HPCGCN: A Predictive Framework on High Performance Computing Cluster Log Data Using Graph Convolutional Networks

1st Avishek Bose
Department of Computer Science
Kansas State University
Manhattan, Kansas, USA
abose@ksu.edu

2nd Huichen Yang
Department of Computer Science
Kansas State University
Manhattan, Kansas, USA
huichen@ksu.edu

3rd William H. Hsu
Department of Computer Science
Kansas State University
Manhattan, Kansas, USA
bhsu@ksu.edu

4th Daniel Andresen
Department of Computer Science
Kansas State University
Manhattan, Kansas, USA
dan@ksu.edu

Abstract—This paper presents a novel use case of Graph Convolutional Network (GCN) learning representations for predictive data mining, specifically from user/task data in the domain of high-performance computing (HPC). It outlines an approach based on a coalesced data set: logs from the Slurm workload manager, joined with user experience survey data from computational cluster users. We introduce a new method of constructing a heterogeneous unweighted HPC graph consisting of multiple typed nodes after revealing the manifold relations between the nodes. The GCN structure used here executes two tasks: i) determining whether a job will complete or fail and ii) predicting memory and CPU requirements by training the GCN semi-supervised classification model and regression models on the generated graph; the graph is partitioned into partitions using graph clustering. We conducted extensive experiments using the proposed model on our HPC log dataset, and finally, we measured the performance of our predictions against baselines using performance metrics such as test score, F1-score, precision, recall for classification, and R1 score for regression where our approach achieved significant results.

Index Terms—HPC, Slurm, GCN, Beocat, ReqCPUS, ReqMem, CPU Usage, Memory Usage

I. INTRODUCTION

Allocation of resources such as determining the needed memory, number of CPU cores, CPUTimes, and number of clusters, as well as exploiting data on user experience with HPC systems are crucial to predicting the job status of any job submitted to an HPC cluster [10]. The sufficiency of requested resources and competency of users’ experience level of using HPC systems determine whether the job will succeed. Again, the ability to predict resource requirements for a job to successfully execute in the cluster is necessary before a user submits a job [11], [13]. In HPC systems, such open-source software packages as the Sun Grid Engine (SGE) [2] and Slurm [3] allow users and managers of computing clusters to monitor the status of real-time jobs and efficiently allocate requested system resources. However, we are still in immense need to automate the process of HPC resource allocation for submitted jobs because none of the existing cluster resource management tools provide this feature. On the other hand, several previous studies [4]–[8] show that effective use of machine learning techniques strengthens decisions support based on estimating computational resource needs to ensure a job is successfully completed by training learning models on historical log data. Although user experience has a part to play in efficiently using HPC systems by offering an additive gain along training with the respective HPC datasets, user experience data is not easily obtainable. Therefore, training a classification and a regression model with user experience data must account for the scarcity of representative data. However, supervised classifier and regression models need a large amount of annotated/labeled data for training prediction models to provide high accuracy; prediction models cannot be confirmed as performing well using fewer user data for predicting a job status and its resource needs. For this reason, we sought to use a semi-supervised approach using GCN to predict job status and estimate vital computational resources.

In this study, we introduce a graphical data model of the HPC ecosystem with the historical log data of Beocat, which is the primary HPC platform at Kansas State University.

Beocat maintains a queue for submitted jobs; for each submission, the Beocat system requires user inputs of estimated running time and amount of memory for each job. User experience with the HPC ecosystem may positively affect prediction accuracy for the status of each submitted job as well as estimates of necessary computational resources. Collecting user experience data, a recently added optional feature in Beocat, helps answer some additional questions related to user experience: i) how much experience does the user have with an HPC system; ii) what rating do users give themselves; iii) what courses or formal training do users have with HPC. After obtaining the necessary information, the system prompts users to schedule jobs based on the requested resources and system resource availability. We have found the main limitation of Beocat current
system similar to many other HPC systems is that the users are not required to answer the questions which cause many user data not attached to resource allocation data. In addition, estimating the resources needed is an error-prone task in HPC systems, one where even many trained and experienced users have difficulty in confirming actual resource needs. Moreover, underestimating necessary computational resources makes a failure of a job more probable, which in turn, can further waste resources by pushing back other jobs in the queue that require access to the occupied resources.

Therefore, given these issues, neither an HPC management system nor any current machine learning model can effectively use the heterogeneous data to predict job status and estimate resource needs. This provides the motivation for research into applying a Graph Convolutional Network (GCN) to construct a classification model that can predict the status of submitted jobs and create two regression models to estimate the computational resources required for a job. Many studies show that GCN outperforms CNN, RNN, and other traditional machine learning approaches, and GCN can also provide personalized recommendations for users in estimating resources.

