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Abstract

LiveJournal is a social network journal service with fo-
cus on user interactions. As for many other online social
networks, predicting potential friendships in the Live-
Journal network is a problem of great practical interest.
Previous work has shown that graph features extracted
from the graph associated with the network are good
predictors for friendship links. However, contrary to the
intuition, user data (e.g., interests shared by two users)
does not always improve the predictions obtained with
graph features alone. This could be due to the fact that
features constructed from a large number of user de-
clared interests cannot capture the implicit semantic of
the interests. To test this hypothesis, we use a clustering
approach to build an interest ontology, and explore the
ability of the ontology to improve the performance of
learning algorithms at predicting friendship links, when
interest-based features are used alone or in combina-
tion with graph-based features. The results show that
ontology-based features can help improve the perfor-
mance of several machine learning classifiers (in partic-
ular, random forest classifiers) at the task of predicting
links in the LiveJournal social network.

Introduction

In the recent years we have witnessed the advent of many on-
line social networks and social network activities. Many of
these networks, including LiveJournal online service (Fitz-
patrick 1999), are focused on user interactions. LiveJournal
users can tag other users as their friends. In addition to tag-
ging friends, users can also specify their demographics and
declare their interests.

Given the emphasis on user interaction, the LiveJournal
network can be represented as a graph, wherein the nodes
of the graph correspond to users of the online journal ser-
vice (together with the information associated with them,
e.g. user interests) and edges correspond to friendships be-
tween users. Assuming that a user Jim has tagged user Sue
as his friend, then there exists a directed edge from Jim to
Sue in the underlying graph. However, if Sue has not tagged
Jim as her friend yet, there is no link from Sue to Jim in
this graph. In general, the graph corresponding to a social
network is an undirected graph.
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One desirable feature of an online social network is to
be able to suggest potential friends to its users. This task
can be cast as a link prediction problem (Taskar et al.
2003) and addressed using machine learning prediction al-
gorithms. More precisely, the task is to predict the exis-
tence (true or false) of a friendship link from user A to
user B in a social network. Intuitively, knowledge of the
tagged friends of a user (encoded as graph-based features)
together with knowledge of the interests that the user shares
with other users (encoded as interest-based features) should
be predictive of friendship links. Indeed, previous work
(Taskar et al. 2003; Liben-Nowell and Kleinberg 2003;
Hsu et al. 2006) has shown that graph-based features are
predictive of new friendships.

However, interest-based features have not proven to be ef-
fective when predicting friendships. One possible explana-
tion for this is that interest-based features cannot capture the
implicit semantic of the large number of declared user inter-
ests. To illustrate this issue, suppose that user Joe is inter-
ested in football and user Mike is interested in basketball.
Furthermore, they have a common friend, Jerry, that is in-
terested in tennis. While football, basketball and tennis
are different interests, they are all sports and it might be
possible for Joe and Mike to become friends, as they are
both interested in sports and have a mutual friend, Jerry.

In this paper, we study the effect of an interest ontology
on the performance of the friendship link prediction problem
in the LiveJournal social network, when interest-based fea-
tures are used alone or in combination with graph-based fea-
tures. An ontology can be seen as an explicit description of
the concepts and relationships among concepts in a domain
of interest (Gruber 1993). In particular, in this work we will
construct and use a simple hierarchical ontology (express-
ing is-a relationships among interests), such as the Sports
ontology shown in Figure 1. We expect that higher levels
of abstraction in the hierarchy can capture the implicit com-
mon semantic of interests, such as football, basketball and
tennis, thus resulting in better performance when used with
machine learning algorithms.

The rest of the paper is organized as follows: We first de-
scribe the procedure used to construct the interests ontology.
Then, we formally define the link prediction problem and
the features (graph-based and interest-based) used to predict
links, using a variety of traditional machine learning algo-
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Figure 1: Sports Ontology

rithms. Next, we describe our experimental design and re-
sults. We end with a discussion of the results, conclusions
and ideas for future work.

