
Tracing Relevant Twitter Accounts Active in Cyber
Threat Intelligence Domain by Exploiting Content and

Structure of Twitter Network
Avishek Bose1

Department of Computer Science
Kansas State University

Manhattan, KS,USA

Vahid Behzadan3
Department of Electrical and Computer

Engineering and Computer Science
University of New Haven

West Haven, CT, USA

Shreya Gopal Sundari2
Department of Electrical and Computer

Engineering and Computer Science
University of New Haven

West Haven, CT, USA

William H. Hsu4
Department of Computer Science

Kansas State University
Manhattan, KS, USA

Abstract—Due to the enormous volume of data and rate of data
generation on Twitter, a challenging task is to trace user accounts
to monitor these as instances of Cyber Threat Intelligence (CTI).
In this paper, we propose a novel approach for cyber threat-
associated user accounts tracing in the Twitter data stream based
on the ranking of users according to their contextual relevance and
topological information extracted from finding user communities
in the Twitter network. In our approach, we use both structural
information of the graph network and user accounts’ tweet contents
to find relevant user accounts concerning previously identified seed
user accounts. Our proposed method outperforms over two relevant
user recommendation methods on an annotated data of CTI related
Twitter user accounts in tracing relevant user accounts as instances
of cyber-threat intelligence.

Index Terms—Content Aware, Community Detection, Directed
Graph, Sample Network, User Account Weight

I. INTRODUCTION

Twitter data streams as an open-source [1] for cyber threat
monitoring is becoming a key point of interest in the research
domain of Open Source Intelligence (OSINT). Although the
feasibility and significance of Twitter as a streaming data source
for tracing out Cyber Threat Intelligence (CTI) have already been
established in earlier works [2], [3], the tasks of tracing user
accounts as a potential information source about threats [4] and
extracting pertinent information from the accounts are still less-
explored research topics.

In Twitter, a user’s domain-specific posts and shared contents
over the social network tend to have more importance/influence
to her followers if she structurally belongs to the community of
relevant domain of interest such as Cyber Threat Intelligence.
This assumption indicates the necessity of structural commu-
nity detection prior to tracing accounts of relevant interest. On
the other hand, user importance in a domain of interest can
be evaluated by an automated ranking mechanism considering
her relevant domain experience and activities. Therefore, many
accounts belong to a community may not be domain relevant if a
respective ranking measure is applied to filter user accounts. As
our interest focus on some provided target topics, topic similarity
calculation with user accounts’ tweets is an obvious downstream
process for tracing user accounts as CTI instances. From CTI
perspective, it is more effective to trace and monitor groups of
users rather than engaging to find a single source because this
can help i) identifying emerging cyber threats, ii) measuring the

[abose, bhsu]@ksu.edu1,4, [ssund2, vbehzadan]@unh.newhaven.edu2,3

credibility of the information, and iii) finding Twitter users who
share the similar or paraphrased text of a cyber threat-related
topic. This highly potential less explored research scope inspired
us to propose an approach to extract Twitter user accounts that
are involved actively in pursuing and propagating Cyber-Threat
Intelligence in the Twitter network.

Many of the previous studies aim to trace relevant instances of
CTI information using text analysis only, which is not an efficient
step, as such approaches neither account for the underlying
topology structure of Twitter nor are sufficient as Twitter produces
a huge volume of data content with a high velocity. To address
this issue, we leverage both the “followers” and “following”
relations of users to formulate a homogeneous directed user graph
network. After that, we detect user communities from the Twitter
graph network to use the topological information of the graph for
tracing CTI relevant user accounts in the form of extracting graph
nodes. Additionally, one regression model employed is trained
on tweets and account descriptions of user accounts that have
numeric ratings (considering their pre-tag labels) to compute a
weight for each user account by adding the predicted score from
the regression model of each inputting text. The prediction scores
for users in a community are then added to generate a overall
weight for a community.