Traditional machine learning classifier and regression algorithms show promise with a grid-based dataset where data do not consider any relations between the data rows. These algorithms do not, however, produce highly accurate results when trained on graph-based data such as an HPC historical log. The Beocat HPC dataset can be considered as a graph dataset because it contains user experience and aggregated demographic information that support the presence of implicit relationships between experience metrics, resource allocation, and historical user profile information [9]. Other than having independent datapoints, GCN exploits latent relationships such as those i) among users with similar levels of expertise with an HPC system; ii) among users from the same project or department; iii) among jobs from the same user. As for being a semi-supervised algorithm, GCN also addresses the limitations of inadequate data on user experience, which we mentioned earlier. Our proposed model contributes to the research in the field in the following ways:

- We introduce a new method for constructing a heterogeneous graph from a historical HPC log dataset.
- To the best of our knowledge, we are the first to train a GCN model on HPC data with user experience information to predict job status and estimate computational resources.
- We show GCN on HPC achieves significant results in the classification task with high precision, recall, F1-score, and high R1 score for regression tasks.

In the rest of this paper, we provide references and discuss earlier research in this domain, data preparation and methods for applying GCN, experiments, and evaluations of performance, result discussion, and finally, recommendations for future research and a conclusion.

II. BACKGROUND AND LITERATURE STUDY

The Unique structure of the Deep Learning Networks (DNN), and the steep rise in DNN usage in countless applications distinguish Machine Learning (ML) research in two timelines: i) conventional ML and ii) DNN approaches. In this section, we discuss the basics of conventional ML and DNN and how they have been used in the HPC domain.

A. Conventional ML approaches in HPC

We use conventional ML to refer to various supervised approaches such as Linear Regression, Ridge Regression, and Lasso Regression for regression analysis and Logistic Regression, Gaussian Naive Bayes, and Random Forest for classification. These algorithms need training data and target variables to train models where the models compute errors on their predictions using various loss functions based on the difference between predicted values and actual target values. Test data fed to a regression model predicts a numeric value while a classification model predicts a target class for test data. Research works on conventional approaches had difficulties extracting sufficient discriminative deep features to efficiently perform the learning task. As a result, the predictive output may not be satisfactory. Moreover, all earlier research applied to the SGE log dataset instead of the Slurm dataset; Slurm is a state-of-the-art HPC resource management tool.

B. DNN approaches in HPC domain

The advent of DNNs has revolutionized many predictive tasks in both academics and real life. CNNs are a type of DNN consisting of artificial neurons organized in layers and responsible for propagating information layer by layer, ultimately reaching the output layer. There are three types of layers: i) input, ii) hidden, and iii) output. There are weight parameters between these layers that can be learned by the gradient descent of the loss calculated during backpropagation. Although DNN has countless usability, only a few DNN approaches have been adapted to the HPC predictive analytics domain [12]. However, DNN also is limited in extracting implicit relationships between data points because DNN, by nature, considers data points independent of each other. When HPC historical log data joins with user experience data, we attain the leverage to establish the implicit relationships between data points. Therefore, we sought a DNN architecture that considers not only data features but also implicit relationships. This intuition inspired us to adopt GCN that considers data-node features with node interactions obtained from a graph constructed using the HPC log data.

III. PROPOSED WORK

In this section, we discuss how we proposed to apply a GCN model to Beocat log data to predict the class of a submitted job and to estimate computational resources necessary to successfully complete a job. To articulate our research, we divided this section into two subsections following the two main steps of implementing GCN: i) graph construction and ii) model training.
A. Graph data construction and methodology

We constructed a heterogeneous HPC data graph comprising various types of data nodes with different types of relationships between nodes. We used Networkx library to construct the graph using the obtained edge relationships between nodes. The following two subsections provide the details of the constructed HPC graph.