Interests Ontology

The data set used in this work consists of 1000 users of the
LiveJournal online service. Surprisingly, there are approx-
imately 22,000 interests that these users have collectively
declared. Our goal is to organize these interests into an on-
tology. The procedure we have designed for this task con-
sists of three main steps that are meant to make the ontology
construction process as fast as possible and at the same time
to produce a sensible and useful ontology. Briefly, the three
steps are as follows:

e In the first step, the algorithm fetches descriptions of in-
terests expressed by LiveJournal users, from three main
sources: WordNet-Online, IMDB (movies) and Amazon
(books). An interest may have multiple descriptions if
the corresponding word has several meanings. Every de-
scription of an interest represents a ~’concept” that will be
included in the resulting ontology.

e The second step divides the resulting concepts into differ-
ent high-level clusters based on the sources from which
the descriptions were fetched and based on the “genres”
of books specified as interests (as there is a large number
of book interests in our data).

e At the final step, our algorithm constructs a concept hier-
archy in a bottom-up fashion for each high-level cluster. It
produces a tree whose root collectively represents all con-
cepts in that cluster and whose nodes represent concepts
at various levels of abstraction in the cluster.

We describe the above steps in detail in what follows.

Obtaining Interest Descriptions

Each of the 21,811 unique interests is read from a text
file and queried against three different sources for poten-
tial definitions or descriptions. We seek information from
WordNet-Online for the meanings of valid words, Internet
Movie Database (IMDB) for descriptions of movies, and
Amazon.com for descriptions of books via the Amazon As-
sociates Web Services (AWS). We have chosen to retrieve
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specific descriptions for movies and books, because many
interests in our data are related to book and movie concepts.
Each description we fetch corresponds to a concept in the
data set to be fed to the clustering algorithm. In general, an
interest can have more than one description (e.g., an interest
word can have multiple meanings or an interest can be both
amovie and a book), thus generating more than one concept.

Figure 2 illustrates the process of obtaining interest defi-
nitions from the three sources mentioned above. As can be
seen, each interest is queried to WordNet-Online, IMDB and
AWS in no particular order. The descriptions fetched from
each source are separated into tokens (after removing stop
words) and represented as a list of tokens. Each description
corresponds to a concept that will be part of the hierarchy
constructed by algorithm.

Start

For each interest
in the interest set

Do
AND
Query Query Query
WordNet Online IMDB AWS

Query
description WordNet Online
found? Phrases

Return description set

Figure 2: Process of obtaining interest definitions

To illustrate the outcome of this process, we fetch the
descriptions of the interest “character” from the three data
sources considered, WordNet-Online, IMDB and AWS. All
sources have descriptions of this interest and the resulting
description set looks like (in fact, this is only a subset of the
actual description set):

e WordNet Online

— character | grapheme | graphic | symbol | written | used
| represent | speech | ...
— character | genetics | functional | determined | gene |
group | ...
e IMDB

— character | reality | film | fantasy | history | character |
movie | dream | rocky | ...

o AWS

— character | novel | butcher | covey | davenport | detec-
tive | effective | favor | files |...



The WordNet-Online was not queries for phrases in this
case, as the description set obtained from WordNet-Online,
IMDB and AWS was non empty. Similarly, if we search
for the interest "Harry Potter”, we will find descriptions
in IMDB and AWS (there are no descriptions in WordNet-
Online and no need to search in WordNet-Online-Phrases).

¢ IMDB

— harry potter | fantasy | adventure | chris | columbus |
family | magic | hogwarts |...

o AWS

— harry potter | books | deathly | half-blood | harry |
phoenix | potter | rowling |...

However, if we query the interest aim prank, no defini-
tions are found in WordNet-Online, IMDB and AWS. There-
fore, for this interest we query WordNet-Online-Phrases
for an alternate description. This is achieved by querying
WordNet-Online for each of the constitutive words of the
”phrase” aim prank and concatenating their descriptions.
The resulting description set in this case will look like:

e WordNet Online - Phrases

— aim | purpose | intention | design | pranks | buffoonery
| prank | acting | clown | ...

The procedure for obtaining interest descriptions receives
21,811 user interests as input and fetches 42,096 descrip-
tions (as an interest can have multiple descriptions). The
clustering algorithm will consider the fetched descriptions
as independent concepts. As a result, different concepts cor-
responding to the same interest word (e.g., ’jaguar”: car and
“jaguar”: animal; or "Harry Potter”:book and "Harry Pot-
ter”:movie) will possibly be placed in different clusters by
the algorithm. This feature of the approach can be exploited
to address the semantic heterogeneity problem (in particular,
word sense disambiguation). Thus, if a user A is interested
in “jaguar” and it is friends with other users that are inter-
ested in “luxury cars”, then we can infer that the user A is
interested “jaguar” as a “car”. Similarly, if the user is in-
terested in “Harry Potter”, based on its friends interests we
can infer if the user if interested in “fantasy books”, “fantasy
movies” or maybe both.

