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Abstract—We present a new graph neural network, the
Attention-based Parametric-Kernel augmented Graph Neural
Network (APKGNN), developed for node classification tasks.
Despite extensive work on modeling multi-faceted relationships
between connected nodes of a graph, the effect of attention
on edge features mapped to relationships has not yet been
analyzed through learning representation. This study derives
such an attention vector by first calculating node features
corresponding to endpoints of an edge and then aggregating
these with extracted local intrinsic patches of a given graph
to generate augmented local patch vectors. This process uses
a parametric kernel based on Gaussian mixture models (GMMs)
to embed local neighborhoods of the graph in local patches.
The patch vectors then convolve with the above node features
to produce an updated node representation. We show that this
new learning representation (APKGNN) achieves higher node
classification accuracy on tasks - both standard benchmarks
(Cora, PubMed, Citeseer) and new experimental short text
corpora where nodes correspond to text documents and words.
This implementation of the GNN convolution layer outperforms
state-of-the-art (SOTA) algorithms, achieving higher training,
validation, and test accuracy by a significant margin on three
standard benchmark data sets under both SOTA experimental
settings and those for new testbeds.

Index Terms—APKGNN, parametric kernel, attention vector,
local patch, neighborhood sampling, multi-processing

I. INTRODUCTION

Despite being successfully applied to many real-life ap-
plications, such as image classification [1], object detection
[2], [3], machine translation [4], and speech recognition [5],
Convolutional Neural Network (CNN) [6] and Recurrent Neu-
ral Network (RNN) [7] cannot be directly applied to generic
graph structure data especially in non-Euclidean domains such
as social networks [8], High Performance Computing (HPC)
Analytics [9], telecommunication networks, and epidemic net-
works because of their structural limitations. For the non-
Euclidean domain, information from both properties of a
graph, (i) the intrinsic features of nodes and (ii) the relation-
ships between the nodes, is important. To learn information
from both types of sources for a downstream predictive task
such as node classification, Graph Neural Networks (GNN)
are a learning representation technique where the predictive
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result is calculated by neighborhood information aggregation.
For many node classification tasks, semi-supervised learning
approaches like GNNs outperform CNN models for which less
labeled data limits learning models.

Existing GNN layers such as Monet [10] has a common
problem in extracting expressive local intrinsic patches (also
known as receptive fields) because, in it, a node feature
attention is not considered by its neighbors. From a different
direction, in an attention-based method such as GAT [11], edge
attributes do not convolve with a parametric kernel to produce
updated patch vectors resulting in less expressive local patches.
This approach generates aggregated node feature represen-
tation without applying a parametric kernel (e.g., Gaussian
mixture model) through computing a scalar attention score
for each edge. The scalar value combines all low dimensional
information of each edge together which limits the discrimi-
native power of kernel operation. Consequently, this approach
leads to average performing learning representation for the
downstream tasks. On the other hand, using a fixed kernel for
neighborhood information aggregation as in GCN [12] also
shows limitations in learning real-world complex and large
graph structures to produce expressive node representations.

For instance, a relationship between two humans (humans
considered as nodes) depends on such things as their natures,
favorite items, origins, interests, and food habits, and related
elements like communication, proximity, and common social
media platform. In the same way, an edge connection between
two nodes having a single weight does not encode a graph
structure efficiently in the latent space. Again, each edge fea-
ture is not equally important because they represent individual
features with different objectives. So, a model aggregating
two sub-module computations according to the number of
specified kernels is expected to be effective in learning a rep-
resentation where the first one attends over the distribution of
connected node features and the second one generates patches
by convolving a parametric kernel over the edge features. In
our proposed method, the local intrinsic patches are extracted
after a parametric kernel is applied to edge attributes (pseudo-
coordinates) where the result is linearly combined with edge
attention vectors (from node features ) to form augmented
local patches. Finally, the resulting augmented local patches
convolve with node features as a template-matching process
between augmented local patches and features of nodes in a
graph.

