
An ACO Algorithm for the Most Probable
Explanation Problem

Haipeng Guo1, Prashanth R. Boddhireddy2, and William H. Hsu3

1 Department of Computer Science,
Hong Kong University of Science and Technology

hpguo@cs.ust.hk
2 Department of Plant Pathology,

3 Department of Computing and Information Sciences,
Kansas State University
{reddy, bhsu}@ksu.edu

Abstract. We describe an Ant Colony Optimization (ACO) algorithm,
ANT-MPE, for the most probable explanation problem in Bayesian
network inference. After tuning its parameters settings, we compare
ANT-MPE with four other sampling and local search-based approximate
algorithms: Gibbs Sampling, Forward Sampling, Multistart Hillclimbing,
and Tabu Search. Experimental results on both artificial and real net-
works show that in general ANT-MPE outperforms all other algorithms,
but on networks with unskewed distributions local search algorithms are
slightly better. The result reveals the nature of ACO as a combination
of both sampling and local search. It helps us to understand ACO bet-
ter, and, more important, it also suggests a possible way to improve
ACO.

1 Introduction

Bayesian networks (BNs) (Pearl 1988) are the currently dominant method for
uncertain reasoning in AI. They encode the joint probability distribution in
a compact manner by exploiting conditional independencies. One of the main
purposes of building a BN is to conduct probabilistic inference - i.e. to com-
pute answers to users’ queries, given exact values of some observed evidence
variables. This paper is concerned with a specific type of Bayesian network
inference: finding the Most Probable Explanation (MPE). MPE is the prob-
lem of computing the instantiation of a Bayesian network that has the highest
probability given the observed evidence. It is useful in many applications includ-
ing diagnosis, prediction, and explanation. However, MPE is NP-hard (Littman
1999).

Ant Colony Optimization (ACO) is a recently developed approach that takes
inspiration from the behavior of real ant colonies to solve NP-hard optimization
problems. The ACO meta-heuristic was first introduced by Dorigo(1992), and
was recently defined by Dorigo, Di Caro and Gambardella(1999). It has been
successfully applied to various hard combinatorial optimization problems.

G.I. Webb and Xinghuo Yu (Eds.): AI 2004, LNAI 3339, pp. 778–790, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

mailto:hpguo@cs.ust.hk

An ACO Algorithm for the Most Probable Explanation Problem 779

WetGrass

Cloudy

Rain Sprinkler

0.5 0.5

P(C=T) P(C=F)

P(R=T) P(R=F)C

T

F

0.8 0.2

0.2 0.8

P(S=T) P(S=F)C

T

F

0.1 0.9

0.5 0.5

P(W=T) P(W=F)R S

T T

T F

F T

F F

0.99 0.01

0.9 0.1

0.9 0.1

0.0 1.0

Fig. 1. The Sprinkler Network

In this paper we present the first application of ACO to the MPE problem.
In section 2 we briefly introduce MPE and the related work. Then we describe
our ANT-MPE algorithm in section 3. In section 4 we present the experimental
results, including tuning ANT-MPE’s parameters and comparing it with four
other sampling and local search-based approximate MPE algorithms. Finally we
summarize our findings and conclude with some discussions.

2 The MPE Problem

2.1 Bayesian Networks and The MPE Problem

A Bayesian network (Fig.1) is a Directed Acyclic Graph (DAG) where nodes
represent random variables and edges represent conditional dependencies be-
tween random variables. Attached to each node is a Conditional Probability
Table (CPT) that describes the conditional probability distribution of that node
given its parents’ states. Distributions in a BN can be discrete or continuous. In
this paper we only consider discrete ones. BNs represent joint probability distri-
butions in a compact manner. Let {X1, . . . , Xn} be the random variables in a
network. Every entry in the joint distribution P (X1, . . . , Xn) can be calculated
using the following chain rule:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|π(Xi)), (1)

780 H. Guo, P.R. Boddhireddy, and W.H. Hsu

where π(Xi) denotes the parent nodes of Xi. Figure 1 shows a simple BN with
4 nodes, the Sprinkler network (Russell and Norvig 2003).

