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Abstract

In this paper we present a probabilistic approach
to analysis and prediction of protein structure. We
argue that this approach provides a flexible and
convenient mechanism to perform general scien-
tific data analysis in molecular biology. We apply
our approach to an important problem in molec-
ular biology—predicting the secondary structure
of proteins—and obtain experimental results com-
parable to several other methods. The causal
networks that we use provide a very convenient
medium for the scientist to experiment with dif-
ferent empirical models and obtain possibly im-
portant insights about the problem being studied.

Introduction

Scientific analysis of data is an important potential ap-
plication of Artificial Intelligence (AI) research. We
believe that the ultimate data analysis system using
AT techniques will have a wide range of tools at its dis-
posal and will adaptively choose various methods. It
will be able to generate simulations automatically and
verify the model it constructed with the data generated
during these simulations. When the model does not fit
the observed results the system will try to explain the
source of error, conduct additional experiments, and
choose a different model by modifying system parame-
ters. If it needs user assistance, it will produce a simple
low-dimensional view of the constructed model and the
data. This will allow the user to guide the system to-
ward constructing a new model and/or generating the
next set of experiments. We believe that flexibility, ef-
ficiency and direct representation of causality are key
issues in the choice of representation in such a system.
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As a first step, in this paper we present a probabilis-
tic approach to analysis and prediction of protein struc-
ture. We argue that this approach provides a flexible
and convenient mechanism to perform general scien-
tific data analysis in molecular biology. We apply our
approach to an important problem in molecular biol-
ogy: predicting the secondary structure of proteins [?;
?]. A number of methods have been applied to this
problem with various degree of success [?; ?; ?; 7; ?;
?]. In addition to obtaining experimental results com-
parable to other methods, there are several theoreti-
cally and practically important observations that we
have made in experimenting with our system.

e It has been claimed in several papers that prob-
abilistic (statistical) approaches have been outper-
formed by neural network methods and memory-
based methods by a wide margin. We show that
probabilistic methods are comparable to other meth-
ods in prediction quality. In addition, the predic-
tions generated by our methods have precise quan-
titative semantics which is not shared by other clas-
sification methods. Specifically, all the causal and
statistical independence assumptions are made ex-
plicit in our networks thereby allowing biologists to
study causal links in a convenient manner. This gen-
eralizes correlation studies that are normally used in
statistical analysis of data.

e Our method provides a very flexible tool to exper-
iment with a variety of modelling strategies. This
flexibility allows a biologist to perform many prac-
tically important statistical queries which can yield
important insight into a problem.

e From the theoretical point of view we found that dif-
ferent ways to model the domain produce practically
different results. This is an experience that Al re-
searchers encounter repeatedly in many knowledge-
representation schemes: different coding of the prob-



lem in the architecture results in dramatic differ-
ences in performance. This has been observed in
production systems, neural networks, constraint net-
works and other representations. Our experience re-
inforces the thesis that while knowledge representa-
tion is a key issue in A, a knowledge-representation
system typically provides merely the programming
language in which a problem must be expressed.
The coding, analogous to an algorithm in procedural
languages, is perhaps of equally great importance.
However, the importance of this issue is grossly un-
derestimated and not studied as systematically and
rigorously as knowledge representation languages.

e Previous methods for protein folding were based on
the window approach. That is, the learning algo-
rithm attempted to predict the structure of the cen-
tral amino acid in a “window” of k£ amino acids
residues. It is well recognized that in the context
of protein folding, very minimal mutations (amino
acid substitutions) often cause significant changes
in the secondary structure located far from the mu-
tation cite. Our method is aimed at capturing this
behavior.

Protein Folding

Proteins have a central role in essentially all biological
processes. They control cellular growth and develop-
ment, they are responsible for cellular defense, they
control reaction rates, they are responsible for propa-
gating nerve impulses, and they serve as the conduit
for cellular communication. The ability of proteins to
perform these tasks, i.e., the function of a protein, is
directly related to its structure. The results of Chris-
tian Anfinsen’s work in the late 1950’s indicated that
a protein’s unique structure is specified by its amino-
acid sequence. This work suggested that a protein’s
conformation could be specified if its amino acid se-
quence was known, thus defining the protein folding
problem. Unfortunately, nobody has been able to put
this theory into practice.