The limitations of earlier approaches mentioned above para-
graphs become crucial when GNNs are applied to graphs of



short text corpora because the graph structure itself, by default,
lacks contextual information, and any form of information
gap can impact the low-level feature expressiveness such as
node classification accuracy. Moreover, the cost of labeling
raw text data is expensive. In this work, we demonstrate the
performance of our proposed method not only on benchmark
node data sets but also on a text data set named CTI data
set [13](Social media corpora containing raw tweets for cyber
threat type classification) where GNNs as semi-supervised
learning techniques are applied to a text classification task.

This study contributes to (i) implementing a novel GNN ar-
chitecture and (ii) the GNN’s application to node classification
tasks. The contributions are listed below:

• Implemented attention-based parametric kernel aug-
mented GNN (APKGNN) layer architecture to implement
a robust GNN model;

• Evaluated the implemented model on benchmark graph
data sets, which gained performance over all of the SOTA
models by a significant margin;

• Designed a GNN model building pipeline by applying all
significant GNN layers (in literature) where the pipeline
results show the models outperform even their corre-
sponding original implementations.

• Developed a multi-processing model training testbed to
train all the GNN models.

• Applied the implemented GNN model on a raw text
data set (CTI data set) for cyber-threat type classification
where the implemented model outperforms all SOTA
models.

II. RELATED WORK

The advent of graph neural network (GNN) was first
inspired by recurrent neural networks applied to directed
acyclic graphs Frasconi et al. (1998) [14] and Sperduti et
al. (1997) [15]. Later GNN was introduced by Gori et al.
(2005) [16] which was then extended by Scarselli et al. (2009)
[15] and further improved by Li et al. (2016) [17] to handle
general types of graphs. These methods recursively exchanged
neighborhood information as a propagation method until a
stable equilibrium was reached. Semi-supervised learning was
first introduced in graph learning using a graph Laplacian
regularization approach that includes research work such as
label propagation by Zhu et al. (2003) [18], label spreading
by Zhou et al. (2003) [19], manifold regularization by Belkin
et al. (2006) [20], semi-supervised embedding by Weston
et al. (2012) [21] applied to attribute graphs. Considering
structural correlation among data samples, the non-spectral
technique of graph convolution was introduced in Duvenaud
et al. (2015) [22] and GraphSage Hamilton et al. (2017)
[23] for graph-level classification, and in Atwood & Towsley
(2016) [24] for node classification. These approaches require
learning weight matrices either for each node degree or for
both input channel and neighborhood degree (using the power
of transition matrix) and do not scale to large graphs with a
wide range of node degree distributions. Niepert et al. (2016)
[25] requires normalizing fixed neighborhoods of a graph
before converting them locally into ordered node sequences
to feed into a convolutional neural network. Spectral graph

convolutional networks inspired by graph Fourier analysis that
assumes filter is a set of learnable parameters and considers
graph signal with multiple channels was first introduced by
Bruna et al. (2014) [26]. After that, Henaff et al. (2015) [27]
parameterized spectral filters to make them spatially localized
using smoothing coefficients. In a follow-up, Defferrard et
al. (2016) [28] extended the research by approximating the
filters using Chebyshev expansion of the graph Laplacian
through avoiding computation of Laplacian eigenvectors to
yield spatially localized convolutions. After that, Kipf et al.
(2017) [12] simplified the ChebNet approximation using filters
restricted to operating up to the first-order neighborhood of
each node. An extension of this GCN was introduced by
Klicpera et al. (2019) [29], improving GCN’s over-smoothing
by adopting the PageRank algorithm. Unlike GCN which
assumes equal contributions of neighboring nodes by assigning
non-parametric weights to the edges, GAT (Velickovic et al.
(2018) [11]), inspired by the attention mechanism (Bahdanau
et al. (2015)) [30] that could handle variable size neigh-
borhoods, attended highly important parts of the inputs to
learn the relative weights between two connected nodes. A
significant, parametric kernel-based approach Monet proposed
by Monti et al. (2017) [10] assigned weights to a node’s
neighbors by mapping with relative positions of nodes within
a neighborhood by introducing a feature called node pseudo-
coordinates.