We proceed by finding similarities between the TF-IDF feature
vectors of the community text comprised of all user accounts’
texts and the feature vectors obtained from previously selected
relevant nodes (i.e., seed nodes). We keep a record of the
similarity score calculated for each community with respect to
the input seed accounts and then we add each score to the
corresponding community weight mentioned above to generate a
sorted community ranking. To reduce computational complexity,
we keep only top-p (where p∈ N) communities and for each of the
obtained communities, we calculate the similarity between the text
feature vectors of all users in the current community and the text
feature vector of the seed users. Based on the aggregated value of
similarity scores and respective user account weights stated above
paragraph, we rank the user accounts where the resulting top-k
(where k∈ N) user nodes are considered as traced nodes in the
CTI domain. In this work, we run and evaluate our approach on
a representative dataset that is sampled from an original larger
dataset of user nodes in Twitter. The result demonstrates that our
approach performs well in tracing user accounts who frequently

tweet about CTI relevant information.
The main contributions of this paper are as follows:
• To the best of our knowledge, this is the first approach 1 for

tracing relevant user accounts as instances of CTI-related
information while utilizing both graph structure and user
account contents.

• To generalize our approach, we apply a regression model
for predicting scores of all posted tweets and the account
description of each user account to rank and select user
accounts according to their relevance to CTI.

• We consider central user influence to other users in a
community during the process of ranking and selecting user
accounts/nodes.

• We also answer two relevant questions that are helpful to
understand our notion of methodological process.

II. RELATED WORK
User account tracing comprised of several methodological steps

is a hybrid task that is theoretically different from a user recom-
mendation system. Although the purpose of this study is different
from the extensively researched topic of user recommendation
or, friend recommendation in the social network, the low-level
working procedures of user account tracing and user account
recommendation are very similar and share many common terms,
backgrounds, and ideas. Considering the compatibility of our
proposed work with respect to the current trend of research works
in the recommendation system, we provide references to some
earlier compatible works in the following paragraphs.

A recommender system can be implemented in two mutually
exclusive processes using Graph structure or without using a
graph structure. However, in the case of recommending users in
a social network platform, the graph-based approach outperforms
Non-graph-based [5] in recommending users using missing link
prediction and identification. Based on the working principle of
recommendation models, there are three main types of approaches
for user recommendation, and these are i) Network Structure-
based [6], ii) Content-based [7], ii) Hybrid [8]. These approaches
encompass link prediction to efficiently find a potential future link
or missing link between user nodes in social network graphs.
It was evinced by several research works that neither network
structure nor content-based alone can produce efficient user
recommendation, on the other hand, a hybrid approach by fusing
network structure and content performs better than the former
ones.

Again, friend recommendation systems using Latent Dirichlet
allocation (LDA) [9] also have limitations because most of the
time the Twitter’s short text content can only exhibit a single
topic. Thus more than one topic is unlikely to obtain from such
a small text. The work proposed by [10] includes structural and
community information but this work lack content information to
include in their analysis for generating an effective link prediction
approach.

Since there is no such work as ours that is focused on tracing
CTI specific user accounts in the Twitter data stream, our goal
is to build a cost-effective approach by incorporating both graph-
structural and content information.

III. METHODOLOGY

In this section, we describe the techniques and methods used
in our proposed approach where the process steps are illustrated

1https://github.com/UNHSAILLab/CTI-UserNode-
Identification/blob/abose17-patch-1/src idn updated v10.ipynb

Fig. 1: Flow diagram of our proposed approach

in Figure 1. Our work is divided into two parts: (1) User
account tracing process, and (2) the Result Validation process.
This approach is formally depicted in algorithm 1 where ‘U acc’
and ‘U accs’ represent a single user account and multiple user
accounts respectively.

A. Graph Construction

As we want to construct a directed user graph, therefore for
outgoing edges in “follower” relation, we employ the current
Twitter user account as a source node (nsi) (where i∈ N), and all
the Twitter user accounts in the “follower” list of the current
account as destination nodes (ndj

) (where j∈ N). Similarly,
for incoming edges in the “following” relation, we consider all
the user accounts in the “following” list of the current Twitter
account as source nodes (nsi) and the current Twitter account as a
destination node (ndj

). We then use NetworkX to build a directed
graph

−→
G . This step is shown in sub-block 3 of the process flow

diagram Figure 1.