Divisive Clustering Step

After descriptions for interests are fetched, the next step is to
divide the resulting concepts into four major clusters based
on source, as shown in Figure 3. The first cluster consists
of all the concepts that are described in terms of meaningful
words from WordNet-Online. The second cluster consists
of movie descriptions fetched from IMDB. The third cluster
comprises of book descriptions from AWS and the fourth
contains concepts with descriptions obtained by querying
the WordNet-Online for phrases. The 21,811 unique inter-
ests queried for descriptions generate 17,753 valid word de-
scriptions, 4,189 movie descriptions, 18,168 book descrip-
tions and 1,986 alternate word descriptions resulting in pre-
cisely 42,096 concepts to be clustered.

36

Given the large number of book instances and the prior
knowledge about genres, the “book” cluster is further di-
vided into a set of sixteen sub-clusters based on genres (Ac-
tion, Fantasy, Drama, Children, etc) as shown in Figure 3.
Similar to books, movies could also be divided based on
their genres. However, since the number of movie concepts
is relatively small compared with the number of book con-
cepts, the “movie” cluster is not further divided in this step.
Thus, the final number of high-level clusters obtained as a
result of the divisive clustering step is 19.

There are two main advantages we gain by dividing the
data into several high-level clusters before applying the hi-
erarchical agglomerative clustering algorithm. First, we can
apply this algorithm in parallel to the high-level clusters, re-
sulting in faster ontology construction. Second, the source
from which the definitions of an interest are obtained can
inform us about other concepts that this interest can be asso-
ciated with. The prior cluster division makes it possible to

exploit this information.
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Figure 3: Divisive Clustering Step: Interest descriptions are
divided into clusters based on source and book genres.

Agglomerative Clustering Step

The hierarchical agglomerative clustering algorithm is inde-
pendently applied to each of the nineteen clusters obtained
in the previous step. It works in a bottom-up fashion and
groups instances together based on their similarity, as de-
scribed below. The agglomerative clustering step takes as
input the set of interest descriptions (or basic concepts) in a
particular high-level divisive cluster. Initially, each concept
is considered to be a singleton cluster. The set of all active
clusters is called the “working set” and it initially consists of
the singleton clusters. The working set is updated every time
a new cluster is formed: the newly formed cluster is added
to the working set, while its constitutive subclusters are re-
moved from the working set. The algorithm ends when the
working set contains only one element or elements that can-
not be merged anymore (resulting ontology denoted by O).
To complete the description of this step, we need to ex-
plain how we calculate the similarity between two clusters.
First, similarity between two singleton clusters is defined as
the number of common tokens describing the corresponding



concepts. Similarity between two non-singleton clusters is
considered to be the average similarity among pairs formed
with elements from the two clusters (i.e., average linkage).
A cluster A is grouped with another cluster B if the simi-
larity between clusters A and B is maximum among all the
possible pairs of clusters in the current cluster set.

When no more groupings are possible (zero similarity),
the remaining clusters in the working set are combined to
form a single cluster, which represents the root of the cor-
responding hierarchy. We have applied this algorithm to the
nineteen high-level clusters (obtained in the divisive step),
using a multi-threaded execution paradigm, and obtained
nineteen sub-ontologies. Together, these sub-ontologies
form a unified ontology of interests of the 1000 users of
LiveJournal social network, considered in our study.

The resulting ontology contains interest concepts at var-
ious levels of abstraction. Each global cut through the on-
tology corresponds to a level of abstraction, the root corre-
sponding to the most abstract level. In this work, we con-
sider depth-guided global cuts through the ontology. This
means that concepts at depth n from the root are on the n-
th level, together with concepts at more abstract levels that
don’t have descendants at the n-th level. This enumeration
procedure results in 43 levels.

Friendship Link Prediction

The main goal of this work is to study the effect of the in-
terest ontology on the performance of learning algorithms
at the tasks of predicting friendship links in the LiveJournal
social network. The graph network used in the study con-
sists of 1,000 nodes (users) and 7,500 links (declared friend-
ships). Collectively, the users in the network specify 21,811
interests which correspond to 42,096 concepts. These con-
cepts are organized in an ontology, O, as described in the
previous section. Global cuts through these ontologies result
in concepts specified at higher or lower levels of abstraction.

