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Abstract

We present a noisy-OR Bayesian network model for
simulation-based training, and an efficient search-based
algorithm for automatic synthesis of plausible training
scenarios from constraint specifications. This randomized
algorithm for approximate causal inference is shown to
outperform other randomized methods, such as those based
on perturbation of the maximally plausible scenario. It has
the added advantage of being able to generate acceptable
scenarios (based on a maximum penalized likelihood
criterion) faster than human subject matter experts, and with
greater diversity than deterministic inference. We describe
a field-tested interactive training system for crisis
management and show how our model can be applied
offline to produce scenario specifications. We then evaluate
the performance of our automatic scenario generator and
compare its results to those achieved by human instructors,
stochastic simulation, and maximum likelihood inference.
Finally, we discuss the applicability of our system and
framework to a broader range of modeling problems for
computer-assisted instruction.

Introduction     

Probabilistic networks are used extensively in diagnostic
applications where a causal model can be learned from
data or elicited from experts [He90, HW95]. In this paper,
we first present a formulation ofscenario generationin
computer-assisted instruction as a Bayesian inference
problem. Previous approaches to synthesis of training
scenarios have predominantly been dependent on the
expertise of a human instructor [GD88, GFH94]. The
inferential model alleviates this problem by mapping
constraints specified by an instructor to a causal
explanation in the network model. These constraints are
events in the causal model (such as a firemain rupture in
training systems for damage control and fire fighting, or a
medical complication in training for surgical
anesthesiologists) [GD88, De94]. Constraints are literals in
a formal specification language for training objectives to
be met by a scenario. Explanations, the specification
language, and objectives are defined in Section 2.

We then give an efficient randomized algorithm for
finding plausible scenarios that meet training objectives,
have well-differentiated explanations, are unique, and are
diverse. We define a penalized likelihood function (based
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upon precision and accuracy in meeting training criteria as
well as pure likelihood). The output of the algorithm is a
set of explanations that maximize this function subject to
the specification. These explanations, which we call
proposed scenarios, determine the fixed parameters for
interactive training scenarios (including the initial
conditions for dynamic simulation).

Finally, we show that, subject to quantitative metrics for
the above criteria, both the acceptance rate of our
algorithm is high and the efficiency (number of acceptable
scenarios divided by the computational cost of generating
all proposed scenarios) is high. We evaluate the system
using the penalized likelihood function, relative to naive
and perturbation-based stochastic scenario generators. We
also study the empirical performance of the system− that
is, how its relatively high acceptance rate and asymptotic
efficiency allow it to compete effectively with human
instructors in designing scenarios. We report on a
deployed training system and quantitatively compare the
scenarios produced by our system to those applied and
tested in the classroom setting.

Role of Scenario Generation in Crisis
Management Training
Immersive Training Systems. It is well known that
effective human performance on complex tasks requires
deliberate practice under realistic conditions [EKT93]. To
provide realistic practice scenarios in an interactive setting,
immersive training systemsare often used [GD88,
WFH+96]. In military and medical professions, these
systems have evolved in recent years from ad-hoc physical
mock-ups to virtual environments with a high degree of
automation and standardization [De94, GFH94, WFH+96].
A common aspect of many crisis management tasks is
time-critical decision making, requiring a model of
problem-solving actions on the environment [HB95,
WFH+96]. In this project, we concentrate on specification
of simulation parameters by instructors, rather than the
later stage of interaction with the trainee.

The effectiveness of computer simulation for training
and critiquing has been demonstrated by deployed systems
in many high-risk domains, such as surgical anesthesia and
ship damage control [HGYS92, WFH+96]. Similar
diagnostic models have been designed to support
intelligent displays for space shuttle flight control, and for
medical monitoring [HB95, HLB+96]. To assess and
improve the decision-making skills of future practitioners



in time-critical situations, an interactive simulation is
typically used to produce a dynamic model of the crisis. A
graphical user interface and a visualization or multimedia
system (or a physical mock-up with appropriate sensors
and actuators) are used to deliver the scenario. Intelligent
control of the multimedia components of this system is
required throughout the life cycle of a training scenario,
from design through deployment to the critiquing and
feedback stage of professional education [WFH+96]. Such
an ensemble provides an adequate simulation of genuine
crisis conditions to evoke realistic stress levels during
problem solving [BDS96].