B. Text Pre-processing
By nature, Twitter texts are often not grammatically correct, and

the words in a tweet can be misspelled or abbreviated because of
Twitter’s promptness and short text length structure. To extract us-
able information from the text, we modularize the steps of the text
pre-processing task in the following points i) contraction mapping:
a contraction dictionary used for generating expanded words, ii)
misspelled word correction: using a tool named SymSpell [11],
and iii) token removal: remove punctuation, non-alphanumeric
tokens, stopwords, and token length shorter than one, etc. For
each Twitter account in the dataset, we pre-process all the most
recent 50 tweets, the account’s description, and a combined text
produced by concatenating the recent 50 tweets. We then apply
TF-IDF to generate feature vectors for the textual content of each
account.

C. Community Detection
After constructing the directed homogeneous user graph

−→
G , we

apply Leiden [12] community detection algorithm to find com-
munities ∪i=N

i=1Ci = NC in the user graph where N is the number
of communities found by the algorithms. This detection algorithm
extracts communities by optimizing modularity that compares
the relative density of edges inside the community to edges
outside the community. The underlying principle of the Leiden
algorithm [12] follows the basic principle of well known Louvain
[13] algorithm that generates communities that are connected,
converge to a locally optimally assigned partition. However, the
Leiden algorithm runs way faster than the Louvain algorithm.

Figure 2 illustrates an abstract structure of a community detected
by the community detection algorithm where the three bubble
notes and the table of node contents are displayed to simply
represent how the proposed approach works on a community. The
Look-Up table in the figure keeps the required information needed
for each node in a community for future analysis and computation.
Figure 1 process flow diagram has depicted this step in the sub-
block 4.
D. Community Weight and User Weight Calculation

In the process of tracing CTI relevant user accounts Ur as
outputs, we calculate the weight of each community after cal-
culating the weights of their corresponding user accounts. We
have grouped two different text entities i) all the fifty tweets
and ii) the description of each Twitter account to store in a
new dataset except the tweets and descriptions from the sample
dataset user account set (discussed in the following Section of
4.2 and 4.3). Each text from the text dataset is analyzed and
pre-tagged by the IBM Watson text categorization tool shown in
sub-block 2 of the process flow diagram Figure 1. We applied
an efficient semi-automated strategy to rate all the tweets and the
descriptions from the text dataset such as assigning a numeric
score to a text depending on the pre-tag category generated by
IBM Watson NLU. The pre-tag category score for the dataset
is specified distinctively by two cyber-security expert raters and
clearly explained in Section 4.1. To show the performance of our
proposed approach we only use the sample dataset so that we can
evaluate the resulting outputs.

In order to generalize the process, we employ a ridge regression
model being trained on the newly created dataset of tweets and
descriptions of accounts with their corresponding scores discussed
above paragraph. We fed all tweets and the description of each
sample dataset user account to the regression model to predict
each text’s CTI relevance score that can be used to calculate
weight for each user account of the sample dataset. To obtain
a user account’s weight value, the score for each tweet is added
to the score of the account’s description of a user account. The
notion of this generalization by employing a regression model is
crucial because we want the proposed approach to working on
even different datasets or in different domains that may not be
specific to CTI.

For a community Ci detected, we now have each user weight
Wni , and we combine all user weights

∑i=M
i=1 Wni = WCi (M

indicates number of users where M ∈ N) together in a community
to calculate corresponding community weight WCi

. It is very
likely that bigger communities will obtain higher scores than the
smaller communities because of having a large number of users,
however, a smaller community can also have vital importance
in terms of their users’ shared content and users’ expertise. So,
to normalize the community weight, we divide the community
weight value by the number of user accounts in the communities
(WCi

/
∑i=M

i=1 ni). At this point of our analysis, we select only top-
p (where p∈ N) filtered communities

⋃|F |
i=1 C

F
i (where F ⊂ N)

for the next step of the process to minimize the computational
overhead. This process step is shown in sub-block 5 of Figure
1 and the detail of user weight calculation by predicting values
from the regression model is shown in figure3.