III. DEEP LEARNING ON GRAPHS

A. Spectral and Spatial based approaches

GNN architectures are theoretically categorized into two
types of approaches: spectral approaches and spatial ap-
proaches. Spectral graph convolution [26], [27] originated
from network signal spectral analysis where a signal X ∈ RF

or a node’s set of input channel Xin = (xin
1 , ..., xin

p ) is
multiplied with a parameterized filter Gθ in Fourier domain:

gθ ∗ X = VGθVT X = VGθ(Λ)VTX (1)

where V is the eigenvector matrix of the normalized graph
Laplacian L, θ is the set of learnable parameters, and R is
the set of all real numbers. The normalized graph Laplacian
matrix can be represented as follows:

L = IN − D̂
−1/2

AD̂
−1/2

= VΛVT (2)

where VT X is the Fourier transform of graph signal X,
Λ is a diagonal eigenvalue matrix, and Gθ is a function
of eigenvalues Gl,j = diag(gl,j,1, ...gl,j,k) with learnable
parameters of normalized graph Laplacian L, D̂ is normalized
diagonal matrix, A is the adjacency matrix, and I is the identity
matrix.

Some major drawbacks of the basic spectral approaches
are that the filter depends on a given graph and the learned
filter cannot be applied to different graphs; computationally
expensive Fourier transformation; and filters cannot guarantee
spatial consistency. A spectral approach simplified by the
higher order Chebyshev polynomial by ChebyNet [28], the



convolution of the input signal X with a filter is represented
as

gθ ∗ X = V (ΣK
p=0θpTp(Λ))V

TX

∼ ΣK
p=0θpTp(L

′)X
(3)

where Tp(x) is the recursively defined truncated expansion
of the Chebyshev polynomials, K is the order of polynomials,
and L′ is the normalized Laplacian.

On the other hand, spatial GNN approaches [22], [23], [24],
[25] rely on the spatial information of a node: its location
in a graph, its neighbors, and its degrees, for learning graph
representation where the convolution operation propagates
node information along the edge connections. The spatial
filter can work with variable-sized neighborhoods and can
be generalized across other domains. Unlike earlier spatial-
based approaches that had fixed filter operations such as
[12], [29], etc. to extract local intrinsic patches on the graph,
spatial approaches formulating patch operators as a function of
pseudo-coordinates [10] perform better for the complex node
classification task. The general form of a spatial GNN can be
written as follows:

Hi = f(XWi + σi−1
i=1AHi−1θi) (4)

where H is the hidden layer feature matrix, and W represents
the linear transformation weight matrix, f is the nonlinear
activation function.

Our implemented method is a spatial-based approach in-
spired by the ideas of the parametric kernel and attention
mechanism. Now, we delve into the details of the original work
to analyze their limitations and then harness their potential to
address the model’s inexpressiveness.

B. Parametric Kernel for Extracting Patches

However, a parametric kernel [10] can significantly improve
the performance of node classification of spatial GNNs if the
patch operator can be represented by Gaussian mixture model
(GMM) kernels. Parametric kernel function (weight function)
(wθ(u) = (w1(u), ..., wk(u))) can encode graph spatial in-
formation into low dimensional space where the dimension
depends on the number of kernels applied to the d-dimensional
vector in general (here d=2) of pseudo-coordinates u, formally
written as u(x, y) known as edge attributes:

u(x, y) = (
1√

deg(x)
,

1√
deg(y)

) (5)

Here x is a node in a graph, and y is the neighbor of x (e.g.,
y ∈ N (x)), deg() function returns the node degree of a given
node x, θ is learnable parameters, and the number of kernels k
is the dimensionality of the extracted patch. The patch operator
can therefore be written in the following general form:

Dk(x)f = Σy∈N (x)wku(x, y)f(y) [k = 1, 2, ...N] (6)

On the other hand, the parametric kernel function (weight
function) is defined as follows (adopted from [10]):

wθ(u) = exp(−1/2(u− µk)
T
Σ−1

k (u− µk)) (7)

where µ represents the mean, and Σ represents the covariance
matrix of the GMM.