The purpose of scenario generation in this framework,
therefore, is to provide collaborative assistance with human
instructors to design useful models for dynamic simulation.

Computer-Assisted Instruction (CAI) Issues. We now
explain our notion of useful models for dynamic
simulation. Much of the research and development effort
in computer-assisted instruction (CAI) for crisis
management has gone into easing the design burden for
simulations of time-critical decision making under stress
[BDS96]. This design task can be isolated into the offline
specificationphase (where training objectives are mapped
into fixed simulation parameters and initial conditions) and
the online delivery phase (where interactive simulation
occurs). Our research has shown that uncertain reasoning
is useful not only in the second phase (where the trainee
may interact with intelligent agent models and receive
critiquing from an expert system), but in the first (where
instructor objectives are used to stochastically generate
scenarios) [MW96].

For example, training objectives in medical applications
(e.g., complications to be handled by the specialist-in-
training) may be achieved by various causes (preexisting
conditions, surgical incidents,etc.) [GFH94]. In our
deployed application (training for shipboard damage
control), the objective is to train officers in responding to
loss of critical ship functions (maintaining combat
readiness and “ship survivability” while minimizing
casualties from the damage control process). The
specification tool is a graphical probabilistic model of
functional dependencies in the ship. Search-based
inference is used to determine which causes (damage-
initiating events, such as a mine detonation, missile impact,
or ignition of a shipboard fire) best explain thespecified
deactivations. For CAI purposes, the entire explanation
(not just the “diagnosis”) is useful to instructors, because it
aids in plan recognition and the generation of critiques
during and after the online simulation phase [De94,
BDS96, WFH+96].

The DC-Train System
In the naval domain, typical damage control scenarios

involve explosions, mass conflagrations, flooding, vital
system failure, and other types of disaster. A special
officer, called the Damage Control Assistant (DCA) is
responsible for coordinating all crisis response and

recovery efforts. Because real-life major crises on US
Naval vessels are extremely rare, DCAs seldom get
exposure to serious crisis situations, and as a result find it
difficult to obtain the expertise to deal with them if they
ever do occur. Training runs on actual ships are extremely
expensive, time-consuming, fatiguing, not to mention
dangerous – and so are kept to a minimum. As a result, the
Navy has identified an acute need for an inexpensive, but
effective computerized damage control training system.

In response to this need, the Knowledge-based Systems
Group at the University of Illinois has developed the
Illinois DCA Training System (DC-Train), a framework of
four essentially independent modules that interact with the
user to provide an immersive environment for damage
control training. Figure 1 shows a diagram of the complete
DC-Train system. The Ship Crisis Simulator module
comprises a comprehensive numerical/rule-based
simulation of ship processes, system functions, and crew
actions. The Multimedia/Visualization module implements
a powerful interface for user-system interaction. The
Critiquing module provides performance feedback to the
user. The proposed scenario generation module, utilizing
the ScenGenalgorithm, is designed to fit into the existing
framework. Its task is to design a training scenario in
accordance with prescribed training objectives, and guide
the simulator through that scenario configuration. As a
whole, the system constitutes a comprehensive training
tool.

Automatic
Scenario
Generator

Critiquing
Ship

Crisis
Simulation

User
Multimedia/

Visualization

Figure 1. Overview of the Illinois DCA Training System
(DC-Train)

Due to its dynamic simulation engine [WFH+96],DC-
Train boasts the capability to produce numerous distinct
scenarios on demand. A powerful critiquing module,



combined with a state-of-the-art multimedia interface
provide real-time, and post-mortem context-specific
feedback to the user.

In May 1997, DC-Train was tested at the Navy’s
Surface Warfare Officers’ School (SWOS) against an
existing system called IDCTT [De94]. IDCTT relies on a
set of pre-programmed scenario scripts, and as a result
offers only one damage control scenario. It also has very
limited critiquing capability.

Performance results collected from the May ’97
graduating class of DCAs at SWOS clearly indicate the
superiority of DC-Train over IDCTT. Exposure to
multiple scenarios, and the benefit of expanded critiquing
led to significant performance gains in crisis management.