E. Text Similarity Calculation and Community Ranking

After calculating all the community weights
⋃i=N

i=1 WCi using
predicted values from the regression model mentioned in the
above subsection, we formulate text vector of each community

Fig. 2: High level structure of a user community in our analysis

Fig. 3: User weight calculation using the predicted values of
account’s tweets and description
−→
T Ci using TF-IDF vectorization. However, before doing so,
we combined all the fifty tweets of each user account in a
community to make a single long text Tni

for each community.
We also add Q input seed nodes’ QSi (where i∈ N) texts in the
text vectorization process. Then we calculate cosine similarity
community cosim score = cosim(

−→
T Ci

,
−→
T Si

) between text vector
of each seed node TSi

and combined text vector for each
community TCi

. At this point, we have top-p communities that
are already ordered based on their corresponding weights. Now,
for each seed input Si, we add each community weight WCi to
the corresponding score of cosine similarity cosim(

−→
T Si

,
−→
T Ci

)
between the community combined text and seed node’s text
vectors. Therefore, the community score VCi can be presented
by following equation. This process is presented in sub-block 6
of the process flow diagram Figure 1.
VCi

=WCi
+ cosim(

−→
T Si

,
−→
T Ci

) (1)

F. User Node Scoring and Ranking

After community ranking (rank(
⋃i=N

i=1 Ci)), we start taking each
user ni from the top p-communities CF

i consecutively based on
the community ranking as we want to minimize computational
complexity by reducing the number of communities NC. Then
we extract the combined text of the top fifty tweets Tni for each
user ni and TF-IDF vectorize each user’s texts in a community
with the seed nodes’ tweet texts T⋃i=N

i=1 Si
as described earlier.

After that, we calculate cosine similarity and add the similarity
score user cosim score = cosim(

−→
T ni ,

−→
T Si) with the user weight

that we obtained from the process mentioned in subsection III
D. At this point, as we have already got user accounts with their
scores, we mention the user account as a resultant output Ur.
We rank the user accounts based on the added score VUr

of user
weight Wni and similarity score cosim(

−→
T ni ,

−→
T Si) and rank them

by only taking into account the filtered communities |F |C and for
all the seed nodes ∀S. We mentioned earlier that the central user
in a community might influence other members in the community.
Therefore, we added a partial weight to other user nodes of the
corresponding community by applying the following formula.
Ur - max(Ur) = Ur - maxmal(Ur) + maxmal(Ur)*β (2)
[β is the influence factor of the central user account in a

community and maxmal is the user account with maximum value]

After that, we re-rank the user nodes list again based on
their updated combined scores to produce the resulting user node
output list in descending order of priority. This step can be seen
in sub-block 7 of Figure 1.
G. Model Output Validation

Social network data annotation is an expensive task that has
inspired us to develop our approach in a semi-supervised manner.
Instead of running our implementation on the original 50K large
dataset, we extracted a representative sample dataset from the
original datasets. Then, we run and validate our result on the
sample dataset. To serve this purpose, we annotate the sample
dataset and propose a novel validation process. User nodes in
the sample dataset are labeled as “relevant” and “not relevant”
based on their relevance to CTI. We calculate the Precision value
by finding the ratio between the number of resulting “relevant”
user accounts and the total number of obtained user accounts.
Recall value is calculated by finding the ratio between obtained
“relevant” users count and the total number of “relevant” users
in the sampled annotated dataset. We calculate F1-β where user
can give input the value of β. We feed the seed accounts as
a set of seed nodes to the model, and the resulting nodes we
get from the model have been fed again to the model to find
cyber threat-related nodes. This process iterates for a certain
user-defined number of epochs, and after completing the process,
we get the actual result to validate using the aforementioned
performance metrics. We implement different validation cases
according to different percentages of the number of resulting
user nodes such that a certain percentage of resulting ranked
users nodes is selected to feed into the model again for a certain
number of epochs. For a particular set of seed nodes, for all
different percentages of node selection, this process is run for the
proposed method and all other compared methods. As we execute
the method with different sets of seed nodes, we finally average all
the calculated performance metrics values of the resulting nodes
that are obtained from each set of given seed nodes. The final
step of the proposed model includes Precision, Recall, and F1-β
values for all the different selection percentages with respect to
resulting user nodes. This process is exhibited in sub-block 9 of
the process flow diagram Figure 1.

