal training do users have
with HPC. After obtaining the necessary information, the
system prompts users to schedule jobs based on the requested
resources and system resource availability.

We have found the main limitation of Beocat current



system similar to many other HPC systems is that the users
are not required to answer the questions which cause many
user data not attached to resource allocation data. In addition,
estimating the resources needed is an error-prone task in
HPC systems, one where even many trained and experi-
enced users have difficulty in confirming actual resource
needs. Moreover, underestimating necessary computational
resources makes a failure of a job more probable, which in
turn, can further waste resources by pushing back other jobs
in the queue that require access to the occupied resources.

Therefore, given these issues, neither an HPC manage-
ment system nor any current machine learning model can
effectively use the heterogeneous data to predict job status
and estimate resource needs. This provides the motivation
for research into applying a Graph Convolutional Network
(GCN) to construct a classification model that can predict
the status of submitted jobs and create two regression models
to estimate the computational resources required for a job.
Many studies show that GCN outperforms CNN, RNN, and
other traditional machine learning approaches, and GCN
can also provide personalized recommendations for users in
estimating resources.

Traditional machine learning classifier and regression al-
gorithms show promise with a grid-based dataset where
data do not consider any relations between the data rows.
These algorithms do not, however, produce highly accurate
results when trained on graph-based data such as an HPC
historical log. The Beocat HPC dataset can be considered
as a graph dataset because it contains user experience and
aggregated demographic information that support the pres-
ence of implicit relationships between experience metrics,
resource allocation, and historical user profile information
[9]. Other than having independent datapoints, GCN exploits
latent relationships such as those i) among users with similar
levels of expertise with an HPC system; ii) among users
from the same project or department; iii) among jobs from
the same user. As for being a semi-supervised algorithm,
GCN also addresses the limitations of inadequate data on
user experience, which we mentioned earlier. Our proposed
model contributes to the research in the field in the following
ways:

• We introduce a new method for constructing a hetero-
geneous graph from a historical HPC log dataset.

• To the best of our knowledge, we are the first to train
a GCN model on HPC data with user experience infor-
mation to predict job status and estimate computational
resources.

• We show GCN on HPC achieves significant results in
the classification task with high precision, recall, F1-
score, and high R1 score for regression tasks.

In the rest of this paper, we provide references and
discuss earlier research in this domain, data preparation and
methods for applying GCN, experiments, and evaluations of
performance, result discussion, and finally, recommendations
for future research and a conclusion.

II. BACKGROUND AND LITERATURE STUDY

The Unique structure of the Deep Learning Networks
(DNN), and the steep rise in DNN usage in countless
applications distinguish Machine Learning (ML) research in
two timelines: i) conventional ML and ii) DNN approaches.
In this section, we discuss the basics of conventional ML and
DNN and how they have been used in the HPC domain.

A. Conventional ML approaches in HPC

We use conventional ML to refer to various supervised
approaches such as Linear Regression, Ridge Regression,
and Lasso Regression for regression analysis and Logistic
Regression, Gaussian Naive Bayes, and Random Forest for
classification. These algorithms need training data and target
variables to train models where the models compute errors
on their predictions using various loss functions based on
the difference between predicted values and actual target
values. Test data fed to a regression model predicts a numeric
value while a classification model predicts a target class for
test data. Research works on conventional approaches had
difficulties extracting sufficient discriminative deep features
to efficiently perform the learning task. As a result, the
predictive output may not be satisfactory. Moreover, all
earlier research applied to the SGE log dataset instead of
the Slurm dataset; Slurm is a state-of-the-art HPC resource
management tool.

B. DNN approaches in HPC domain

The advent of DNNs has revolutionized many predictive
tasks in both academics and real life. CNNs are a type
of DNN consisting of artificial neurons organized in layers
and responsible for propagating information layer by layer,
ultimately reaching the output layer. There are three types of
layers: i) input, ii) hidden, and iii) output. There are weight
parameters between these layers that can be learned by the
gradient descent of the loss calculated during backpropa-
gation. Although DNN has countless usability, only a few
DNN approaches have been adapted to the HPC predictive
analytics domain [12]. However, DNN also is limited in
extracting implicit relationships between data points because
DNN, by nature, considers data points independent of each
other. When HPC historical log data joins with user expe-
rience data, we attain the leverage to establish the implicit
relationships between data points. Therefore, we sought a
DNN architecture that considers not only data features but
also implicit relationships. This intuition inspired us to adopt
GCN that considers data-node features with node interactions
obtained from a graph constructed using the HPC log data.

III. PROPOSED WORK

In this section, we discuss how we proposed to apply a
GCN model to Beocat log data to predict the class of a sub-
mitted job and to estimate computational resources necessary
to successfully complete a job. To articulate our research, we
divided this section into two subsections following the two
main steps of implementing GCN: i) graph construction and
ii) model training.