We believe that the addition of an automated scenario
generation module to theDC-Train system will improve its
training effectiveness yet further. The ability to not only
produce scenarios on demand, but to quickly and easily
tailor them to specific training requirements, or even to the
needs of individual students will provide users with an
unprecedented degree of flexibility.

In the following section we give a formal model for
scenario representation, and in section 3 we present the
ScenGenalgorithm for automated scenario generation.

A Bayesian Network Model of
Training Scenarios

Given that a probabilistic model is needed to map from
training objectives to explanations (including placement of
both initial and timed events), we seek a diagrammatic
representation of the scenario that permits efficient
inference. We exploit the property that crisis training
scenarios are similar to diagnostic models, and can be
constructedin a simplified Bayesian network form.

Formal Model: Noisy-OR Bayesian Networks
(NOBNs)

Noisy-OR Bayesian networks(NOBNs) are Bayesian
networks which observe the properties ofaccountability
and exception independence, as defined by Pearl [Pe88].
Accountability is simply a negation-as-failure property for
probabilistic models. Specifically, for Bayesian networks
with boolean variables, an event is presumed false (i.e., has
zero probability) if all its stated causes are. In NOBNs,
accountability is achieved using a “leak node” (or
“miscellaneous cause”) to circumscribe every non-root
event. [Pe88, RN95].

There are two important benefits to using NOBNS:

• Converting from a general Bayesian network to
an NOBN achieves a best-case exponential
reduction in the number of interactions. This
reduction yields a commensurate increase in
inferential efficiency and is due to linearization
of conditional probability tables, which require
2k entries in a general form Bayesian network
for a vertex withk parents).

• NOBNs can be factored for an empirical
speedup of 3-4 times [HH97].

The exponential speedup has been realized in real-world
diagnostic Bayesian networks− most famously theCPCS-
BN knowledge base for liver and gall bladder diseases,
which is still among the largest Bayesian networks in use
[PPMH94, HH97].

Construction of NOBN Models
The NOBN models used for scenario generation in the ship
damage control domain are constructed from diagrams
calleddamage control plates, for U.S. Navy ships (e.g., the
DDG-51 and DDG-53). Subjective probability
assessments were elicited from subject matter experts such
as former damage control assistants and instructors at the
SWOS. These instructors were also consulted for
compilation of the benchmarking scenarios produced by
human experts. Some low-level assessments of
probabilistic dependencies (generic events such as water
main ruptures, combustion, and electrical deactivation)
were contributed by the authors after consultation with
domain experts.

Language of Training Objectives. A training objective
is a task or skill at which the student is to become
proficient (e.g., managing limited water resources for fire
fighting in shipboard damage control). In accordance with
established training methodology, an instructor selects
desired training objectives, and then designs a scenario
composed of a series of crisis events requiring application
of the desired skills.

An automated scenario generation system can mimic
this approach. Training objectives may either be provided
by a human instructor, or suggested by an intelligent
critiquing module. The system can then choose applicable
keyed events from a knowledgebase, and use them to
dynamically construct a scenario. Because of the causal
nature of event interactions, we prefer to represent sucha
knowledgebase as a belief network, and due to the
efficiency arguments given above, specifically as a NOBN.

In our framework,constraintsare literals in a monotone
disjunctive normal form (DNF) specification language.
Each primitive training objective,Oi, denotes one conjunct
of constraintscij. A scenario specification S is the top-
level disjunction of all training objectives:

This representation allows composite training objectives
simply because the disjunction is implicit. When multiple
primitive objectives are specified, candidate scenarios can
be generated one objective at a time. The results are
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filtered to obtain acceptable components, then composed
by set union.

This achieves three benefits:

• The scenario generation problem is reduced to an
offline computation requiring much less
interaction with a human designer (i.e., many
alternative scenarios can be generated and a
criterion applied to reject implausible, unsound,
incomplete, and duplicate scenarios).

• Using NOBNs as the probabilistic model for
scenario generation reduces empirical complexity.
Furthermore, there exists an efficient approximate
inference algorithm that produces plausible yet
diverse explanations, as is shown in Sections 3
and 4.