Let (G,P) be a Bayesian network where G is a DAG and P is a set of
CPTs, one for each node in G. An evidence E is a set of instantiated nodes. An
explanation is a complete assignment of all node values consistent with E. Each
explanation’s probability can be computed in linear time using (1). For example,
in the Sprinkler network (Fig. 1), suppose we have observed that the grass is
wet, i.e. the E = {W = T}. One possible explanation of this is: { C = T, R =
T, S = F, W = T}. Its probability is:

P (C = T, R = T, S = F,W = T)
= P (C = T)P (R = T|C = T)P (S = F|C = T)P (W = T|S = F, R = T)
= 0.5 × 0.8 × 0.9 × 0.9 = 0.324.

MPE is an explanation with the highest probability. It provides the most
likely state of the world given the observed evidence. MPE has a number of ap-
plications in diagnosis, abduction and explanation. Both exact and approximate
MPE are NP-hard (Littman 1999, Abdelbar and Hedetniemi 1998). Therefore
approximate and heuristic algorithms are necessary for large and dense networks.

2.2 Related Work

Clique-tree propagation is the most popular exact inference algorithm(Lauritzen
and Spiegelhalter 1988). It is efficient for sparse networks but can be very slow
and often runs out-of-memory for dense and complex ones. The same is true for
other exact algorithms such as variable elimination and cutset conditioning. In
fact, all exact inference algorithms share a worst-case complexity exponential
in the induced treewidth (same as the largest clique size) of the underlying
undirected graph,

Approximate MPE algorithms trade accuracy for efficiency so that they can
at least find a near-optimal explanation in a reasonable amount of time on some
large instances where exact algorithms fail. There are two basic categories of
approximate algorithms: stochastic sampling and search-based algorithms. Their
main advantage is that the running time is fairly independent of the topology of
the network and linear in the number of samples or search points.

Stochastic sampling algorithms can be divided into importance sampling al-
gorithms (Fung and Chang 1989) and Markov Chain Monte Carlo (MCMC)
methods (Pearl 1988). They differ from each other in whether samples are inde-
pendent or not. Both can be applied to a large range of network sizes. But with
a large network and unlikely evidence, the most probable explanation can also
be very unlikely. Thus the probability of it being hit by any sampling schemes
will be rather low. This is the main weakness of sampling algorithms.

Search algorithms have been studied extensively in combinatorial optimiza-
tion. Researchers have applied various search strategies to solve MPE, for ex-
ample, the best first search (Shimony and Charniack 1999), linear programming

An ACO Algorithm for the Most Probable Explanation Problem 781

(Santos 1991), stochastic local search (Kask and Dechter 1999), genetic algo-
rithms (Mengshoel 1999), etc. More recently, Park (2002) tried to convert MPE
to MAX-SAT, and then use a MAX-SAT solver to solve it indirectly. Other local
search algorithms often use some heuristics to guide the search in order to avoid
getting stuck into local optimal. The most popular heuristics include Stochas-
tic Hillclimbing, Simulated Annealing (Kirkpatrick et al. 1983), Tabu Search
(Glover et al. 1997), etc.

3 Ant Algorithms to Solve MPE

Ant algorithms were inspired by the foraging behavior of real ant colonies, in
particular, by how ants can find the shortest paths between food sources and
nest. Ants deposit on the ground a chemical substance called pheromone while
walking from nest to food sources and vice versa. This forms pheromone trails
through which ants can find the way to the food and back to home. Pheromone
provides indirect communications among ants so that they can make use of
each other’s experience. It has been shown experimentally (Dorigo, Di Caro and
Gambardella 1999) that this foraging behavior can give rise to the emergence of
shortest paths when employed by a colony of ants.

Based on this ant colony foraging behavior, researchers have developed ACO
algorithms using artificial ant systems to solve hard discrete optimization prob-
lems. In an ant system, artificial ants are created to explore the search space
simulating real ants searching their environment. The objective values to be op-
timized usually correspond to the quality of the food and the length of the path
to the food. An adaptive memory corresponds to the pheromone trails. Also,
the artificial ants can make use of some local heuristic functions to help make
choose among a set of feasible solutions. In addition, a pheromone evaporation
mechanism is usually included to allow the ant colony to slowly forget its past
history. By doing so it can direct the search towards new directions that have
not been explored in the past.

ACO was first used on the Travelling Salesman Problem (Dorigo and Gam-
bardella 1997). From then on it has been applied to the Job-Shop Scheduling
Problem (Colorni et al. 1994), to the Graph Coloring Problem (Costa and Hertz
1997), to the Quadratic Assignment Problem (Gambardella et al. 1999), to the
Vehicle Routing Problem (Bullnheimer 1999), etc.