A. Graph data construction and methodology

We constructed a heterogeneous HPC data graph com-
prising various types of data nodes with different types of
relationships between nodes. We used Networkx library to
construct the graph using the obtained edge relationships
between nodes. The following two subsections provide the
details of the constructed HPC graph.

1) Dataset Pre-processing: Beocat records accounting
data for all jobs submitted and executed on the Beocat HPC
system. We obtained the current dataset from the Beocat
Slurm log data; data collection is described in Subsection
IV A, Dataset. The dataset has 112 attributes that roughly
record most details for all submitted jobs, such as whether
a submitted job has been executed successfully, resources
required by a user during submission, and resources allocated
to the job itself by the system. However, the raw dataset
must be cleaned because it has redundant attributes and some
missing attribute values. The dataset is cleaned using the
following strategies:

• Remove duplicate attributes: Remove the attributes of
allocated CPUs and the number of nodes because the
attribute AllocTres already includes these two attributes

• Remove the attributes that have only two values or only
have value of NaN

• Remove the jobs if job states are neither failed nor
completed; some submitted jobs time out, are canceled
or fall under other states

• Parsing and Type Casting non-numerical attribute values
to numeric values: To obtain representations of node fea-
tures for graph nodes, we need numeric values on certain
attributes that are typecast after being transformed from
non-numeric values (i.e., MaxVMSize, MaxRSS, AveVM-
Size, AveRSS, AssocID, ReqCPUS, and AvePages).

• Scaling attribute value: Attribute values in different
scales are transformed into a single scale e.g., all the
ReqMem entries are transformed into a single scale.

• Extracting information from attributes: The three con-
secutive data rows in the dataset with a same jobID
produced after joining with LDAP data (described in the
following subsection) represent an instance of a single
job submitted into Beocat. To obtain a single value
for each attribute of a submitted job, we used different
group aggregation functions such as first, max,and last.

2) User Data Integration: User information (e.g., depart-
ment, project title) are also important attributes that can
help identify the relationship between user behavior and
submitted jobs, but this information is not included in the
primary raw Beocat dataset. Information about users can
be collected using public services such as the Lightweight
Directory Access Protocol (LDAP) [1] command on the HPC
system. Other than user information, we also consider user
proficiency in using the HPC system as an applicable attribute
indicating user experience in submitting jobs. For this reason,
we provided three survey questions for active users during
job submission time and collected user feedback as additional
user-related attributes. The survey questions are presented in
Table I:

TABLE I
SURVEY QUESTIONS AND OPTIONS

Questions Options
a. 0-6 month

q1: How much experience b. 6-12 month
do you have with high c. 1-2 years

performance computing (HPC)? d. 2-5 years
e. more than 5 years

a. Novice
q2: Rate your own b. Fairly okay

proficiency using HPC c. Average
d. Very good
e. Proficient

q3: How many courses a. None
or formal training b. Sigle one-day courses

have you had in HPC? c. Week-long training
d. Multiple courses

3) Node creation: We extracted all the distinct entities
from: JobID, UID, and GID; all the entities from these
attributes in the dataset are defined as distinct nodes. This
step made the graph heterogeneous in having different types
of nodes. To make a graph compatible with GCN learning,
we mapped distinct entities derived from these attributes
to unique numeric values. In other words, each node is
represented by a unique integer. To create nodes for the HPC
graph, we let Networkx read the edge relationships between
these nodes as inputs; Networkx can automatically construct
the graph for training.

4) Edge formulation: We extracted and explored the re-
lationships between different nodes where the nodes were
mapped to distinct entities from the attributes and connected
by undirected edges. Node connections were assigned for
each datarow according to the following relationships: UID
−→ JobID, GID −→ UID. We also applied binning operations
to the values of each of the following attributes: ReqMem
and ReqCPUS, q1, q2, and q3; these operations were an
attempt to connect distinct JobID nodes to each other. The
interval ranges of all the bining operations were determined
by HPC domain experts. Table III and Table IV show the
three attributes where the binning operation was applied.
The Limit column defines the range of each bin, Container
column defines the binning group where JobID nodes have
undirected edges. Please note that each GCN model shows
a decrease in predictive performance after a certain average
value of node degree is observed. In other words, a graph
topology in which existing nodes having too many incoming
and outgoing edges can converge toward a similar vector
representation. As a result, the lack of discriminative feature
representation of nodes causes performance to decline in
the predictive model. To address this problem, we created a
dummy node initialized with a random vector representation
and connected all job nodes in a container to that node by
edges to keep the number of average node degrees limited in
the graph.