The biomedical importance of solving the protein
folding problem cannot be overstressed. Our ability
to design genes—the molecular blueprints for speci-
fying a protein’s amino acid sequence—has been re-
fined. These genes can be implanted into a cell and
this cell can serve as the vector for the production of
large quantities of the protein. The protein, once iso-
lated, potentially can be used in any one of a multitude
of applications—uses ranging from supplementing the
human defense system to serving as a biological switch
for controlling abnormal cell growth and development.
A critical aspect of this process is the ability to spec-
ify the amino acid sequence which defines the required

conformation of the protein.

Traditionally, protein structure has been described
at three levels. The first level defines the protein’s
amino acid sequence, the second considers local confor-
mations of this sequence, i.e., the formation of rod-like
structures called a-helices, planar structures called -
sheets, and intervening sequences often categorized as
coil. The third level of protein structure specifies the
global conformation of the protein. Due to limits on
our understanding of solutions to the protein folding
problem, most of the emphasis on structure prediction
has been at the level of secondary structure prediction.

There are fundamentally two approaches that have
been taken to predict the secondary structure of pro-
teins. The first approach is based on theoretical meth-
ods and the second is based on data derived empiri-
cally. Theoretical methods rely on our understanding
of the rules governing amino acid interactions, they
are mathematically sophisticated and computationally
time-intensive. Conversely, empirically based tech-
niques combine a heuristic with a probabilistic schema
in determining structure. Empirical approaches have
reached prediction rates approaching 70%—the appar-
ent limit given our current base of knowledge.

The most obvious weakness of empirically based pre-
diction schemes is their reliance on exclusively local in-
fluences. Typically, a window that can be occupied by
9-13 amino acids is passed along the protein’s amino
acid sequence. Based on the context of the central
amino acid’s sequence neighbors, it is classified as be-
longing to a particular structure. The window is then
shifted and the amino acid which now occupies the
central position of the window is classified. This is an
iterative process which continues until the end of the
protein is reached. In reality, the structure of an amino
acid is determined by its local environment. Due to the
coiled nature of a protein, this environment may be in-
fluenced by amino acids which are far from the central
amino acid in sequence but not in space. Thus, a pre-
diction scheme which considers the influence of amino
acids which are, in sequence, far removed from the cen-
tral amino acid of the window may improve our ability
to successfully predict a protein’s conformation.

Notation

For the purpose of this paper, the set of proteins is
assumed to be a set of sequences (strings) over an al-
phabet of twenty characters (different capital letters)
that correspond to different amino acids. With each
protein sequence of length n we associate a sequence
of secondary structure descriptors of the same length.
The structure descriptors take three values: h, e, ¢
that correspond to a-helix, (-sheet and coil. That



is, if we have a subsequence of hh...h in positions
i,0+1,...,1+k it is assumed that the protein sequence
in those positions folded as a helix. The classification
problem is typically stated as follows. Given a protein
sequence of length n, generate a sequence of structure
predictions of length n which describes the secondary
structure of the protein sequence. Almost without ex-
ception all previous approaches to the problem have
used the following approach. The classifier receives a
window of length 2K + 1 (typically K < 12) of amino
acids. The classifier then predicts the secondary struc-
ture of the central amino acid (i.e., the amino acid in
position K) in the window.