IV. DATA COLLECTION AND PREPARATION

As we want to obtain the instances of CTI in the form of tracing
Twitter user accounts, we crawled data through Twitter user
accounts. For this purpose, we used a Twitter API called Tweepy
[14] to start scrapping specific user details (account descriptions,
the contents of their last 50 tweets, and lists of the “followers”
and the “followings” U accs) from an account of our colleague.
Our colleague is a passionate cyber threat enthusiast and an active
Twitter user who is following expert cyber threat professionals and
also being followed by other cyber threat enthusiasts. We collected
tweet objects up to three levels of the follower and following list
from our colleague’s account and this step made us able to collect
50K Twitter user accounts. For each user account, we collected
their follower and following lists, account description, and recent
fifty tweets. Then we create a new entity namely “AllText” by
concatenating all the recent fifty tweets of each user along with
the corresponding account’s description. This step is illustrated in
sub-block 1 of Figure 1.

A. Text Rating
The text dataset derived by combining tweets and the descrip-

tion (except sample dataset users) is rated to train the regression

Algorithm 1: Tracing User Accounts
input : seedNodeList
output: User NodeIDs

1 Edge generation e(nsi , ndj
)

2 Directed graph
−→
G construction

3 Community Detection
4 for each community Ci generated in ∪i=N

i=1Ci do
5 for each userNode ni in Community Ci do
6 {ni :Wni

} ← regression(U acc ni)
7 end
8 {ni :WCi

} ← WCi
(where WCi

=
∑
Wni

/
∑
nci)

9 end
10

⋃|F |
i=1 C

F
i := Filter community(top-p)

11
−→
T Si

:= Text Vector(seedNodes’ Texts TSi
)

12
−→
T CF

i
, := Text Vector(filteredCommunity.Texts TCF

i
)

13
⋃i=|F |

i=1 {CF
i : VCF

i
} := WCF

i
+ cosim(

−→
T Si

,
−→
T CF

i
)

14 for each community in ranked(
⋃|F |

i=1 C
F
i) do

15
−→
T F

ni
:= Text Vector(TF

ni
)

16
⋃r=|uC

r |
r=1 {ur : Vur

} := Wni
+ cosim(

−→
T Si

,
−→
T nF

i
)

17 end
18 comMap := rank(

⋃i=|F |
i=1 {CF

i : VCF
i
})

19 usrMap := rank(
⋃r=|uC

r |
r=1 {ur : Vur})

20 traced.U accs := score distribution(comMap, usrMap)
21 if traced.U accs.scores <= Threashold K then
22 validate result(traced.U accs ur)
23 else
24 skip U acc ur
25 end

model. We used the scikit-learn ridge regression library where
we assign alpha=1.0 and random state=241 with default settings
for the rest of the parameters. Raters assign a score to each text
of the derived text dataset based on the text’s relevance to any
of the categories such as “CTI”, “Technology” and “Computer”.
To facilitate and speeding up the rating process, raters took help
from one of the text analytic features of IBM’s Watson Natural
Language Understanding (NLU) service [15] called ‘Categories’
to tag each text by category. This feature of Watson NLU returns
a five-level taxonomy of each text and amongst them, we consider
using three categories “antivirus and malware”, “Technology
and Computing”, and “computer science”. These three cate-
gories “antivirus and malware”, “Technology and Computing”,
and “computer science” are mapped to the rater’s defined three
categories “CTI”, “Technology”, and “Computer” respectively.
The categories assigned were limited up to the top three as of the
highest score order given by the Watson NLU. Raters consider
the category of “antivirus and malware” has precedence over
the category of “Technology and Computing” and “Technology
and Computing” has precedence over “computer science” for a
particular text. If Raters agree with the Watson tagging of a
text, they put 1 for “CTI”, 0.5 for “Technology”, and 0.1 for
“Computer”. If raters do not agree a tweet category falls in any
of the raters’ defined three categories, they put 0 as a score for
that tweet. We tag tweets and the description of 50K user accounts
(except sample dataset users) that are 1802852 tweets and 16596
account descriptions. To generalize our proposed approach, only
the text rating process should be modified by assigning a different
set of scores to different texts. The scores of text and their

mapping with corresponding tagged categories from IBM Watson
will be determined by the domain experts.
B. Extracting Sample Network