In the following of this section we describe how to apply ACO to solve the
MPE problem.

3.1 An Ant System for MPE

The Ants. In an MPE ant system, artificial ants build MPE solutions (expla-
nations) by moving on the Bayesian network from one node to another. Ants
must visit all nodes in the topological order defined by the network, i.e. before
a node Xi is visited all its parents, π(Xi), must be visited. When an ant visit Xi,

782 H. Guo, P.R. Boddhireddy, and W.H. Hsu

it must take a conditional branch which is a number in the CPT. For evi-
dence nodes E, ants are only allowed to take the branches that agree with E.
The memory of each ant contains the nodes it has visited and the branches
selected.

The Pheromone Tables, the Heuristic Function Tables, and the Ant
Decision Tables. Each node has 3 tables: the Pheromone Table (PT), the
Heuristic Function Table (HFT), and the Ant Decision Table (ADT). All three
tables have the same structure as the CPTs. The PTs store pheromone values
accumulated on each conditional branch. HFTs represent heuristics used by ants.
They are exactly the same as CPTs and are kept unchanged. ADTs are used by
ants to make the final decision of choosing which branch to take.

How to Update These Tables and Build the Tour. The ADT, Ai = [aijk],
of node Xi is obtained by the composition of the local pheromone trail values
τijk with the local heuristic values ηijk as follows:

aijk =
[τijk]α[ηijk]β∑
j [τijk]α[ηijk]β

(2)

where j is the jth row and k the kth column of the corresponding ADT at the ith
node. α and β are two parameters that control the relative weight of pheromone
trails and heuristic values.

The probability with which an ant chooses to take a certain conditional
branch while building its tour is:

pij =
aijπi∑
j aijπi

(3)

where πi is the column index of the ADT and its value is conditioned on the
values of parent nodes of ith node. This is equivalent to randomly simulate the
ADT.

After ants have built their tour (an explanation), each ant deposits pheromone
∆τijk on the corresponding pheromone trails (the conditioned branches of each
node on the tour). The pheromone value being dropped represents solution qual-
ity. Since we want to find the most probable explanation, we use the probability
of the selected tour as the pheromone value. Suppose the generated tour is
{x1, . . . , xn}, the pheromone value is as follows:

∆τijk =
{

P (x1, . . . , xn) if j = xi, k = π(xi)
0 otherwise (4)

where the P (x1, . . . , xn) is computed by the chain rule in (1).
Updating the PTs is done by adding a pheromone value to the correspond-

ing cells of the old PTs. Each ant drops pheromone to one cell of each PT at each

An ACO Algorithm for the Most Probable Explanation Problem 783

Algorithm 1 ANT-MPE

1: Input — an MPE instance (G, P, E);
2: Output — an explanation u = (u1, . . . , un);
3: Begin ANT-MPE(G, P, E)
4: Initialization: initialize α, β, ρ, n iterations, n ants, best trail, PTs, HFTs,

ADTs;
5: while n iterations > 0 do
6: updating ADTs using PTs and HFTs;{Equation 2}
7: generating n ants ant trails by random sampling from ADTs according to the

topological order;{Equation 3}
8: computing each trail’s probability and updating best trail;{Equation1}
9: updating PTs by dropping pheromone, pheromone evaporation;{Equation 4 &

5}
10: n iterations −−;
11: end while
12: Return best trail;
13: End ANT-MPE.

node, i.e., the jth row, kth column of the PT at ith node. After dropping the
pheromone, an ant dies. The pheromone evaporation procedure happens right
after the ants finish depositing pheromone. The main role of pheromone evap-
oration is to avoid stagnation when all ants end up selecting the same tour. In
summary, PTs are updated by the combination of pheromone accumulation and
pheromone evaporation as follows:

τijk = (1 − ρ)τijk + ∆τijk (5)

where τijk =
∑m

l=1 ∆τijk, m is the number of ants used at each iteration, and
ρ ∈ (0, 1] is the pheromone trail decay coefficient.

3.2 The ANT-MPE Algorithm

Given the above ant system, we design an ACO algorithm, ANT-MPE, for MPE.
It is listed in Algorithm 1. In the initialization step, we set pheromone values
to a small positive constant on all pheromone tables, set ADTs to 0, and set
HFTs to the same as CPTs. After initialization, we generate a batch of ants
for several iterations. At each iteration, we first update the ant decision tables
from the current pheromone tables and the heuristic function tables. Then ants
use the ant decision tables to build tours, evaluate them by CPTs, and save the
best trail. Then pheromone is dropped and the pheromone tables are updated.
The pheromone evaporation is triggered right after. This procedure stops when
the number of iterations runs out. The best solution so far is returned as the
approximate MPE.