The prediction task addressed can be stated as follows:
given a pair of users < A, B >, predict the existence (true
or false) of a directed link from user A to user B. To do
that, we need to represent pair of users < A, B > as a fea-
ture vector. In preliminary work on this problem (Bahir-
wani et al. 2008), we considered three types of features:
interest-based nominal features, interest-based numerical
features and graph-based features. Given the poor results
obtained using interest-based nominal features, we don’t in-
clude them in the current study. Thus, the focus here will
be on interest-based numerical features (constructed with or
without the ontology) and graph-based features.

Interest-Based Numerical Features

The intuition behind the interest-based numerical features
we construct is that if two users have many interests in com-
mon, then it is possible that they are friends, regardless of
exactly what those interests are. Furthermore, if the users
don’t have many common interests, but share a very rare in-
terest, they might also be friends. We derive eight numerical
features that capture this intuition by “measuring the inter-
estingness” of a the set of common interests that two users
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A and B share (Aljandal et al. 2008). This is achieved by
regarding each interest as an itemset whose elements are the
users having that interest. From each interest itemset ¢, as-
sociation rules of the form A(:i) — B(i) (meaning, if A has
interest ¢, then B has interest ¢) are derived. The resulting
association rules are used to define eight objective measures
of rule interestingness, from which eight interest-based nu-
merical features are constructed.

Suppose that numInt, denotes the number of interests
of user A, numIntg denotes the number of interests of user
B and numliInt o denotes the number of mutual interests
of users A and B. For a user pair < A, B >, we define the
following probabilities:

. . numliInt 4
Probability that A h terest: P(A) = ————
e Probability tha as an interest: P(A) TotNamInt
.. . numliIntp
Probability that B h terest: P(B) = ————
e Probability tha as an interest: P(B) TotNumInt
e Probability that A and B have a common interest:
numiIntap
P(AB) = ————
(AB) TotNumlInt

Using these probabilities and the Bayes’ Theorem, the fol-
lowing eight measures of interestingness can be derived:

1. Support(A — B) = P(AB)

2. Confidence(A — B) = P(B|A)
3. Confidence(B — A) = P(A|B)
P(Bl4)

4. Lift(A— B) = P O)

P(A) - P(=B)
P(A-B)
P(AB) — P(A) % P(B)
P(A)+ (1 - P(A))
7. Accuracy(A — B) = P(AB) + P(~A-B)
8. Leverage(A — B) = P(B|A) — P(A)P(B)

As pointed out in (Aljandal et al. 2008), these measures
do not take into account the relative size of the itemset to
which each candidate pair A — B belongs. For example,
some interests that have low membership (i.e., small item-
set size), such as DNA replication (an example of rare in-
terest), often imply a more signicant association between
users listing them, than common interests, such as music
or games that are shared by many users. To address this
limitation, Aljandal et al. (2008) have derived a normaliza-
tion factor that takes into account the popularity of particular
interests that two users share, with the most popular interests
(held by a signicant proportion of users) being slightly less
revealing than rarer interests. Experimental results (Aljan-
dal et al. 2008) show that link prediction algorithms pre-
sented with normalized interestingness measures (as numer-
ical features) give better results than those presented with the
features obtained from non-normalized interestingness mea-
sures. Hence, we use the normalized versions of the eight
association rule measures mentioned above to derive eight
interest-based numerical features in our experiments.

5. Conviction(A — B) =

6. Match(A — B) =



Graph-Based Features

Similar to (Hsu et al. 2006), for each directed edge A — B
in the social network graph, we construct and use the fol-
lowing graph-based features in our study:

1. In-degree of A: The number of incoming edges to the
node corresponding to user A (represents the popularity
or importance of A).

2. In-degree of B: Similar to in-degree of A, this is the num-
ber of incoming edges to the node corresponding to B.

3. Out-degree of A: The number of friends of user A (except
for user B). This number is computed by counting the
number of outgoing edges (except for A — B) from the
node corresponding to user A in the social network graph.

4. Out-degree of B: Similar to out-degree of user A, this
represents the number of friends of B except for A.

5. Mutual friends of A and B - 4 types considered:
e Number of mutual friends C, s.t. A — C and C — B.
Number of mutual friends C, s.t. B — C and C — A.

Number of mutual friends C, s.t. A — C and B — C.
Number of mutual friends C, s.t. C — A and C — B.

6. Backward distance from B to A: The minimum distance
from the node corresponding to user B to the node corre-
sponding to user A in the graph.