To validate the results produced by the model, we extracted
a sample dataset from the 50K labeled Twitter user accounts
and created a sample network from the sample dataset. We tried
to retain the properties of the original network for creating this
sample dataset where the root of the sample network remained
the same. Starting from the root node, we randomly gathered 75
user accounts from the “Followers” and “Following” lists each
(total of 150 user accounts). We observed that there may be a
chance of duplication of IDs because of the network structure. So
before moving on to the next step, duplicate user IDs are removed
from the collection but not from the network which gave us 148
unique user IDs at this level. In the next stage of creating a sample
network, we collected three user accounts from the “followers”
and the “following” lists of previously obtained 148 user accounts
that resulted in 789 unique user accounts. Finally, the sample
network has 938 unique user accounts.

C. Annotation of Sample Network

The Twitter accounts of the sample network are manually anno-
tated by two human-powered cyber threat experts. The accounts
are classified into either “relevant” or “irrelevant” with respect
to CTI. Twitter accounts are considered relevant to CTI if the
description of the account is related to cyber threats and at least
two of the collected tweets are about cyber threat incidents. In
case, if there no description is present in the account details, but
the account has three tweets related to CTI, then the account
is labeled as “relevant”. Keywords such as “vulnerabilities”,
“zero-day”, “malware attacks”, “Phishing”, “APT groups”, “cyber
espionage”, etc are good indicators to label text category. The
rest of the data of the sample network are labeled as “irrele-
vant”. Taking into account all these specifications to annotate the
sampled dataset, we got 199 CTI “relevant” Twitter accounts
out of 938 accounts in the sample network. After that, the text
processing steps described previously are applied to the text data
before running the validation process on the sample network. The
sample network extraction and annotation steps are shown in sub-
block 8 of Figure 1 where it is used to validate the proposed
method’s output. It is worth mentioning that the Inter Annotator
Agreement (IAA) of the annotated sample dataset by the two
annotators is 0.9617 using the Cohen Kappa method.

V. EXPERIMENTAL SETUP

In this study, we applied the Leiden community detection
algorithm for the 50k tagged dataset, but we evaluate our result on
the sample annotated dataset. The standard Python library of this
algorithm does not provide any hyperparameter tuning option, and
this works as a black-box method. We evaluate the performance
of our results against two relevant user recommendation methods
[16], and we apply the Leiden algorithm on the 938 annotated user
nodes where the Leiden algorithm finds 31 communities out of
938 user nodes. We experimented with three different sets of seed
nodes where each set includes three “relevant” user nodes that are
randomly picked from the annotated sample dataset. Each time,
we consider selecting a percentage (from 10% to 100%) of the
resulting nodes that are outputted using the given seed nodes. The
selected nodes are then fed into all the methods (proposed, and
two comparing methods) for 5 epochs. So, for each method, for
one set of seed nodes, we get 10 different values of a performance

metric according to different percentage selection (from 10% to
100%) of resulting nodes. Finally, we average each performance
metrics output of all the seed node sets for each method. We used
F1-β performance metric where we keep the value of β is 0.5, and
the influence factor is 20%. We retrieve two maximally similar
communities from the similarity matrix for each seed user node
fed for tracing user nodes. Later on, we select the top 20 users
(k=20) from the filtered communities where the communities
are ranked based on the added score of a community weight
with its corresponding similarity score. Similarly, user nodes in a
community are also ranked based on the similarity scores added
with their corresponding user weights.

VI. RESULT EVALUATION AND DISCUSSION

To the best of our knowledge, this is the first work to trace
CTI related user accounts in the Twitter data stream considering
both structure and contents in the network. As our approach
can be considered a specific case of user recommendation, we
adopt two relevant user recommendation methods to compare the
performance of our approach against them.

Friend of Friend (FoF) is a well known user recommendation
method [16] in the social network domain that we first consider
to compare its performance against our proposed approach. This
approach results in a list of recommended users where a user
connected to another user is connected to the target user.