1) Dataset Pre-processing: Beocat records accounting data for all jobs submitted and executed on the Beocat HPC system. We obtained the current dataset from the Beocat Slurm log data; data collection is described in Subsection IV A, Dataset. The dataset has 112 attributes that roughly record most details for all submitted jobs, such as whether a submitted job has been executed successfully, resources required by a user during submission, and resources allocated to the job itself by the system. However, the raw dataset must be cleaned because it has redundant attributes and some missing attribute values. The dataset is cleaned using the following strategies:

- Remove duplicate attributes: Remove the attributes of allocated CPUs and the number of nodes because the attribute AllocTres already includes these two attributes
- Remove the attributes that have only two values or only have value of NaN
- Remove the jobs if job states are neither failed nor completed; some submitted jobs time out, are canceled or fall under other states
- Parsing and Type Casting non-numerical attribute values to numeric values: To obtain representations of node features for graph nodes, we need numeric values on certain attributes that are typecast after being transformed from non-numerical values (i.e., MaxVMSize, MaxRSS, AveVMSize, AveRSS, AssocID, ReqCPUS, and AvePages).
- Scaling attribute value: Attribute values in different scales are transformed into a single scale e.g., all the ReqMem entries are transformed into a single scale.
- Extracting information from attributes: The three consecutive data rows in the dataset with a same jobID produced after joining with LDAP data (described in the following subsection) represent an instance of a single job submitted into Beocat. To obtain a single value for each attribute of a submitted job, we used different group aggregation functions such as first, max, and last.

2) User Data Integration: User information (e.g., department, project title) are also important attributes that can help identify the relationship between user behavior and submitted jobs, but this information is not included in the primary raw Beocat dataset. Information about users can be collected using public services such as the Lightweight Directory Access Protocol (LDAP) [1] command on the HPC system. Other than user information, we also consider user proficiency in using the HPC system as an applicable attribute indicating user experience in submitting jobs. For this reason, we provided three survey questions for active users during job submission time and collected user feedback as additional user-related attributes. The survey questions are presented in Table I:

<table>
<thead>
<tr>
<th>Questions</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>q1: How much experience do you have with high performance computing (HPC)?</td>
<td>a. 0-6 month, b. 6-12 month, c. 1-2 years, d. 2-5 years, e. more than 5 years</td>
</tr>
<tr>
<td>q3: How many courses or formal training have you had in HPC?</td>
<td>a. None, b. Single one-day courses, c. Week-long training, d. Multiple courses</td>
</tr>
</tbody>
</table>

3) Node creation: We extracted all the distinct entities from: JobID, UID, and GID; all the entities from these attributes in the dataset are defined as distinct nodes. This step made the graph heterogeneous in having different types of nodes. To make a graph compatible with GCN learning, we mapped distinct entities derived from these attributes to unique numeric values. In other words, each node is represented by a unique integer. To create nodes for the HPC graph, we let Networkx read the edge relationships between these nodes as inputs; Networkx can automatically construct the graph for training.

4) Edge formulation: We extracted and explored the relationships between different nodes where the nodes were mapped to distinct entities from the attributes and connected by undirected edges. Node connections were assigned for each datarow according to the following relationships: UID \rightarrow JobID, GID \rightarrow UID. We also applied binning operations to the values of each of the following attributes: ReqMem and ReqCPUS, q1, q2, and q3; these operations were an attempt to connect distinct JobID nodes to each other. The interval ranges of all the binning operations were determined by HPC domain experts. Table III and Table IV show the three attributes where the binning operation was applied. The Limit column defines the range of each bin, Container column defines the binning group where JobID nodes have undirected edges. Please note that each GCN model shows a decrease in predictive performance after a certain average value of node degree is observed. In other words, a graph topology in which existing nodes having too many incoming and outgoing edges can converge toward a similar vector representation. As a result, the lack of discriminative feature representation of nodes causes performance to decline in the predictive model. To address this problem, we created a dummy node initialized with a random vector representation and connected all job nodes in a container to that node by edges to keep the number of average node degrees limited in the graph.

5) Node feature formulation: We selected several attributes from the Beocat dataset to be considered features of job nodes. We also added some derived features by averaging certain current attributes (CPU Time RAW, MaxVMSize, Time-limitRaw, ReqMem, and MaxRSS) for each user. To obtain...
average values, we grouped across jobs by UID and projected the newly generated columns as $aCPUtimeRAW$, $aMaxVMSize$, $aTimelimitRaw$, $aReqMem$, and $aMaxRSS$. Then, we rejoined the existing attributes with the newly derived attributes by UID that results in each row for each job. That means values of the derived attributes were mapped to their respective UIDs where those values were replicated across all the jobs submitted by that UID. Table II shows the distinct attributes based on their categories, whether numeric, categorical, or aggregated. Ultimately, we had numeric entries in all 32 different attributes that served as feature representations for submitted jobs. For predicting memory usage, we excluded MaxRSS, and for predicting CPU usage, we excluded $CPUtimeRAW$ following the convention of regression analysis for considering them as target variables. Now, we could map each job node to a valid feature representation, but we had other types of nodes as well in the HPC graph. To address this limitation, for all other nodes except job nodes, we initialized a node by generating a random vector of the same length such as a job node feature representation. To train the GCN model efficiently, we normalized all attribute columns using min-max normalization.