Experimental Design and Results

We evaluate the ability of the interest ontology to improve
the performance of traditional learning algorithms such as
decision trees (J48), support vector machines (SVM), ran-
dom forests (RF) and logistic regression (LR) classifiers
(Mitchell 1997) at the task of predicting friendship links. To
do this, interest-based numerical features (with and without
the ontology) are used by themselves and in combination
with graph-based features. The expectation is that when
combining the two types of features, the classification re-
sults are better than the results obtained using only one type
of features alone (either interest-based or graph-based).

Experimental Design

As mentioned before, our data set consists of 1,000 users
and approximately 7,500 declared friendship links (out of
1000 x 1000 possible links in an undirected graph with
1,000 nodes). We make the assumption (obviously, vio-
lated in practice) that the graph network is complete, i.e.
all declared friendships are positive examples and all non-
declared friendships are negative examples. That means, our
data set is highly skewed towards the negative class, the ra-
tio between the positive and negative classes being less than
1 :99. We randomly divide the original data set into three
subsets (sample without replacement):

e A training set consisting of 50% positive links and 50%
negative links (approximately 3,700 friendships and 3,700
non-friendship links). This data set is used to train the
classifiers considered.
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e A validation set consisting of data that has the origi-
nal distribution (approximately, 1850 friendship links and
240,000 non-friendship links). This data set is used to find
the best level of abstraction for an ontology.

o A test set also consisting of data having the original distri-
bution (approximately, 1850 friendship links and 240,000
non-friendship links). We use this data set to evaluate the
true performance of the classifiers, given the best level of
abstraction for the ontology.

From each data set we remove the links that go across data
sets to ensure that the three sets are independent. Interest-
based features are constructed using a particular level in the
ontology. For the training set, graph-based features are con-
structed using all the available friendship links. However,
for the validation and test sets, we want to predict the friend-
ship links. To be able to construct graph-based features for
these sets, we follow the approach in (Taskar et al. 2003).
More precisely, we assume that a certain percent of the links
are known in the validation/test graphs (in particular, we ex-
plore scenarios where 10%, 25% or 50% links are known),
construct graph-features based on the known links only and
predict the “unknown” links. As our data set is highly im-
balanced, we report the performance of a learning algorithm
as the area under the ROC curve (called AUC). The ROC
curve depicts the tradeoff between the true positive rate and
the false positive rate.

The experiments we have designed are meant to address
several questions, including:

e How does the performance of a classifier vary with the
number of concepts used to construct the interest-based
features (i.e., with the level of abstraction in ontology)?

e What is the performance of an algorithm when interest-
based numerical features ( constructed with or without
ontology) are used by themselves?

e Does the ontology help improve the results obtained using
only graph-based features?

We considered two baseline models in our study, a model
using interest numeric features constructed from the original
interest descriptions (leaf level in the ontology) and another
one using graph-based features only. We compared these
models against models that use interest numerical features
constructed based on the ontology or models that use both
interest-based numerical features and graph-based features.
Each experiment that we performed was repeated 5 times
and the results were averaged over the 5 runs. A paired t-test
(Mitchell 1997) was performed to investigate if one model
is significantly better than another one.

Results

Weka implementations (http://www.cs.waikato.ac.nz/ml/weka/)

of the learning algorithms considered in our study were
used (default parameters). Table 1 shows the results of the
comparison between classifiers that use numerical features
constructed with or without making use of the ontology.
The results for O(best level) are averaged over the 5 runs
performed, and the best level of abstraction for each run
is shown under the corresponding AUC value. Values



highlighted in bold are statistically significant according
to the t-test. In particular, the performance of the SVM
and LR classifiers that use the best level of abstraction is
significantly (based on t-test) greater than the corresponding
classifiers that use numeric features based on original
descriptions (leaf level in the ontology). However, this is
not the case for the RF and J48 classifiers.

Tables 2 show the results of the comparison between clas-
sifiers built using graph-based features only and classifiers
built using graph-based and interest-based numerical fea-
tures (without ontology, and in the presence of the ontology
- values for best levels for each run averaged and best levels
shown under the corresponding average value). Each hori-
zontal section in the table shows the results for cases when
10%, 25% and 50% links are known, respectively. As be-
fore, values highlighted in bold are statistically significant
according to the t-test. As expected, the performance in-
creases with the percent of links known. Furthermore, when
graph based features are used in combination with numeric
interest based features, the use of the ontology results in im-
provements of the performance consistently for all classi-
fiers, although sometimes the best level is obtained for the
level just above the leaf level (most often for the SVM and
logistic regression classifiers).