• The NOBN model makes stochastic search with a
penalizedlikelihood function simple and efficient.
For such an approximate inference algorithm,
plausibility need not be the sole criterion:
precision and accuracy can be assigned
quantitative credit as appropriate.

In our implementation, we exploit the first two points
using our search algorithm and apply a rejection test as the
penalty function. This helps to standardize our evaluation
metric, because calibration of a penalty function is
somewhat subjective.

The ScenGenAlgorithm
We have demonstrated how the problem of generating a
scenario can be formulated as search-based inference in an
NOBN. The deterministic algorithms we discuss in this
section produce most probable explanations, which
correspond to maximally plausible scenarios. To generate
non-trivially diverse scenarios (those that are not
effectively redundant for training purposes), however, we
must relax our maximum likelihood requirement. To meet
instructor objectives through inference, we must also
sample from the posterior distributionof scenarios, given
specifications. We now describe our stochastic search-
based algorithm.

In order to guide its search through the Bayesian
network, our algorithm employes a heuristic which
computes thecombined most probable path(CMPP) from
the given set of constraint vertices to a root vertex. For
such a set of constraint vertices and a root vertex in a
network, the CMPP is composed of the set ofmost
probable paths(MPPs), one for each constrain-root pair.
This is an admissible heuristic because the CMPP is an
overestimate of the actual probability from the constraints
to the root. In other words, it is anunderestimateof the
cost of any such path . Combining stochastic branch-and-
bound with our CMPP heuristic produces a search based-
inference algorithm for our NOBN encoding of a scenario
design space.

Figure 2 shows a generalized noisy-OR Bayesian
network. In this figure, the vertices X and Y are
constraints, and vertices R1 through R4 are initial events
(roots). A parent set consists of one parent for X and one
for Y (e.g., {P1(X), P3(Y)}, {P3(X), P3(Y)} ). The first
part of the search iteration begins by computing the
CMPPs for each parent set of the current constraints.
Those parent sets resulting in a CMPP probability of 0 are
immediately discarded, since they are guaranteed to lead to
a dead end. Parent sets resulting in a CMPP probability
falling below some predetermined threshold (e.g., one
standard deviation from the maximum) are discarded as
well, since they will not lead to very likely (realistic)
scenarios. The remaining parent sets result in CMPPs with
high enough probabilities as to be considered “plausible”.

The second part of each iteration involves stochastically
selecting from among the “plausible” parent sets. Which
ever parent set is thus chosen becomes the new constraint
set.

Evaluation
In this section we present experimental results from
evaluatingScenGenagainst three competing algorithms.

Competing Scenario Generation Algorithms

We evaluate theScenGenalgorithm by direct comparison
to three alternative scenario generation techniques:

1. Manual design by human subject matter experts
(MDHE).

2. Naïve random generation (NRG).
3. Case-based stochastic perturbation (CBSP).

We take scenarios designed by human subject matter
experts as our point of reference for scenario quality (i.e.,
completeness, soundness, and plausibility). Since, in the
final analysis, a human expert is the best judge of a given
scenario’s quality it seems logical to assume that this
expert will produce the best possible scenarios. Efficiency,
however, will not be very high since the time a human

R1 R2 R3 R4

P2(X) P2(Y)

P1(X)
P3(X)
P1(Y)

P3(Y)

X Y

Figure 2. Generalized Noisy-OR Bayesian
network .



subject matter expert takes to design such a scenario will
be orders of magnitude higher than that of even the most
expensive computer-based method.

Randomly instantiated scenarios are created by selecting
a random initial event (which corresponds to a root node in
the NOBN), and then evaluating the NOBN net by
propagating forward in the graph. This technique is cheap,
but in general the quality of most scenarios produced will
be poor. Also, efficiency will be low due to the large
number of useless scenarios.

Case-based stochastic perturbation is a hybrid of the first
two methods. It involves using scenarios designed by
human subject matter experts as seeds, and perturbing
them so as to obtain variability. This technique has the
capability of producing a large number of admissible
scenarios by derivation from the human-designed seeds,
and can be expected to have reasonably good scenario
space coverage due to the stochastic perturbation with
respect to the seed. Furthermore, because once the seeds
are obtained, the entire process is automated, efficiency
should be better than for human experts. However, the
downside is that the stochastic nature of the approach is
likely to result in at least some unacceptable scenarios,
which will lead to a lowering of efficiency.