C. Self Attention in GNN

Attention mechanisms [30] applied to graph neural networks
[11] allow the representation of a central node to attend
to its most important nodes in the neighborhood. A graph
attention network (GAT) as a spatial-based approach relies
on the locality of nodes, so for a given node, this aggregates
neighboring node features X ({−→x1,

−→x2, ...,
−→xN}, −→xi ∈ RF ) after

attending them. Here N is the number of nodes, and F is the
number of node features. Each GAT layer produces a new
node feature vector X ({

−→
x′
1,
−→
x′
2, ...,

−→
x′
N},−→xi ∈ RF

′

) after a
learnable linear transformation is computed by a weight matrix
W ∈ RF×F ′

. To calculate the importance of neighboring
node j features to node i (j ∈ Ni), the concept of attention
coefficients has been introduced:

eij = a(W−→xi ,W−→xj) (8)

Here, the attention function a is a single-layer, feed-forward
neural network that applies LeakyRelu non-linearity parame-
terized by a weight vector −→a ∈ R2F ′

. Thus, Equation 8 can
be rewritten:

a(W−→xi ,W−→xj) = LeakyReLU(−→a T [W
−→
X i||W

−→
X j ]) (9)

where (.T ) refers to matrix transposition, W refers to the
linear transformation weight matrix, and || represents the
concatenation of vectors. To scale the different coefficient
values over each node’s neighborhood, the coefficients are
normalized as follows:

αij = softmax(eij) = exp(eij)/Σq∈N exp(eiq). (10)

Attending the combined information of node features and
edge attributes (without convolving with the parametric kernel)
results in an imperfect learning representation for a central
node because the linear combination of the two sources of
information (node features and edge attributes) generates a
scalar value that does not effectively project into an encoded
representation according to the specified number of kernels. In
contrast, conventional parametric kernel-based approaches do
not take attention into account. Therefore, GNN architecture
must improve representation learning by adopting the useful
features of these two techniques. Moreover, unlike parametric
kernel techniques, the attention model uses node features
for computing similarity without considering node structural
properties. This reveals a research gap: not knowing the
graph structure upfront for the classification task. Hence, the
limited classification accuracy in many SOTA approaches is
a motivational standpoint for us to investigate further for a
hybrid GNN model to address the discussed limitations.



IV. IMPLEMENTED TECHNIQUE

We first describe implemented APKGNN convolutional
layer, the layer structure used to implement the GNN model
for node classification. We have two different inputs to this
layer:

1) A set of node features, X = ({−→x1,
−→x2, ...,

−→xF }, −→xi ∈ RN )
2) A set of neighboring node d-dimensional pseudo-

coordinates u(x, y) defined as u ∈ Ei, where E is the
set of all edge connection.

From these two sets of inputs, the matrix of edge attribute
vectors are represented for convolution as E = (d× E) · k, d
is the dimension of edge attributes (here d=2), k is the kernel
size (also known as the dimensionality of the extracted patch)
described in the following Section IV, N is the number of
nodes, F is the number of node features, x is the given node,
and y ∈ N (x) is the neighboring node of x.

We first self-attend neighboring node features (features of
local patches) X of a central node x, so we can define
which features contribute more in learning a better graph
representation. This formulation can be written in a vector
representation as follows (adopted from [11]):
−−−−→
att vec = softmax(LeakyReLU([Wk

−→x i||Wk
−→x j ]))

=
exp(LeakyReLU([Wk

−→x i||Wk
−→x j ]))∑

l∈N (x) exp(LeakyReLU([Wk
−→x i||Wk

−→x l]))

(11)

where
−−−−→
att vec is the attention vector for each node in their

corresponding neighborhoods, dimension is defined according
to the number of specified kernels k, and || is the concatenation
operation.