As can be seen from the table, the best results are ob-
tained using the random forest classifiers (next best being
SVM), while the worst are obtained using decision trees.
Another important fact to note is that the best level is usu-
ally very high (low number) for decision tree classifiers and
sometimes for random forests as well. For example, one of
the random forests runs shows that as few as 2207 (level
9) abstract interests (out of 42,096 possible interests) used
with random forests can provide results better than those
obtained with more specific interests. It is also worth ob-
serving, that in the presence of ontology, SVM outperforms
random forests in several cases (e.g., 50% links know, graph
features only or graph features and interest-based numerical
features without ontology). However, the results are always
better using the random forest algorithm when the ontology
is used to construct interest-based numerical features.

Figure 4 shows the variation of the AUC performance
with the level of abstraction (and implicitly, number of nodes
used) in the case of the random forest classifier, which uses
interest-based numerical features. All 5 runs are shown.
Similar graphs (not shown here) are obtained from the other
classifiers constructed.

Related Work

There is a significant body of work related to ontology con-
struction and link prediction. We discuss several ontology
construction approaches, but we are not aware of any work
that specifically addresses the problem of building an on-
tology over interests specified by users of a social network.
Among the many approaches to link prediction in social net-
works, we discuss two that are the most relevant to our work.

Ontology Construction

Recent work in machine learning has focused on learning
implicit concepts and concept hierarchies from data using
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clustering approaches. Kang et al. (2004) introduce a hi-
erarchical agglomerative clustering algorithm for construct-
ing attribute value taxonomies from data. This algorithm
constructs a taxonomy (binary tree) by recursively group-
ing attribute values based on the Jensen-Shannon divergence
(Slonim and Tishby 1999) between distributions of classes
associated with attribute values. Experimental results show
that learning algorithms that make use of attribute values
taxonomies to reduce the number of features (e.g. Naive
Bayes) learn simpler still accurate models as compared with
classifiers that do not use these taxonomies. Our ontology
construction approach is similar in spirit to this approach,
although the details differ significantly.

As opposed to the bottom-up approach in (Kang et al.
2004), Punera et al. (2006) present a top-down approach for
constructing an n-ary hierarchy of classes, given a set of la-
beled data points. Their algorithm uses a divisive clustering
paradigm to build an n-ary hierarchy by computing the sim-
ilarity between sets of class labels also based on the Jensen-
Shannon divergence. Experimental results show that n-ary
taxonomy aware classifiers yield better results than classi-
fiers that use binary taxonomies.

Kim and Chan (2003) address the problem of modeling
web user interests by classifying the web pages that a partic-
ular user visits. They introduce a top-down divisive hierar-
chical clustering method to recursively divide parent clusters
into child clusters until a termination criterion is met. Godoy
and Amandi (2005) describe a practical way to implement
the method introduced in (Kim and Chan 2003). One main
limitation of this approach is that is does not allow an in-
terest to belong to two concepts. The hierarchical agglom-
erative clustering algorithm that we used does not present
this limitation, as we find all descriptions of an interest and
regard them as distinct concepts.

Link Prediction

Two commonly addressed problems in social networks are:
object classification (labeling the nodes of a graph) and link
prediction (labeling the links in a graph). Object classifi-
cation is usually performed by assuming a complete set of
known links (Getoor 2003). As opposed to that, link pre-
diction problems are usually addressed by assuming a fully
observed set of node attributes (Getoor 2003). However, in
many real world domains, node attributes and links are of-
ten missing or incorrect. Thus, the object classification al-
gorithm is not provided with all the relevant links, while the
link prediction algorithm is not provided with all the node at-
tributes needed for accurate prediction. Bilgic et al. (2007)
have developed an approach that addresses these two prob-
lems by interleaving object classification and link prediction
in a simple, yet general collective classification algorithm.
In this approach, the object classification algorithm is pro-
vided with information about known and predicted links,
while the link prediction algorithm is provided with infor-
mation about known and predicted node classifications, until
both the object classifications and the link predictions con-
verge. Experimental results show that the collective classi-
fication algorithm performs better than the “flat” prediction
approach (where each problem is addressed independently).