784 H. Guo, P.R. Boddhireddy, and W.H. Hsu

4 Results

4.1 Test Datasets

The CPT skewness of a network is computed as follows (Jitnah and Nichol-
son 1998): for a vector (a column of the CPT table), v = (v1, v2, . . . , vm), of
conditional probabilities,

skew(v) =
∑m

i=1 | 1
m − vi|

1 − 1
m +

∑m
i=2

1
m

. (6)

where the denominator scales the skewness from 0 to 1. The skewness for one
CPT is the average of the skewness of all columns, whereas the skewness of the
network is the average of the skewness of all CPTs.

We used both real world and randomly generated networks to test ANT-
MPE. CPT skewness was used as the main control parameter when generating
random networks because we knew from domain knowledge that it would affect
the instance hardness for sampling and local search algorithms. We had collected
11 real world networks. The size and skewness of these real world networks are
listed in Table 6. We can see that on average most real world networks are
skewed. In fact only one network’s skewness(cpcs54) is less than 0.5 and the
average skewness is about 0.7. In our experiment, we considered three different
levels of skewness: {skewed(0.9), medium(0.5), unskewed(0.1)}.

The number of nodes we used for random network generation were 100 and
200. All networks were too dense to be solved exactly. All nodes were binary
variables. Another factor was the evidence. In all experiments, 10% nodes were
randomly selected as the evidence nodes and their values were also randomly
selected. The default number of ants for each experiment was set to 3,000.

4.2 Experiment 1: Tuning α, β, and ρ in ANT-MPE

In experiment 1 we used 100 randomly generated multiply connected networks
to tune the parameter values in ANT-MPE. These networks were divided into
5 groups by their skewness and number of nodes: {skewed100, medium100,
unskewed100, medium200, unskewed200}. Each group contained 20
networks.

The weight of pheromone trails, α, and the weight of local heuristic function,
β, are two most important parameters for ant algorithms. We first ran ANT-
MPE on all 100 networks with 5 different combinations of (α, β) values: {(0,
5), (1, 0), (1, 5), (3, 5), (5, 1)}. The pheromone evaporation rate ρ was set
to 0.01 for all runs. We gave each parameter setting 3,000 ants and compared
the approximate MPE values returned. When a parameter setting returned the
highest value, we counted one “win” for it. When it returned the lowest value,
we counted one “loss” for it. Note that they could tie with each other.

The result is listed in Table 1. We can see that: (1) When β = 0, the lo-
cal heuristic function was not being used, it never won and lost 97 out of 100

An ACO Algorithm for the Most Probable Explanation Problem 785

Table 1. Different (α, β) values on skewed, medium, unskewed networks with 100

and 200 nodes

skewed100medium100unskewed100medium 200unskewed 200 total
(α, β)win loss win loss win loss win loss win loss win loss

(0, 5) 17 0 16 0 6 0 14 0 6 0 59 0
(1, 0) 0 20 0 20 0 18 0 20 0 19 0 97
(1, 5) 17 0 15 0 8 0 15 0 10 0 65 0
(3, 5) 17 0 15 0 6 0 16 0 4 0 58 0
(5, 1) 16 0 0 0 0 2 0 0 0 1 16 3

times. When β = 5, it never lost and the number of wins increased to around
60. This indicates the importance of local heuristic function, i.e. the conditional
probability tables. (2) When we set β to its best value 5 and let α be 0, 1 and 3,
number of wins peaked at α = 1 as 65. This can be explained as follows: when
α = 0, the communications between ants are not exploited so the search per-
formance will be correspondingly affected; when α = 3, the communications are
overemphasized and the search can be trapped into local optima too early. (3)
Different parameter settings tied with each other more frequently on skewed net-
works than on unskewed networks. This was because skewed networks’ solution
spaces were also skewed thus making them easier for ant algorithms comparing
to those unskewed ones. Basically most parameter settings were able to find the
same best MPE. Also note that on these more difficult unskewed networks, (1, 5)
always got the best performance.