We adopted the GMM-based parametric kernel function to
extract patches from neighboring edge attributes (pseudo coor-
dinates) in a locally encoded graph structure where the kernel
function (weight function) maps relative positions (pseudo
coordinates) to weight vectors. The size vectors are defined
according to the number of kernels also known as kernel size
k. Therefore, the weight function applied to the edge attributes
(or the relative positions or pseudo coordinates) is written from
subsection III-B as follows:

wθ(u) = (w1(u), ..., wk(u)) (12)

where θ refers to the kernel learnable parameters used to
extract patches P from edge attribute matrix E. The following
equation derived from Equation 7 presents GMM operation
on edge attributes to extract patches −→p

−→p = exp(−1/2(u− µk)
T
Σ−1

k (u− µk))). (13)

The set of attention vectors is aggregated with the set of
extracted patches after mapping these with respect to the
number of kernels k. The resulting feature attended patches
are then transformed by a parameter vector (a element-wise
multiplication) as follows −→q .

−→s = −→q · (−−−−→att vec+−→p ) (14)

Now, considering the feature attended patch vector −→s for all
the nodes we can write it as a matrix S. Finally, the set of
augmented patch vectors is convolved with the neighboring
node features to compute node representations as the final
output followed by a linear activation as follows:

Xl = σ(
∑

x∈N (x)

S ∗ WXl−1). (15)

where l stands for convolution layers and l ∈ N.
A two-layer APKGNN model is implemented for semi-

supervised node classification on graph data sets. After ap-
plying all these steps, the forward model expression can be
defined as follows:

Z = f(E,θ,X) = softmax(Wθ2 ⊙ ELU(Wθ1 ⊙ X)) (16)

where Z is the final convolved feature matrix, θ is set of
all parameters, ⊙ is convolution operation, and Wθ1 and Wθ2

are the weight matrices for first and second convolution layers
respectively.

For semi-supervised multi-class classification, the cross-
entropy loss over the labeled example is defined as follows:

L = −
∑
l∈YL

C∑
f=1

Ylf lnZlf (17)

where YL is the set of nodes that have labels and C is
the set of output classes. The implemented GNN model is
trained by mini-batch gradient descent on a full graph data set
for some training epochs. The mini-batches are sampled by
the neighborhood node sampler technique that was proposed
in the GraphSage [23] algorithm. Figure 1 demonstrates the
operational steps of node classification using a graph neural
network constructed by the novel APKGNN layer. This figure
exhibits how mini batches split a graph into multiple sub-
graphs and then a group of sub-graphs is processed in a GPU
multiprocessing environment. Figure 2 displays the construc-
tion of the APKGNN layer. The horizontal line divides the
figure into two processes where part A portrays parametric
kernel function operation to extract local patches. Part B
portrays the operation of vector attention on edge attributes.

Fig. 1: Operational steps of node classification using novel imple-
mented APKGNN layer



V. EXPERIMENTS

The implemented models have been experimented on sev-
eral graph benchmark data sets (citation networks) and CTI
text data set for semi-supervised node classification.

Fig. 2: Construction of APKGNN layer’s principle step

A. Data sets

We followed the Yang et al. [31] experimental setup for
benchmark data sets (see Table I) where we used the same
benchmark data split as provided by the PyTorch Geometric
[32] library. Each benchmark data set (Cora, PubMed, Cite-
seer) is a citation network of scientific publications where
each publication is represented by a 0/1-valued word vector
corresponding to the respective word dictionary. Properties
of each data set consist of a number of nodes, links, labels,
and features where the number of publications maps to graph
nodes, publication classes map to labels, unique words from
respective dictionary map to features, and citation relation map
to links, respectively. Train mask, test mask, and validation
mask from Table II denote node splits used for training,
testing, and validation, respectively. The SOTA GNN models
are applied, including the implemented GNN model APKGNN
on the CTI data [13] for cyber-threat classification where the
text categories of the CTI data set are mapped to different
types of such cyber-threats as 0day, malware, and botnet. The
CTI graph data set is split with a measurement such that the
split process retains optimal information of the original text
data set.