Table 1: AUC for different classifiers presented with interest-based numerical features, constructed without and with ontology.
Average values over 5 runs shown. For O(best level), the best levels for the 5 runs are also shown under the corresponding
average value. Values highlighted in bold are statistically significant according to the t-test.

Features SVM LR RF J48
Without O 0.65+0.01 0.66+0.01 0.7840.01 0.66+0.01
O (best level) 0.671+0.00 0.68+0.00 0.774+0.01 0.66+0.01

(42,42,42,42,42) (25,27,42,40,42) (16,24,30,38,29) (27,19,26,24,28)

Table 2: AUC for different classifiers presented with graph featuers and interest-based numerical features (constructed without
and with ontology). 10%, 25% and 50% links known, respectively. Average values over 5 runs shown. For O(best level), the
best levels for the 5 runs are also shown under the corresponding average value. Values highlighted in bold are statistically
significant according to the t-test.

Features SVM LR RF J48

Graph only 0.69+0.01 0.6740.01 0.704+0.04 0.61£0.08
Graph, without O 0.68+0.01 0.68+0.01 0.69+0.05 0.57+0.09
Graph, O (best level) 0.70+0.00 0.69+0.01 0.7440.04 0.64+0.06
(42,35,37,42,34) (42,28,17,21,17) (9,13,38,26,27) (2,3,5,22,6)

Graph only 0.71£0.01 0.67£0.01 0.7240.02 0.67£0.05
Graph, without O 0.74+0.01 0.72+0.01 0.71+0.03 0.654+0.04
Graph, O (best level) 0.76+0.01 0.74+0.01 0.794+0.02 0.71+0.05
(42,36,42,41,23) (42,40,42,29,32) (42,36,19,31,27) (6,22,2,5,6)

Graph Only 0.8240.01 0.7940.01 0.8040.01 0.7740.03
Graph, without O 0.85+0.01 0.83+0.01 0.82+0.02 0.76+0.02
Graph, O (best level) 0.86+0.01 0.85+0.01 0.86+0.02 0.78+0.02

(42,42,42,27,23) (42,23,21,29,42) (42,36,26,18,27)  (6,28,2,26,27)

Taskar et al. (2003) have also used a collective classifi- a set of ontology-aware interest-based numerical features
cation approach, based on relational Markov networks, to that can be used to build classifiers for link prediction. We
the problem of link prediction in relational data. Relational have performed experiments to explore the effectiveness of
Markov networks can be used to define a joint probability the interest-based numerical features at predicting friend-
distribution over a graph (both node attributes and links). ships. Our results show that ontology-aware interest-based
One of the data sets in their study is a student social net- numerical features perform better at capturing interest in-
work data set and the focus is on predicting friendship links formation (and hence at predicting friendships) than their
form student information and a subset of known links (in non-ontology-aware counterparts, especially when used in
particular, they assume that 10%, 25% and 50% are known, combination with graph-based features. Best results were
respectively). We used a similar experimental design. obtained for the random forest algorithm.

. Future work ideas include:
Conclusions and Future Work

We have addressed the problem of building an interests o Predicting friendship links in incomplete social networks
ontology and predicting potential friendship links between (where the absence of a link between two users does not
users in the social network LiveJournal, using interest-based necessarily mean the two users cannot be friends).

numerical features (constructed in the presence of ontology),
in addition to graph-based features. With respect to this
problem, our main goal was to organize user interests in an
ontology (specifically, a concept hierarchy) and to use the
semantics captured by this ontology to improve the perfor- .
mance of learning algorithms at predicting friends.

One contribution of this work is an approach for con-
structing an interest concept hierarchy. Our approach relies

e Including user-defined ontologies, when available, in the
process of ontology engineering (building a global ontol-
ogy on the top of small user-defined ontologies).

Incorporating information from Wikipedia and Google
in the ontology engineering process (by using them as
sources of interest descriptions).

on extracting interest descriptions from several sources and e Using other similarity measures for comparing descrip-

using an agglomerative hierarchical clustering algorithm to tions, such as cosine similarity or similarity based on La-

group descriptions into concepts. The algorithm implemen- tent Semantic Analysis (Deerwester et al. 1990).

tation is general and can be used to construct similar ontolo-

gies in other domains. e Refining interest-based concepts using a variable-depth
Another contribution of our work is the construction of cut through the ontologies.
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Figure 4: Dependency of the AUC performance on the level of abstraction. Results shown for the random forest classifiers that
use interest-based numerical features. All 5 runs are shown. The best values for each run are also marked.
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