5) Node feature formulation: We selected several at-
tributes from the Beocat dataset to be considered features of
job nodes. We also added some derived features by averaging
certain current attributes (CPUTimeRAW, MaxVMSize, Time-
limitRaw, ReqMem,and MaxRSS) for each user. To obtain



average values, we grouped across jobs by UID and projected
the newly generated columns as aCPUTimeRAW, aMaxVM-
Size, aTimelimitRaw, aReqMem, and aMaxRSS. Then, we re-
joined the existing attributes with the newly derived attributes
by UID that results in each row for each job. That means val-
ues of the derived attributes were mapped to their respective
UIDs where those values were replicated across all the jobs
submitted by that UID. Table II shows the distinct attributes
based on their categories, whether numeric, categorical, or
aggregated. Ultimately, we had numeric entries in all 32
different attributes that served as feature representations
for submitted jobs. For predicting memory usage, we ex-
cluded MaxRSS, and for predicting CPU usage, we excluded
CPUTimeRAW following the convention of regression anal-
ysis for considering them as target variables. Now, we could
map each job node to a valid feature representation, but
we had other types of nodes as well in the HPC graph. To
address this limitation, for all other nodes except job nodes,
we initialized a node by generating a random vector of the
same length such as a job node feature representation. To
train the GCN model efficiently, we normalized all attribute
columns using min-max normalization.

TABLE II
CONSIDERED NUMERIC ATTRIBUTES FOR NODE FEATURES

Numeric Attributes
TimelimitRaw, ReqMem, NCPUS NNodes

AveVMSize, AveRSS, MaxVMSize
ReqCPUS, q5, q6, q7, CPUTimeRAW, AvePages

Categorical Attributes
department ComputerScience

department ChemicalEngineering, department Chemistry
department Mechanical&NuclearEngineering

department Physics, department PlantPathology
department ComputerScience, department Agronomy

department InstituteforEnvironmentalResearch
role Faculty, role GraduateStudent

role PostDoctoralResearcher, role ResearchAssociate
department VeterinaryDiagnosticLaboratory

Aggregate Attributes
aMaxVMSize, aTimelimitRaw

aReqMem, aMaxRSS, role UndergraduateStudent

6) Sample structure of a Graph Convolutional Network:
Figure 4 presents a prototype of a heterogeneous graph
structure based on the user-job information extracted from the
given Beocat HPC dataset. The label for userID nodes is U,
for JobID nodes is J, and for GID nodes is G. Each is shown
in a different color as well. Distinct nodes connected through
edges are derived from explicit and implicit relationships.
Implicit relationships such as jobIDs in the same container,
as defined in Table III, are connected to a dummy node
assigned for each container. For example, α and β were
assigned to two reqCPUS containers, γ and δ were assigned
to two reqMem containers, and χ, ψ, and ω were assigned
to three different containers for three different questions q1,
q2, and q3. We provided target labels Failed and Completed
for JobID nodes in the State target variable for classification
analysis. For two regression analyses, one target variable we
had is CPUTimeRAW and another one is MaxRSS. Figure
5 magnifies a JobID from the HPC graph to illustrate its

structure.

TABLE III
RESOURCE RANGE

ReqCPUS ReqMem
Limit Container Limit Container

256 < ReqCPUS A 256 < ReqMem C
≤ 512 ≤ 512

512 < ReqCPUS B 512 < ReqMem D

TABLE IV
RESOURCE RANGE

Questions
Question Types Limit Container

q1 q1==5 E
q2 q2==5 F
q3 q3==4 G

B. Training GCN on the graph

The constructed heterogeneous graph was then used to
train each of three different GCN training models: one job
status classification model and two regression models. In our
implementation, we used the Cluster GCN architecture [14]
from pyTorchGeometric open-source graph learning library
[15] that partitions the single large graph into smaller sub-
graphs using metis [16] graph-portioning algorithm. The
graph partitioning algorithm applied here uses the same
process as data batches are rendered in a CNN. The GCN
model for classification [17] was developed as a multi-class
classification model for individually predicting two classes of
job status. The classification model discriminates each node
feature at the end of a certain number of epochs to effectively
classify job nodes by predicting job’s status where we initial-
ized node features with the feature matrix of all transformed
numeric attributes. On the other hand, two different target
variables (CPUTimeRAW and MaxRSS) correspond to two
different regression models, are used to predict target values
where each model also learns discriminative features but in
fewer number epochs compared to the classification model.
The reason for this is that regression analysis performs better
with a simpler learning setup.