TABLE I: Data set statistics for benchmark data sets and CTI data

Dataset Type Nodes links Label Features
Cora Citation network 2,708 5,429 7 1,433

CiteSeer Citation network 3312 4732 6 3703
Pubmed Citation network 19,717 44,338 3 500
CTI Text graph 23113 303074 10 8114

TABLE II: Training statistics for benchmark data sets and CTI data

Dataset Training Mask Test Mask Validation Mask
Cora 140 1000 500

CiteSeer 120 1000 500
Pubmed 60 1000 500
CTI 5000 2500 614

B. Experimental Setup

We conducted the experiments as transductive learning tasks
where we trained a two-layer APKGNN model as described
in Section IV and displayed in Figure 1. The following

implemented experiments were conducted on GPU multi-
process environment (2 GPU servers of 4 cores each) with
a neighborhood sampling method to address the need for pro-
cessing big graph data sets. We evaluated prediction accuracy
on the nodes of the test mask and validation mask of the
benchmark data sets for hyperparameter optimization. For all
the citation network data sets (Cora, Pubmed, and Citeseer)
and CTI text data sets, we used equal hyperparameter settings
and trained all models for 50 epochs (training iterations). We
kept the default dropout rate for both two layers with p=0.5, a
stable (L2 regularization) with λ = 5× 10−4, and the number
of hidden units (|H|) as 16. We used the Adam optimizer with
a learning rate lr=0.001 and an early stop with a window size
of 10. The first layer of the implemented GNN network was
followed by an exponential linear unit (ELU) [33] nonlinearity
whereas the second layer followed by a softmax activation was
used for node classification that computes C features (C is the
number of classes). Although We tried multiple kernel sizes
such as 16,8, and 4, it has a very slight impact on the result.
So, we kept the lowest kernel size of 4 for simplicity to report
our result.

All the model and network parameters, including transfor-
mation weight matrices, were initialized using the method
described in this work [34]. For the CTI data, the experiment
settings required slight changes because the data set was
derived from raw tweets and the text graph was generated
following the method described in TextGCN [35]. In this data
set, document nodes did not have any direct connection; doc-
ument nodes were instead connected by common word nodes
shared by two different documents. In addition, only document
nodes have labels (cyber-threat types) because words cannot
have text categories or more specifically, cyber-threat types.

VI. RESULTS AND PERFORMANCE EVALUATION

The experimental results for the developed multi-process
testbed are summarized in Table III with reported mean test
and validation accuracies of different SOTA GNN models on
benchmark data sets and CTI data. All the models were also
run on an environment setting (only train and test accuracy
reported) provided by a SOTA model [36] which achieved the
highest accuracy reported in Table IV for a fair comparison.
For the first testbed, all models were run for 50 epochs
with random mini-batch on training data samples using a
neighborhood batch sampler adopted from the GraphSage
[23] algorithm. We kept the neighborhood sample size of 10
neighbors (a small variation in neighbor size does not impact
model training result) for all the data set to reduce the load
computation. For the first testbed each citation benchmark
data set (Cora, CiteSeer, and Pubmed) and for the CTI data,
mean test accuracy, mean validation accuracy, and mean
training accuracy curves were plotted with SOTA GNN models
compared to the newly introduced GNN model. FIve seed
numbers were used for five different simulations to run a
standard APKGNN model for each data set, and an average
of five accuracy scores were reported with respective standard
deviation. We found that the proposed model outperformed
every model in all combinations by a significant margin and
converged in fewer epochs. Figure 3(a), figure 3(b), and figure
3(c) illustrate that the APKGNN model started outperforming



all SOTA models on test, validation, and training data samples
of the Cora citation data set within first 50 epochs. Figure
3(d), figure 3(e), and figure 3(f) show the same trend, with
the APKGNN model outperforming all SOTA models on test,
validation, and training data samples from the Pubmed citation
data set. Figure 3(g), figure 3(h), and 3(i) also illustrate the
consistent performance of the new model on testing, training,
and validation data samples of the CiteSeer citation data set
as opposed to the SOTA models.All the plots are represented
with corresponding standard errors via shaded areas.