So we took (1, 5) as the best (α, β) values. This result also agreed with
Dorigo’s finding (1997) on the TSP problem. We used it as our default (α, β)
values in all other experiments. We also tuned ρ in the same way using 5 different
values: {0, 0.001, 0.01, 0.05, 0.5}. But the results did not show the dominance
of any ρ value over others excepted that 0.1 was slightly better than others. So
we just used ρ = 0.1 in all other experiments. Because of the lack of space, we
do not list the detail results here.

4.3 Experiment 2: Algorithm Comparison on Randomly Generated
Networks

In experiment 2, we compared ANT-MPE with four other sampling and lo-
cal search-based approximate MPE algorithms: Forward Sampling, Gibbs Sam-
pling, Multi-Start Hillclimbing, and Tabu Search on two randomly generated
test datasets. Again, all networks were exactly intractable. On the first test
dataset, we ran all algorithms and counted the number of times each algorithm
“won” the competition. So far, the most effective way to fairly compare different
heuristic algorithms is to allow all algorithms to consume the same amount of
computation resources, with distinctions being based on the quality of solutions
obtained (Rardin 2001). In our experiments, we gave each algorithm a given
number of samples(or equivalently, ants and search-points) and then compared
the quality of solutions returned. The algorithm returned the highest MPE was

786 H. Guo, P.R. Boddhireddy, and W.H. Hsu

Table 2. Experiment 2.1: number of times of each algorithm being the best

Best Algorithm
Gibbs SamplingForward SamplingMulti-start HCTabu SearchANT-MPE

counts 0 366 697 139 1,390

percentage 0% 14.12% 26.89% 5.36% 53.63%

Table 3. Experiment 2.1: grouped by #samples

#samples Number of Times of Being the Best Algorithm
Gibbs SamplingForward SamplingMulti-start HCTabu SearchANT-MPE

300 0 106 283 0 475

1,000 0 124 262 3 475

3,000 0 136 152 136 440

Table 4. Experiment 2.1: grouped by skewness

skewness Number of Times of Being the Best Algorithm
Gibbs SamplingForward SamplingMulti-start HCTabu SearchANT-MPE

0.1 0 0 694 135 35

0.5 0 0 1 1 862

0.9 0 366 2 3 493

labelled as “winner”. We also record when the highest MPE was found by each
algorithm. If two algorithms returned the same value, the one that used less
resources was labelled as “winner”. On the second test dataset, we compared
the total approximate MPE values returned by each algorithm.

Experiment 2.1: Algorithm Comparison by Number of WINs. The test
dataset here contained 2,592 randomly generated MPE instances. Number of
nodes was set to 100. The skewness had three levels: skewed(0.9), medium(0.5),
or unskewed(0.1). Each level contained 864 instances. Number of samples had
three values as well: 300, 1,000, or 3,000. Each group also contained 864 instances.
The results are summarized in Table 2, Table 3 and Table 4.

Table 2 basically shows that in general ANT-MPE outperforms all other al-
gorithms. Table 3 shows that number of samples does not significantly affect
ANT-MPE. It only slightly influences two search algorithms’ relative perfor-
mance. Table 4 gives the most interesting result. We can see that (1) on skewed
networks ANT-MPE generally outperforms all other algorithms, while Forward
Sampling still can compete; (2) on medium networks, ANT-MPE dominates; (3)
on unskewed networks, search algorithms outperforms ANT-MPE. Fortunately,
most real world networks are not unskewed. This is because skewness in fact

An ACO Algorithm for the Most Probable Explanation Problem 787

Table 5. Experiment 2.2: Total MPE Probabilities Returned by Each Algorithm

skewness Total MPE Probabilities Returned by Each Algorithm
Gibbs SamplingForward SamplingMulti-start HCTabu Search ANT-MPE

0.1 4.7 × 10−29 1.0 × 10−27 2.2 × 10−26 7.9 × 10−27 1.1 × 10−26

0.5 1.4 × 10−14 2.8 × 10−8 6.2 × 10−9 1.6 × 10−7 6.0 × 10−6

0.9 1.9 × 10−46 0.14 1.4 × 10−10 2.5 × 10−14 0.16

indicates the structure of the probabilistic domain and real world distributions
are all structured to some degree. Therefore we can expect that ANT-MPE
would work well on most real world networks.