Content-plus-link method (CplusL) [16] considers incorpo-
rating content matching process with social link information that
is obtained from the underlying structure of a social network.
This method emphasizes exposing a network path to a weak tie
or an unknown user, the recipient user as a result would be able
to accept the recommendation.

From the leftmost column of Table 1, we can see that our
proposed method outperforms the two compared approaches in
terms of precision for all the selection threshold percentages.
However, the recall value is quite low in all the cases of selection
percentage against both compared approaches. The reason behind
this paradigm is that our method results in a fewer number of
user nodes whereas the two approaches result in a large number
of user nodes. As the number of resulting traced user nodes of our
proposed method is not analogous to the compared approaches,
the selection percentage cannot make here any difference. On
the other hand, we value precision more than recall because the
purpose of our work is to find highly CTI relevant user nodes
rather than getting more relevant nodes. This intuition has inspired
us to use F1 − β score where the beta is 0.5 also mentioned
above. Therefore, we can also see a noticeable performance
improvement with respect to the F1 − β score. We have also
calculated the Pearson Correlation Coefficient (R-value) between
the predicted values of tweets and descriptions of sample user
network from the regression model and the generated ratings from
the semi-automated process. We conduct this analysis to evaluate
how effective is our regression model for predicting a text score
regarding CTI expects where texts’ scores are added to be used to
calculate corresponding user weights and we found the R-value is
0.7167. In this analysis, we observe that user accounts in the same
community tend to share similar and relevant contents which helps
us develop intuition to find specific information by identifying
underlying communities in a social network.

Question 1: Why the predictive analysis performed on
sample annotated user accounts is necessary?

TABLE I: Performance comparisons with different methods on
the sampled annotated dataset

Selection
Threshold
Percentage Proposed FoF CplusL

Prec Rec F1β Prec Rec F1β Prec Rec F1β
10% 0.55 0.08 0.26 0.27 0.68 0.32 0.29 0.33 0.30
20% 0.58 0.11 0.32 0.27 0.70 0.32 0.29 0.34 0.29
30% 0.60 0.12 0.33 0.27 0.71 0.32 0.28 0.35 0.29
40% 0.56 0.11 0.31 0.27 0.73 0.31 0.28 0.37 0.29
50% 0.61 0.12 0.34 0.26 0.74 0.31 0.27 0.38 0.28
60% 0.64 0.12 0.35 0.26 0.74 0.31 0.28 0.42 0.30
70% 0.65 0.13 0.36 0.26 0.74 0.31 0.28 0.46 0.30
80% 0.66 0.13 0.37 0.26 0.74 0.31 0.28 0.49 0.31
90% 0.66 0.13 0.37 0.26 0.75 0.30 0.28 0.53 0.30
100% 0.67 0.13 0.37 0.26 0.75 0.30 0.27 0.57 0.30

Fig. 4: Precision, Recall, and F1β comparison of our approach
against two relevant user recommendation approaches

Answer: We mentioned in Subsection named “Community
Weight and User Weight Calculation” that the proposed approach
computes the users’ weights using predicted scores from the
regression model. The predictive analysis works for the sample
dataset users whose contained texts are unknown to the regression
model where the model is trained on the original 50K user
datasets. We only annotate the sample user network to evaluate
the performance of our approach because user account annotation
is an expensive task. To practically present our proposed approach
and to show its performance, we utilized the new validation
technique after executing the implementation on the sampled
dataset.

Question 2: Why do we develop the validation process in
an iterative manner?

Answer:One of the reasons for iteratively conducting the
validation process is that we intend to generate an evolving list
of traced CTI user accounts. Feeding a fixed seed accounts can
cause a biasness towards user preference and that should not be
encouraged. Contrary to this, selecting a new set of seed accounts
each time from the result can certainly address the biasness issue
of seed node list selection. Another reason is that iterative filtering
of user accounts also increases the probability of tracing more
relevant CTI user accounts.