Figure 3(j), figure 3(k), and figure 3(l) also follow the same
trend where the experimental model outperforms the SOTA
models in testing, training, and validation data samples of the
CTI data. This particular result is significant because the CTI
data is generated and then transformed into graph data from
raw tweets. This raw data is highly complex in terms of its
sparsity, poor input features, and fewer numbers of labeled
nodes because word nodes are mapped with any labels. The
notion of experimenting with the CTI data set is to evaluate
how the introduced layer architecture and the GNN model
as a whole perform on a raw text data set as compared
to other models. In addition, we used one-hot encoding for
node representation, but this can be easily replaced using a
transformer-based embedding in the embedding layer of the
constructed GNN architecture that could even generate better
results.

VII. DISCUSSION

Implementing the APKGNN model was rooted in the theory
that constructing a GNN layer produces expressive learning
representations to support better experimental results. The
layer-wise computation of APKGNN includes two individual
modules executed together. The first module calculates atten-
tion vectors of neighboring node feature similarity and the
second extract local patches by applying weight function on
local graph structure components called pseudo coordinates. A
linear combination of the two modules followed by learning
an attribute vector produces better learning representations
than SOTA GNN models in node classification tasks. The
running average of accuracy plotted to different curves indi-
cates that the performance of the models is consistent across
epochs. Moreover, while at the initial stage of the simulation,
the new model performs on average, once the simulation
proceeds toward completion, the model outperforms all the
other models. The newly implemented APKGNN model learns
more parameter vectors than other models, which is why
each epoch for the new model takes longer than the other
models. The research, when extended to short text multi-
class classification tasks, also exhibits a marked improvement
over the SOTA baseline. This result indicates that learning
additional parameters helps the model to learn highly complex
graph data sets. Now, we deliberately raise two technical
questions and address the question with a reasonable response
as follows:

Why an experimental setup featured with subgraph
sampling in a multi-GPU processing environment is a
necessary property in training a GNN model?

Answer: To the best of our knowledge, almost all the GNN
models constructed from previously introduced GNN layer

architectures nicely train on smaller or standard-size graphs
but suffer from limited performance on extremely large-
size graphs in terms of classification accuracy and training
time. When those GNN models sample a large-size graph by
splitting it into multiple smaller subgraphs, the expressiveness
power of the models reduces significantly. However, learning
additional parameters during model training can address this
limitation of the inexpressive models. Consequently, a model
must balance two features, scalability, and performance. Since
our introduced GNN layer and constructed model incorporate
both these properties, it outperforms other models in sampling
and multi-GPU processing setups. Additionally, our model
outperforms other models in almost all the benchmark data
sets in the most commonly used experiment settings with a
slightly more computation cost.

What is the rationale behind choosing GMM and why
does the inclusion of a parametric kernel significantly
enhance node classification performance for this purpose?

Answer: A Kernel constructed from the Gaussian Mixture
Model (GMM) learns the model’s parameters from a mixture
of distributions to distinguish features on low-level repre-
sentations. Since learning distinctive features is crucial for
classification tasks, the notion of choosing a parametric kernel
for learning complex graph structures is highly reasonable.
Contrary to the fixed encoding generated by conventional
kernel operation, the GMM kernel generates edge feature
distribution on two learnable parameter vectors mean and
variance resulting in dynamic encoding for local patches.
In addition, by combining the attention mechanism with the
GMM kernel, we are attempting to learn a sufficient number
of parameters that further enhance classification performance
than other approaches.

VIII. CONCLUSION AND FUTURE WORK

This research improves node representation learning by
introducing a GNN layer architecture for the node classifi-
cation task. The GNN model constructed using the introduced
APKGNN layer outperforms other models on all the data sets
in almost all the experimental settings. The model is also
trained on the CTI text data set as a semi-supervised learning
application to classify different cyber-threat types. The primary
testbed of the experiments is conducted in multi-processing
settings with data neighborhood sampling. This study also
points out what makes a graph learning model inexpressive and
why it happens. We addressed these limitations by introducing
a hybrid GNN layer to construct GNN models that result in
higher accuracies on big graph data sets while training in
GPU multi-processing setups. This analysis also leaves space
for further research to optimize the number of parameters for
faster training of the models.
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