Evaluation Criteria

We evaluate theScenGenalgorithm by comparing its
performance to that of three other scenario generation
techniques. The performance of an algorithm is considered
to be the efficiency with which it generatesquality
scenarios. There are four metrics that are used to evaluate
the quality of a scenario:

1. Empirical Accuracy (EA)
2. Empirical Precision (EP)
3. Plausibility (P)
4. Variability (V)

Empirical Accuracy measures the degree to whichall
specified learning objectives are satisfied. The inability of
a scenario generation technique to guarantee the
satisfaction of all requested learning objectives greatly
diminishes its usefulness.

Empirical Precision measures the degree to whichonly
specified objectives are satisfied. It has been shown that
learning takes place most efficiently when training material
is presented in a planned and controlled fashion Gabaet
al., 1994]. For this reason, the generation of “sloppy”
training scenarios (i.e., those addressing extraneous
learning objectives) is likely to confuse the student, and
complicate the learning process.

The Plausibility criterion evaluates the realism of the
scenario. TheScenGenalgorithm is intended for complex,
real-world domains, which generally result in a vast
scenario space. Because we define a learning objective
simply as a disjunction of event sets, numerous collections
of events may satisfy a given learning objective or set of
learning objectives. However, not necessarily all of these

collections of events are probable or even possible. Thus,
we require that a “quality” scenario beplausible.

Variability measures how well a given technique can
generatedistinct scenarios. Two scenarios are distinct if
they differ in at least one event. Variability is an important
criterion because the generation of duplicate scenarios is
wasteful of resources, and thus undesirable. We prefer
techniques that minimize or even avoid duplication.

The Quality criterion is composed of these four metrics.
Formally, the Quality criterion is defines as follows:

Definition Quality criterion. A quality scenario satisfies all
specified objectives, and only the specified objectives. It is
plausible, and distinct from any other scenario previously
generated.

Each time a scenario is generated, it is checked for
consistency with the Quality criterion by a series of four
rejection tests, corresponding to the four metrics outlined
above. Any scenario not passing all four of the rejection
tests is deemed unacceptable, and discarded. Those
scenarios found to be consistent with the Quality criterion
are considered to be “quality” or acceptable scenarios.

Definition Performance. The performance of a scenario
generation algorithm is the efficiency with which it
generates quality scenarios.

We evaluate the performance ofScenGenby comparing
its efficiency in generating quality scenarios with those of
competing algorithms. We calculate Efficiency as follows:

Let
na = number of admissible scenarios
nt = total number of scenarios generated
Pacc = acceptance probability
Ca = average cost of generating one admissible scenario
Ct = total cost of generating all scenarios

Pacc can be defined as

We now calculateCa as follows:
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given equation (4), we can express it as
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Methodology
Figure 1 shows a portion of the NOBN used byScenGen,
RSI, and CBSP1 to generate scenarios. The full network
consists of approximately 150 vertices , and roughly 400
edges. A representative learning objective, which involved
dealing with loss of electrical power and chill water was
selected for the evaluation.

One trial of the experiment consists of asking one of the
algorithms to generate one “quality” scenario. Each
algorithm is run for approximately 200 trials.
Importantly, as the experiment proceeds, the effects of
each trial are accumulated. In accordance with equation
(5), the acceptance probability is determined by dividing
the number of admissible scenarios found in trial run so far
by the total number of scenarios requested. The scenarios
are found to be acceptable if and only if they are consistent
with the Quality criterion, as described in section 5.2. In
each trial, the Efficiency is calculated by dividing the
number of admissible scenarios found by the total cost of
generating all scenarios, as given by equation (10).

Results
Plots 1 and 2 show, in graphical form, the results of
comparative evaluation experiments run onScenGen, RSI,
and CBSP. Plot 1 shows the incremental cost (in terms of
time) of generating increasing numbers of admissible

1 Since only a small number of human expert-designed scenarios
were available, MDHE could not be included in any statistical
comparison. It was used for qualitative comparison only.

scenarios. Plot 2 compares the three algorithms on their
efficiency of generating acceptable scenarios.