A Probabilistic Framework for Protein
Analysis

When making decisions in the presence of uncertainty,
it is well-known that Bayes rule provides an optimal
decision procedure, assuming we are given all prior
and conditional probabilities. There are two major
difficulties with using the approach in practice. The
problem of reasoning in general Bayes networks is A/P-
complete, and we often do not have accurate estimates
of the probabilities. However, it is known that when
the structure of the network has a special form it is
possible to perform a complete probabilistic analysis
efficiently. In this section we show how to model proba-
bilistic analysis of the structure of protein sequences as
belief propagation in causal trees. In the full version of
the paper we also describe how we dealt with problems
such as undersampling and regularization. The general
schema we advocate has the following form. The set
of nodes in the networks are either protein-structure
nodes (PS-nodes) or evidence nodes (E-nodes). Each
PS-node in the network is a discrete random variable
X; that can take values which correspond to descrip-
tors of secondary structure, i.e., segments of h’s, e’s
and ¢’s. With each such node we associate an evidence
node that again can assume any of a set of discrete
values. Typically, an evidence node would correspond
to an occurrence of a particular subsequence of amino
acids at a particular location in the protein. With each
edge in the network we will associate a matrix of con-
ditional probabilities. The simplest possible example
of a network is given in Figure 1.

We assume that all conditional dependencies are rep-
resented by a causal tree. This assumption violates
some of our knowledge of the real-world problem, but
provides an approximation that allows us to perform
an efficient computation. For an exact definition of a
causal tree see Pearl [?].

Structure segment:

PS;_1

Evidence segment:

Figure 1: Causal tree model.

Protein Modeling Using Causal
Networks

As mentioned above, the network is comprised of a set
of protein-structure nodes and a set of evidence nodes.
Protein-structure nodes are finite strings over the al-
phabet {h,e,c}. For example the string hhhhhh is
a string of six residues in an a-helical conformation,
while eecc is a string of two residues in a 3-sheet con-
formation followed by two residues folded as a coil. Ev-
idence nodes are nodes that contain information about
a particular region of the protein. Thus, the main idea
is to represent physical and statistical rules in the form
of a probabilistic network. We note that the main point
of this paper is advocating the framework of causal net-
works as an experimental tool for molecular biology
applications rather than focusing on a particular net-
work. The framework allows us flexibility to test causal
theories by orienting edges in the causal network.

For our initial experiments we have chosen the sim-
plest possible models. In this paper we describe two
that we feel are particularly important: a classical Hid-
den Markov Model using the Viterbi algorithm and
causal trees using Pearl’s belief updating. We shall
show that the second approach is better and matches
in accuracy other methods that have a less explicitly
quantitative semantics.

In our first set of experiments we converged on the
following model that seems to match in performance
many existing approaches. The network looks like a set
of PS-nodes connected as a chain. To each such node
we connect a single evidence node. In our experiments
the PS-nodes are strings of length two or three over the
alphabet {h,e,c} and the evidence nodes are strings
of the same length over the set of amino acids. The
following example clarifies our representation. Assume
we have a string of amino acids GSAT. We model
the string as a network comprised of three evidence
nodes GS, SA, AT and three PS-nodes. The network
is shown in Figure 2. A correct prediction will assign
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Figure 3: Modelling the Viterbi algorithm as a shortest path problem.
where « is some normalizing constant. For length con-
ce ch hh sideration we will not describe the algorithm to com-

Figure 2: Example of causal tree model using pairs,
showing protein segment GSAT with corresponding
secondary structure cchh

the values cc, ch, and hh to the PS-nodes as shown in
the figure.

Let Xg,X1,...,X,, be a set of PS-nodes connected
as in Figure 1. Generally, speaking the distribution
for the variable X; in the causal network as below can
be computed using the following formulae. Let ey, =
€i,€i+1,-- -, denote the set of evidence nodes to the
right of X;, and let e}i =ey,€9,...,6;_1 be the set of
evidence nodes to the left of X;. By the assumption of
independence explicit in the network we have

P(Xi|X;i1,eX,) = P(Xi|Xi 1)
Thus,

P(Xilek ,ex,) = aP(ex, | X:)P(X;lek.)

pute the probabilities. The reader is referred to Pearl
for a detailed description [?]. Pearl gives an efficient
procedure to compute the belief distribution of every
node in such a tree. Most importantly, this procedure
operates by a simple efficient propagation mechanism
that operates in linear time.

Protein Modeling Using the Viterbi
Algorithm

In this section we describe an alternative model for
prediction. This model has been heavily used in
speech understanding systems, and indeed was sug-
gested to us by Kai Foo Lee whose system using simi-
lar ideas achieves remarkable performance on speaker-
independent continuous speech understanding.