IV. EXPERIMENTS AND PERFORMANCE EVALUATION

A. Dataset

The raw dataset spans four years of job submission history
from February 2018 to February 2021; the dataset has 26.6
million instances and 112 data rows. In our study, for
classification analysis, we selected a sample dataset of 200K
datarows where we found 56837 number of distinct nodes
and 93866 number of edges. In addition, the heterogeneous
graph consists of 56727 JobID nodes, 55 GID nodes, 55 UID
nodes. The average degree of the nodes is 3.30. Splitting the
dataset as 80%:20%, generates 45470 number of nodes for
training and 11367 number of nodes for testing the model.
For regression analysis, we selected 100K datarows as a
sample dataset from the original raw dataset.



B. Experiments

Because we have three different GCN models, we used
three different experimental setups for training. Model ar-
chitectures and hyperparameter setup for classification and
regression analyses are discussed for each model individually.

1) Classification Analysis: For classification, we used
three consecutive fully connected hidden layers; the sizes of
each hidden layer were [(number of all nodes, 64), (64, 64),
(64, 64), (64, 2)]. We applied Negative Log-Likelihood as
a loss function and log softmax as an activation function in
the last layer of the classification network. Furthermore, we
ran both models for 400 epochs with the following parameter
settings; learning rate = 0.01, and dropout = 0.5.

2) Regression Analysis: For both regression analyses, we
used one fully connected hidden layer with the size of the
hidden layer [(number of all nodes, 64), (64, 1)]. We used
Mean Squared Error and the Linear activation function to run
our models for 100 epochs where the learning rate = 0.1, and
dropout = 0.5. We used a simpler model in both regression
analyses than the classification model; simpler regression
models perform better than complex networks. We trained
the two regression models only on those data rows in which
job status is successfully complete.

C. Performance Evaluation

In Table V, we display the classification result compared
against two baseline classification algorithms i) Naive Bayes,
and ii) Logistic Regression. As these algorithms are meant
for binary classification, we employ these to predict whether
a submitted job would be successful or not. We found that
our proposed GCN framework achieves performance gain
over the baselines in terms of prediction accuracy, precision,
recall, and F1-score by significant margins.

TABLE V
CLASSIFICATION RESULT

Classification Model Accuracy Precision Recall F-1 Score
Proposed GCN 82% 0.814 0.975 0.88%

Logistic Regression 73.7% 0.37 0.50 0.42%
Naive Bayes 74% 0.37 0.51 0.43

Table VI projects the results of two regression models
for CPU and memory using GCN respectively. We compare
our regression performance against two baselines regression
algorithms i) Lasso Regression, and ii) Ridge Regression
using R1 score. We also observe here, the GCN regression
model that predicts CPU usage outperforms the baselines.
However, another GCN regression model for memory usage,
matches its performance with one baseline algorithm.

TABLE VI
REGRESSION RESULT FOR CPU USAGE

Regression Model R-1 Score
Proposed Model 0.26

Linear Regression 0.2450
LassoLarsIC Regression 0.2457
ElasticNetCV Regression 0.0029

Ridge Regression 0.2543

TABLE VII
REGRESSION RESULT FOR MEMORY USAGE

Regression Model R-1 Score
Proposed Model 0.14

Linear Regression 0.0410
LassoLarsIC Regression 0.0415
ElasticNetCV Regression 0.0107

Ridge Regression 0.1468

Fig 1, Fig 2, and Fig 3 show loss curves for the GCN job
status classification, CPU regression, and memory regression
analyses respectively.

Fig. 1. Training Accuracy and loss curve for job status classification

Fig. 2. Training loss curve for required CPU usage estimation

Fig. 3. Training loss curve for required memory usage estimation

V. RESULTS AND DISCUSSION

Based on the performance result of GCN models on HPC
data, we can anticipate that job data rows are not fully



independent episodes. The reason behind this anticipation is
that the implicit relations of jobs considered in GCN models
contribute to deploying better prediction models. Again, for
a big graph, after a certain number of epochs, the node
representations in the graph tend to converge to similar
distributions due to the message passing process. On the other
hand, if an appropriate node relation setup policy is taken
into account to construct in a graph, GCN delivers sufficient
predictive capabilities without even being initialized by any
external node feature set.

Fig. 4. Prototype of the proposed HPC graph

Fig. 5. A sample JobID node with features

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we focused on adapting a GCN in the
HPC domain to exploit the potential of GCNs for predictive
analytic tasks in HPC user modeling. We have found GCN
shows significantly better performance than the baselines on
standard performance matrices. However, GCN limitation in
having high computational overhead for graph construction
and network training is not considered in this analysis. We
still face challenges taking advantage of the user data because
the data collection was not verified and that process itself

makes the process error-prone. Constructing an effective HPC
graph is also a matter of prime concern in obtaining good
predictions. We have, however, vindicated our suggestion
of conceptualizing HPC data as a graph model through
extensive analysis although we have much room to improve
the model further. We can include other variables of relational
importance. We also want to apply the HPC data to other
types of GCNs to examine their performance gain.
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