Looking at plot 1, we see that all three algorithms appear
to exhibit an asymptotically increasing incremental cost
behavior. This is explained by the fact that the algorithms
are operating in a finite domain. The more acceptable
scenarios that are found, the more difficult it becomes to
find additional acceptable, yet distinct scenarios.

In terms of absolute cost per acceptable scenario, we see
that NRG performs by far the worst. This is due to the fact
that the vast majority of scenarios it generates are rejected
by the Quality criterion, and thus discarded. This results in
a large, steadily growing average cost per acceptable
scenario. Interestingly, CBSP does slightly better than
ScenGenfor the first few acceptable scenarios it finds.
This is explained by the fact that given a “good” scenario
as a seed, it is not difficult to obtain several more “good”
scenarios by small, inexpensive random perturbations.
However, as more distinct scenarios are requested, the
random perturbations degenerate into a random search,
much like NRG. ScenGen, on the other hand, has a very
low rejection rate, which outweighs the rather high cost it
incurs in generating individual scenarios, since it needs to
generate approximately an order of magnitude fewer
scenarios total than its competitors.

Unfortunately, the very selection bias that gives
ScenGenits power, also significantly limits its accessibility
of the many portions of the search space. We see that of
the three algorithms it is the first to exhaust its space of
accessible scenarios. For the given domain model, it is
unable to find more than about 230 distinct, acceptable
scenarios. For NRG and CBSP we do not actually see a
vertical asymptote in the plot, but there is certain to be one
because there exists only a finite number of event
combinations in the model.

In light of such a comparison,ScenGen’s selection bias
may appear as a disadvantage. However, when all trade-
offs are taken into account, it is seen that this is by no
means the case! As can be seen from Plot 2,ScenGen
finds those scenarios which are accessible to it far more
efficiently that either of the other two algorithms. In
addition, the actual location ofScenGen’s vertical
asymptote (as those of NRG and CBSP) is determined to a
large extent by the size and complexity of the domain.
Thus, in large and complex domainScenGen’s
performance relative to the other two algorithms will
actually improve!

We have succeeded, thus, in demonstrating that
ScenGenoutperforms both CBSP and RSI, its two main
competitors. Because it generates only admissible
scenarios, and in spite of the high cost associated with the
required search heuristics,ScenGenachieves the best
efficiency of the three algorithms. We believe that given a
larger search space (with a correspondingly larger number
of admissible scenarios), the gap betweenScenGenand
CBSP will be seen to widen dramatically.ScenGenwill
not be hampered by a rapidly diminishing number of



admissible scenarios, and will be able to maintain a high
acceptability rate even when many quality scenarios are
requested. This will most likely cause its efficiency to
shoot up, while those of the other two algorithms will
remain the more or less constant, or perhaps even drop
(which will be due to the drawback of the random nature of
these algorithms becoming more pronounced in a large
search space).

Conclusion and Future Work
We have presented a Noisy-OR Bayesian network

model for simulation-based training, andScenGen, an
efficient search-based algorithm for automatic synthesis of
plausible training scenarios from constraint specification.
ScenGen is shown to outperform other randomized
methods, such as those based on naïve random
instantiation of scenarios, and stochastic perturbation of
known “good” scenarios. ScenGen’s strength lies in its
ability to guarantee the “quality” of each and every
scenario it generates. While other algorithms are far less

costly, the multitude of low-accuracy scenarios they
produce (or their inability to find a sufficiently large
number of “good” scenarios”) drastically reduces their
respective efficiencies, and results in poor overall
performance.

One of our goals for the near future is to integrate
ScenGeninto DC-Train, the Illinois immersive damage
control training environment. DC-Train combines the
state-of-the-art in immersive multimedia environments
with an accurate numerical/rule-based simulation of ship
processes and crew behavior. The system has been
extensively field-tested at the Surface Warfare Officer’s
School (SWOS), and found to be an effective and highly
useful training tool [BDS96]. At the present time, all
scenarios used withDC-Train must be manually
constructed by domain experts. The integration of
ScenGenwould tremendously simplify the problem of
scenario generation, thus making the system far more
versatile, and greatly increasing its effectiveness.
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