We implemented the Viterbi algorithm and compare
its performance to the method outlines above. We
briefly describe the method here. We follow the dis-
cussion by Forney [?].

We assume a Markov process which is characterized
by a finite set of state transitions. That is, we assume
the process at time k£ can be described by a random
variable X that assumes a discrete number of val-
ues (states) 1,..., M. The process is Markov, i.e., the
probability P(Xg4+1|Xo,...Xr) = P(Xg+1|Xk). We
denote the process by the sequence X = Xo,..., Xg.
We are given a set of observations Z = Z, ..., Zj such
that Z; depends only on the transition T; = (X;+1, X;)-
Specifically, P(Z|X) = [[,_,(Z;|X;). The Viterbi al-



gorithm is a solution to the maximum aposteriori esti-
mation of X given Z. In other words we are seeking a
sequence of states X for which P(Z|X) is maximized.

An intuitive way to understand the problem is in
graph theoretic terms. We build a n-level graph that
contains nM nodes (see Figure 3). With each transi-
tion we associate an edge. Thus, any sequence of states
has a corresponding path in the graph. Given the set
of observations Z with any path in the graph we as-
sociate a length L = —In P(X, Z). We are seeking a
shortest path in the graph. However, since

P(X,Z) = P(X)P(Z|X)
= ]j P(Xk+1|Xk) ﬁ P(Zk|Xk+17Xk)
k=0 k=0

if we define A(T}) = —In P(Xk41|Xk) — In P(Zy|T%)
we obtain that —In P(Z,X) = Y 1_0 As.

Now we can compute the shortest path through this
graph by a standard application of shortest path algo-
rithms specialized to directed acyclic graphs. For each
time step ¢ we simply maintain M paths which are the
shortest path to each of the possible states we could be
in at time 7. To extend the path to time step i + 1 we
simply compute the lengths of all the paths extended
by one time unit and maintain the shortest path to
each one of the M possible states at time ¢ + 1.

Our experimentation with the Viterbi algorithm was
completed in Spring 1992. We recently learned that
David Haussler [?] and his group suggested the Viterbi
algorithm framework for protein analysis as well. They
experimented on a very different problem and also
obtain interesting results. We document the perfor-
mance of Viterbi on our problem even though, as de-
scribed below, the causal-tree method outperformed
Viterbi. The difference between the methods is that
the Viterbi algorithm predicts the most likely complete
sequence of structure elements, whereas the causal-tree
method makes separate predictions about individual
PS-nodes.

Experiments

The experiments we conducted were performed to
allow us to make a direct comparison with previ-
ous methods that have been applied to this prob-
lem. We followed the methodology described in [?;
?] which did a thorough cross-validated testing of var-
ious classifiers for this problem. Since it is known that
two proteins that are homologous (similar in chemical
structure) tend to fold similarly and therefore gener-
ate accuracies of predictions that are often overly opti-
mistic, it is important to document the precise degree
of homology between the training set and the testing

Trial | Positions Correct Using:
Pairs Triples
1 2339 1518 (64.9%) | 1469 (62.8%)
2 2624 1567 (59.7%) | 1518 (57.9%)
3 2488 1479 (59.5%) | 1435 (57.7%)
4 2537 1666 (65.7%) | 1604 (63.2%)
5 2352 1437 (61.1%) | 1392 (59.2%)
6 2450 1510 (61.6%) | 1470 (60.0%)
7 2392 1489 (62.3%) | 1447 (60.5%)
8 2621 1656 (63.2%) | 1601 (61.1%)
All 19803 12322 (62.2%) | 11936 (60.3%)

Table 1: Causal tree results for 8-way cross-validation
using segments of length 2 and length 3.

set. In our experiments the set of proteins was divided
into eight subsets. We perform eight experiments in
which we train the network on seven subsets and then
predict on the remaining subset. The accuracies are
averaged over all eight experiments. This methodol-
ogy is referred to as k-way cross validation.