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>CONSIDERED NUMERIC ATTRIBUTES FOR NODE FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Attributes</td>
<td>TimelimitRaw, ReqMem, NCPUTimeNNodes, AveVMSize, AveRSS, MaxVMSize, ReqCPU, q5, q6, q7, CPUtimeRAW, AvePages</td>
</tr>
<tr>
<td>Categorical Attributes</td>
<td>department_ComputerScience, department_ChemicalEngineering, department_Chemistry, department_Mechanical&NuclearEngineering, department_Physics, department_PlantPathology, department_ComputerScience, department_Agronomy, department_InstituteforEnvironmentalResearch, role_Faculty, role_GraduateStudent, role_PostDoctoralResearcher, role_ResearchAssociate, department_VeterinaryDiagnosticLaboratory</td>
</tr>
<tr>
<td>Aggregate Attributes</td>
<td>aMaxVMSize, aTimelimitRaw, aReqMem, aMaxRSS, role_UndergraduateStudent</td>
</tr>
</tbody>
</table>

6) Sample structure of a Graph Convolutional Network: Figure 4 presents a prototype of a heterogeneous graph structure based on the user-job information extracted from the given Beocat HPC dataset. The label for $userID$ nodes is U, for $JobID$ nodes is J, and for GID nodes is G. Each is shown in a different color as well. Distinct nodes connected through edges are derived from explicit and implicit relationships. Implicit relationships such as jobIDs in the same container, as defined in Table III, are connected to a dummy node assigned for each container. For example, α and β were assigned to two $reqCPU$ containers, γ and δ were assigned to two $reqMem$ containers, and χ, ψ, and ω were assigned to three different containers for three different questions $q1$, $q2$, and $q3$. We provided target labels Failed and Completed for JobID nodes in the State target variable for classification analysis. For two regression analyses, one target variable we had is $CPUtimeRAW$ and another one is MaxRSS. Figure 5 magnifies a JobID from the HPC graph to illustrate its structure.

<table>
<thead>
<tr>
<th>TABLE III</th>
<th>RESOURCE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ReqCPU$</td>
<td>$ReqMem$</td>
</tr>
<tr>
<td>Limit</td>
<td>Container</td>
</tr>
<tr>
<td>256 < $ReqCPU$</td>
<td>A</td>
</tr>
<tr>
<td>512 < $ReqCPU$</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE IV</th>
<th>RESOURCE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questions</td>
<td>Limit</td>
</tr>
<tr>
<td>$q1$</td>
<td>$q1==5$</td>
</tr>
<tr>
<td>$q2$</td>
<td>$q2==5$</td>
</tr>
<tr>
<td>$q3$</td>
<td>$q3==4$</td>
</tr>
</tbody>
</table>

B. Training GCN on the graph

The constructed heterogeneous graph was then used to train each of three different GCN training models: one job status classification model and two regression models. In our implementation, we used the Cluster GCN architecture [14] from pyTorchGeometric open-source graph learning library [15] that partitions the single large graph into smaller subgraphs using metis [16] graph-portioning algorithm. The graph partitioning algorithm applied here uses the same process as data batches are rendered in a CNN. The GCN model for classification [17] was developed as a multi-class classification model for individually predicting two classes of job status. The classification model discriminates each node feature at the end of a certain number of epochs to effectively classify job nodes by predicting job’s status where we initialized node features with the feature matrix of all transformed numeric attributes. On the other hand, two different target variables ($CPUtimeRAW$ and MaxRSS) correspond to two different regression models, are used to predict target values where each model also learns discriminative features but in fewer number epochs compared to the classification model. The reason for this is that regression analysis performs better with a simpler learning setup.

IV. Experiments and Performance Evaluation

A. Dataset

The raw dataset spans four years of job submission history from February 2018 to February 2021; the dataset has 26.6 million instances and 112 data rows. In our study, for classification analysis, we selected a sample dataset of 200K datarows where we found 56837 number of distinct nodes and 93866 number of edges. In addition, the heterogeneous graph consists of 56727 JobID nodes, 55 GID nodes, 55 UID nodes. The average degree of the nodes is 3.30. Splitting the dataset as 80%:20%, generates 45470 number of nodes for training and 11367 number of nodes for testing the model. For regression analysis, we selected 100K datarows as a sample dataset from the original raw dataset.
B. Experiments

Because we have three different GCN models, we used three different experimental setups for training. Model architectures and hyperparameter setup for classification and regression analyses are discussed for each model individually.