VII. CONCLUSION AND FUTURE WORK

In this semi-supervised approach, we have tried to trace and
recommend Twitter user accounts that can serve as instances of
CTI related information according to a set of given seed nodes.
We have introduced a couple of new methodological processes
to accomplishing the task such as predicting a text score by the
regression model, community formation, user weight calculation,

and central user influence measurement. Moreover, our proposed
approach can be easily adopted in a different domain of interest
by training the regression model on a rated dataset respective to
that domain using the semi-automated rating process. We found
that applying different regression algorithms or distinct regression
models for tweets and descriptions individually do not make any
noticeable difference in the performance. We have also provided
a method to validate and evaluate the generated results of our
proposed approach where the method feeds resulting user nodes
as seed nodes iteratively into the process with different selection
percentages. However, our implementation should be validated
with a larger representative sample annotated user dataset. An
interesting future direction would be to apply a newly introduced
tensor-based Graph Convolutional Network on a sufficiently la-
beled Twitter user dataset.

REFERENCES

[1] A. Bose, V. Behzadan, C. Aguirre, and W. H. Hsu, “A novel approach
for detection and ranking of trendy and emerging cyber threat events in
twitter streams,” in 2019 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), 2019, pp. 871–878.

[2] A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madden,
and R. C. Miller, “Twitinfo: Aggregating and visualizing microblogs
for event exploration,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI ’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 227–236. [Online].
Available: https://doi.org/10.1145/1978942.1978975

[3] S. Mittal, P. K. Das, V. Mulwad, A. Joshi, and T. Finin, “Cybertwitter: Using
twitter to generate alerts for cybersecurity threats and vulnerabilities,” in
2016 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), 2016, pp. 860–867.

[4] V. Behzadan, C. Aguirre, A. Bose, and W. Hsu, “Corpus and deep learning
classifier for collection of cyber threat indicators in twitter stream,” in 2018
IEEE International Conference on Big Data (Big Data), 2018, pp. 5002–
5007.

[5] L. Pan, T. Zhou, L. Lü, and C.-K. Hu, “Predicting missing links and
identifying spurious links via likelihood analysis,” Scientific reports, vol. 6,
no. 1, pp. 1–10, 2016.

[6] I. Ahmad, M. U. Akhtar, S. Noor, and A. Shahnaz, “Missing link prediction
using common neighbor and centrality based parameterized algorithm,”
Scientific reports, vol. 10, no. 1, pp. 1–9, 2020.

[7] R. Nidhi and B. Annappa, “Twitter-user recommender system using tweets:
A content-based approach,” in 2017 International Conference on Computa-
tional Intelligence in Data Science (ICCIDS). IEEE, 2017, pp. 1–6.

[8] S. Cheng, B. Zhang, G. Zou, M. Huang, and Z. Zhang, “Friend recom-
mendation in social networks based on multi-source information fusion,”
International Journal of Machine Learning and Cybernetics, vol. 10, no. 5,
pp. 1003–1024, 2019.

[9] G. Zhao, M. L. Lee, W. Hsu, W. Chen, and H. Hu, “Community-based
user recommendation in uni-directional social networks,” in Proceedings
of the 22nd ACM international conference on Information & Knowledge
Management, 2013, pp. 189–198.

[10] J. Valverde-Rebaza and A. de Andrade Lopes, “Exploiting behaviors of
communities of twitter users for link prediction,” Social Network Analysis
and Mining, vol. 3, no. 4, pp. 1063–1074, 2013.

[11] W. Garbe, “Symspell 6.4,” 2020. [Online]. Available:
https://github.com/wolfgarbe/symspell

[12] V. A. Traag, L. Waltman, and N. J. Van Eck, “From louvain to leiden:
guaranteeing well-connected communities,” Scientific reports, vol. 9, no. 1,
pp. 1–12, 2019.

[13] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast un-
folding of communities in large networks,” Journal of statistical mechanics:
theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[14] J. Roesslein, “Tweepy documentation,” 2020. [Online]. Available:
https://docs.tweepy.org/en/v3.10.0/

[15] IBM, “Ibm watson natural language understanding documentation,”
2021. [Online]. Available: https://cloud.ibm.com/apidocs/natural-language-
understanding?code=python

[16] J. Chen, W. Geyer, C. Dugan, M. Muller, and I. Guy, “Make new
friends, but keep the old: Recommending people on social networking
sites,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 201–210. [Online]. Available:
https://doi.org/10.1145/1518701.1518735