Experiment 2.2: Algorithm Comparison by the Returned MPE Prob-
abilities. In this experiment we ran all algorithms on 162 randomly gener-
ated networks. They were divided into three groups: 27 unskewed networks, 54
medium networks, and 81 skewed networks. For each group, we collected the
total approximate MPE probabilities returned by each algorithm. The result
is shown in Table 5. It shows that in terms of the returned MPE probabili-
ties, ANT-MPE outperforms all other algorithms on both skewed and medium
networks. On unskewed networks, Multi-start Hillclimbing(2.2 × 10−26) is only
slightly better than ANT-MPE(1.1 × 10−26). ANT-MPE is the second best
and it is still at the same order of magnitude as Multi-start Hillclimbing. So
we can draw the conclusion that in general ANT-MPE outperforms all other
algorithms.

4.4 Experiment 3: Algorithm Comparison on Real Networks

In experiment 3 we ran on all algorithms on 11 real world networks. Each run
was given 3,000 samples. We compared the exact MPE probability, the MPE
probability returned by the best approximate algorithm, and the MPE proba-
bility returned by ANT-MPE. We used Hugin to compute the exact MPE. The
result is listed in Table 6.

ANT-MPE was the best for 7 of 10 networks where the results were available.
Forward Sampling were the best for alarm and insurance because they returned
the MPE earlier. But ANT-MPE was able to find the same MPE later on. Multi-
start Hillclimbing outperformed ANT-MPE on cpcs54, whose skewness was only
0.25. But ANT-MPE was the second best on cpcs54 and Multi-start Hillclimbing
was only slightly better. We can say that in general ANT-MPE outperformed
all other algorithms on the real world test dataset.

5 Concluding Remarks

We have described an ant algorithm, the ANT-MPE, for the MPE problem. To
our knowledge, this is the first application of ACO to MPE. The empirical re-
sults show that in general ANT-MPE outperforms other sampling and search

788 H. Guo, P.R. Boddhireddy, and W.H. Hsu

Table 6. Test Results on 11 Real World Bayesian Networks

Network#NodesSkew- Exact Best Appro. Returned byReturnedby
ness MPE Algorithm Best Algo. ANT-MPE

alarm 37 .84 0.04565 Forward Sampling 0.04565 0.04565

barley 413 .87 3.67 × 10−37 N/A N/A N/A

cpcs179 179 .76 0.0069 ANT-MPE 0.0069 0.0069

cpcs54 54 .25 1.87 × 10−11 Multi-start HC 1.28 × 10−11 5.78 × 10−12

hailfinder 56 .50 1.44 × 10−12 ANT-MPE 2.11 × 10−13 2.11 × 10−13

insurance 27 .70 0.002185 Forward Sampling 0.002185 0.002185

pigs 441 .55 5.03 × 10−88 ANT-MPE 1.31 × 10−141 1.31 × 10−141

water 32 .75 3.08 × 10−4 ANT-MPE 3.08 × 10−4 3.08 × 10−4

munin2 1003 .89 8.74 × 10−37 ANT-MPE 1.23 × 10−37 1.23 × 10−37

munin3 1041 .55 2.49 × 10−37 ANT-MPE 7.07 × 10−40 7.07 × 10−40

munin1 189 .88 N/A ANT-MPE 5.93 × 10−8 5.93 × 10−8

algorithms on both artificial and real networks. More specifically, on skewed
networks ANT-MPE generally outperforms other algorithms, but Forward Sam-
pling are competent; on medium networks ANT-MPE basically dominates; on
unskewed networks, local search algorithms outperform ANT-MPE, but they are
only slightly better and ANT-MPE is the second best.

This result is interesting because it reveals ant algorithms’ nature as a combi-
nation of sampling and local search. The sampling part comes from the fact that
each individual ant can use CPTs as heuristic functions to explore new trails. The
search part is that a colony of ants can exchange information through pheromone
trails so as to cooperatively “learn” how to find the best solution. Basically, if
we set α to 0, then ACO becomes Forward Sampling, because it only uses CPTs
as the heuristic functions when generating ant trails(samples). With the use
of pheromone trails(α �= 0), ANT-MPE manages to outperform Forward Sam-
pling on both unskewed and medium networks while performing equally well on
skewed networks. As the skewness decreases, the solution space becomes more
“flat” and the number of local optima increases. It is well-known that as the
number of local optima increases, most likely the search space becomes harder
to explore. This makes it more difficult for sampling algorithms, while simple
search heuristic like random restart will have more chances to explore new areas
in the solution space. That is why search algorithms outperform ANT-MPE on
unskewed networks. This result implies that as a combination of sampling and
local search, ACO’s search aspect is weaker than its sampling aspect. This can be
verified by the importance of β values as shown in experiment 1. It also suggests
a possible way to improve ACO. If we can detect that the solution space is flat,
then we can change ants’ strategy to favor exploration more than exploitation
so as to gain a better overall performance.