Experimental Results

We report the accuracy of prediction on individual
residues and also on predicting runs of helices and
sheets. Table 1 shows the prediction accuracy of our
methods using the causal network method for each one
of the eight trials in our 8-way cross-validation study.
In the pairs column we document the performance of
the causal network described earlier using PS-nodes
and E-nodes that represent protein segments of length
2. The triples column gives the results for the same
network with segments of length 3. The decrease in
accuracy for triples is a result of undersampling.

Table 2 shows the performance of our method in
predicting the secondary structure at each amino acid
position in comparison with other methods. In Table 3
we report the performance of our method on predict-
ing runs of helices and sheets and compare those with
other methods that were applied to this problem. To
summarize, our method yields performance compara-
ble to other methods on predicting runs of helices and
sheets. It seems to have particularly high accuracy in
predicting individual helices.

Discussion

In this paper we have proposed causal networks as a
general and efficient framework for data analysis in
molecular biology. We have reported our initial ex-



Description Chain-Pair FSkBANN ANN Chou-Fasman
Average length of predicted helix run 9.4 8.52 7.79 8.00
Average length of actual helix run 10.3 - - -
Percentage of actual helix runs overlapped 66% 67% 70% 56%
by predicted helix runs
Percentage of predicted helix runs that 62% 66% 61% 64%
overlap actual helix runs
Average length of predicted sheet run 3.8 3.80 2.83 6.02
Average length of actual sheet run 5.0 - - -
Percentage of actual sheet runs overlapped 56% 54% 35% 46%
by predicted sheet runs
Percentage of predicted sheet runs that 60% 63% 63% 56%
overlap actual sheet runs

Table 3: Precision of run (segment) predictions. Comparative method results from [?].

Method Total Helix Sheet Coil
Chou-Fasman 57.3% 31.7% 36.9% 76.1%
ANN 61.8% 43.6% 18.6% 86.3%

w/ state 61.7% 39.2% 24.2% 86.0%
FSKBANN 63.4% 459% 35.1% 81.9%

w/o state  622% 42.4% 26.3% 84.6%
Viterbi 58.5% 48.3% 47.0% 69.3%
Chain-Pairs 62.2% 55.9% 51.7% 67.4%
Chain-Triples 60.3% 53.0% 45.5% 70.8%

Table 2: Overall prediction accuracies for various pre-
diction methods. Comparative method results from

[?].

periments applying this approach to the problem of
protein secondary structure prediction. One of the
main advantages of the probabilistic approach we de-
scribed here is our ability to perform detailed experi-
ments where we can experiment with different causal
models. We can easily perform local substitutions (mu-
tations) and measure (probabilistically) their effect on
the global structure. Window-based methods do not
support such experimentation as readily. Our method
is efficient both during training and during prediction,
which is important in order to be able to perform many
experiments with different networks.

Our initial experiments have been done on the sim-
plest possible models where we ignore many known
dependencies. For example, it is known that in a-

helices hydrogen bonds are formed between every ith

and (i + 4)"™ residue in a chain. This can be incorpo-
rated in our model without losing efficiency. We also
can improve our method by incorporating additional
correlations among particular amino acids as in [?].
We achieve prediction accuracy similar to many other
methods such as neural networks. We are confident
that with sufficient fine tuning we can improve our re-
sults to equal the best methods. Typically, the current
best prediction methods involve complex hybrid meth-
ods that compute a weighted vote among several meth-
ods using a combiner that learns the weights. FE.g., the
hybrid method described by [?] combines neural net-
works, a statistical method and memory-based reason-
ing in a single system and achieves an overall accuracy
of 66.4%.

Bayesian classification is a well-studied area and
has been applied frequently to many domains such as
pattern recognition, speech understanding and others.
Statistical methods also have been used for protein
structure prediction. What characterizes our approach
is its simplicity and the explicit modeling of causal
links. We believe that for scientific data analysis it is
particularly important to develop tools that clearly dis-
play all the causal independence assumptions. Causal
networks provide a very convenient medium for the
scientist to experiment with different empirical models
and obtain possibly important insights into a problem.