1) Classification Analysis: For classification, we used three consecutive fully connected hidden layers; the sizes of each hidden layer were [(number of all nodes, 64), (64, 64), (64, 64), (64, 2)]. We applied Negative Log-Likelihood as a loss function and log_softmax as an activation function in the last layer of the classification network. Furthermore, we ran both models for 400 epochs with the following parameter settings; learning rate = 0.01, and dropout = 0.5.

2) Regression Analysis: For both regression analyses, we used one fully connected hidden layer with the size of the hidden layer [(number of all nodes, 64), (64, 1)]. We used Mean Squared Error and the Linear activation function to run our models for 100 epochs where the learning rate = 0.1, and dropout = 0.5. We used a simpler model in both regression analyses than the classification model; simpler regression models perform better than complex networks. We trained the two regression models only on those data rows in which job status is successfully complete.

C. Performance Evaluation

In Table V, we display the classification result compared against two baseline classification algorithms i) Naive Bayes, and ii) Logistic Regression. As these algorithms are meant for binary classification, we employ these to predict whether a submitted job would be successful or not. We found that our proposed GCN framework achieves performance gain over the baselines in terms of prediction accuracy, precision, recall, and F1-score by significant margins.

<table>
<thead>
<tr>
<th>Classification Model</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F-1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed GCN</td>
<td>82%</td>
<td>0.814</td>
<td>0.975</td>
<td>0.88%</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>73.7%</td>
<td>0.37</td>
<td>0.50</td>
<td>0.42%</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>74%</td>
<td>0.37</td>
<td>0.51</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Table VI projects the results of two regression models for CPU and memory using GCN respectively. We compare our regression performance against two baselines regression algorithms i) Lasso Regression, and ii) Ridge Regression using R1 score. We also observe here, the GCN regression model that predicts CPU usage outperforms the baselines. However, another GCN regression model for memory usage, matches its performance with one baseline algorithm.

<table>
<thead>
<tr>
<th>Regression Model</th>
<th>R-1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Model</td>
<td>0.20</td>
</tr>
<tr>
<td>Linear Regression</td>
<td>0.250</td>
</tr>
<tr>
<td>LassoLarsIC Regression</td>
<td>0.2457</td>
</tr>
<tr>
<td>ElasticNetCV Regression</td>
<td>0.0029</td>
</tr>
<tr>
<td>Ridge Regression</td>
<td>0.2543</td>
</tr>
</tbody>
</table>

Fig 1, Fig 2, and Fig 3 show loss curves for the GCN job status classification, CPU regression, and memory regression analyses respectively.

Fig. 1. Training Accuracy and loss curve for job status classification

Fig. 2. Training loss curve for required CPU usage estimation

Fig. 3. Training loss curve for required memory usage estimation

V. RESULTS AND DISCUSSION

Based on the performance result of GCN models on HPC data, we can anticipate that job data rows are not fully
the data collection was not verified and that process itself still face challenges taking advantage of the user data because network training is not considered in this analysis. We having high computational overhead for graph construction standard performance matrices. However, GCN limitation in shows significantly better performance than the baselines on analytic tasks in HPC user modeling. We have found GCN HPC domain to exploit the potential of GCNs for predictive capabilities without even being initialized by any external node feature set.

In this paper, we focused on adapting a GCN in the HPC domain to exploit the potential of GCNs for predictive analytic tasks in HPC user modeling. We have found GCN shows significantly better performance than the baselines on standard performance matrices. However, GCN limitation in having high computational overhead for graph construction and network training is not considered in this analysis. We still face challenges taking advantage of the user data because the data collection was not verified and that process itself makes the process error-prone. Constructing an effective HPC graph is also a matter of prime concern in obtaining good predictions. We have, however, vindicated our suggestion of conceptualizing HPC data as a graph model through extensive analysis although we have much room to improve the model further. We can include other variables of relational importance. We also want to apply the HPC data to other types of GCNs to examine their performance gain.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we focused on adapting a GCN in the HPC domain to exploit the potential of GCNs for predictive analytic tasks in HPC user modeling. We have found GCN shows significantly better performance than the baselines on standard performance matrices. However, GCN limitation in having high computational overhead for graph construction and network training is not considered in this analysis. We still face challenges taking advantage of the user data because the data collection was not verified and that process itself makes the process error-prone. Constructing an effective HPC graph is also a matter of prime concern in obtaining good predictions. We have, however, vindicated our suggestion of conceptualizing HPC data as a graph model through extensive analysis although we have much room to improve the model further. We can include other variables of relational importance. We also want to apply the HPC data to other types of GCNs to examine their performance gain.

REFERENCES