Possible future work include conducting similar algorithm comparison exper-
iments on other NP-hard problems to see if the same conclusion regarding to
instance hardness and algorithm performance can be drawn there.

An ACO Algorithm for the Most Probable Explanation Problem 789

Acknowledgements

Thank anonymous reviewers for their valuable comments. This work was par-
tially supported by the HK Research Grants Council under grant HKUST6088/
01E.

References

Abdelbar, A. M., Hedetniemi, S. M.: Approximating MAPs for belief networks in NP-
hard and other theorems. Artif. Intell. 102 (1998) 21–38

Bullnheimer, B.: Ant Colony Optimization in Vehicle Routing. Doctoral thesis, Uni-
versity of Vienna. (1999)

Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: Ant system for Job-Shop Schedul-
ing. Belgian Journal of Operations Research, Statistics and Computer Science.
34(1) (1994) 39–53

Costa, D., Hertz, A.: Ants can colour graphs. Journal of the Operational Research
Society. 48 (1997) 295–305

Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D.Thesis, Politecnico
di Milano, Italy. (1992)

Dorigo, M., Di Caro, G., Gambardella, L. M.: Ant algorithms for discrete optimization.
Artificial Life, 5(2) (1999) 137-172

Dorigo, M., Gambardella, L. M.: Ant Colonies for the Traveling Salesman Problem
BioSystems. 43 (1997) 73-81

Fung, R., Chang, K. C.: Weighting and integrating evidence for stochastic simulation
in Bayesian networks. In Uncertainty in Artificial Intelligence 5. (1989) 209–219

Gambardella, L. M., Taillard, E., Dorigo, M.: Ant colonies for the quadratic assignment
problem. Journal of the Operational Research Society. 50 (1999) 167–176.

Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Boston. (1997)
Jitnah, N., Nicholson, A. E.,: Belief network algorithms: A study of performance based

on domain characterization. In Learning and Reasoning with Complex Represen-
tations. 1359 Springer-Verlag (1998) 169–188

Kask, K., Dechter R.: Stochastic local search for Bayesian networks. In Workshop on
AI and Statistics 99. (1999) 113–122

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P.: Optimization by simulated annealing.
Science, Number 4598. 220 (1983) 671–680

Littman, M.: Initial experiments in stochastic search for Bayesian networks. In Proced-
ings of the Sixteenth National Conference on Artificial Intelligence. (1999) 667–672

Lauritzen, S. L., Spiegelhalter, D. J.: Local computations with probabilities on graph-
ical structures and their application to expert systems (with discussion). J. Royal
Statist. Soc. Series B 50 (1988) 157-224

Mengshoel, O. J.: Efficient Bayesian Network Inference: Genetic Algorithms, Stochastic
Local Search, and Abstraction. Computer Science Department, University of Illinois
at Urbana-Champaign. (1999)

Park, J. D.: Using weighted MAX-SAT engines to solve MPE. In Proceedings of the
18th National Conference on Artificial Intelligence (AAAI). (2002) 682–687

Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. San Mateo, CA, Morgan-Kaufmann. (1988)

790 H. Guo, P.R. Boddhireddy, and W.H. Hsu

Rardin, R. L., Uzsoy, R.: Experimental evaluation of heuristic optimization algorithms:
a tutorial. Journal of Heuristics. 7 (2001) 261–304

Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, NJ.
(2003)

Santos, E.: On the generation of alternative explanations with implications for belief
revision. In UAI91. (1991) 339–347

Shimony, S. E., Charniak, E.: A new algorithm for finding MAP assignments to belief
network. In UAI 99. (1999) 185–193

	Introduction
	The MPE Problem
	Bayesian Networks and The MPE Problem
	Related Work

	Ant Algorithms to Solve MPE
	An Ant System for MPE
	The ANT-MPE Algorithm

	Results
	Test Datasets
	Experiment 1: Tuning \alpha, \beta, and \rho in ANT-MPE
	Experiment 2: Algorithm Comparison on Randomly Generated Networks
	Experiment 3: Algorithm Comparison on Real Networks

	Concluding Remarks

