
A Learning-Based Algorithm Selection
Meta-Reasoner

for the Real-Time MPE Problem

Haipeng Guo1 and William H. Hsu2

1 Department of Computer Science,
Hong Kong University of Science and Technology

hpguo@cs.ust.hk
2 Department of Computing and Information Sciences,

Kansas State University
bhsu@cis.ksu.edu

Abstract. The algorithm selection problem aims to select the best al-
gorithm for an input problem instance according to some characteristics
of the instance. This paper presents a learning-based inductive approach
to build a predictive algorithm selection system from empirical algorithm
performance data of the Most Probable Explanation(MPE) problem. The
learned model can serve as an algorithm selection meta-reasoner for the
real-time MPE problem. Experimental results show that the learned al-
gorithm selection models can help integrate multiple MPE algorithms to
gain a better overall performance of reasoning.

1 Introduction

Uncertain reasoning under bounded resources is crucial for real-time AI appli-
cations. Examples of these include online diagnosis, crisis monitoring, real-time
decision support systems, etc. In these tasks the correctness of a computation
depends not only on its accuracy but also on its timeliness. Some mission-critical
applications require a hard computation deadline to be strictly enforced where
the utility drops to zero instantly if the answer to the query is not returned
and a control is not produced. Other soft real-time domains only admit a soft
deadline where the utility degrades gradually after the deadline is passed.

Researchers have broadly developed two types of methods to address real-
time inference in Bayesian Networks(BNs). The first is to use anytime algo-
rithms (Zilberstein [19]), or flexible computation (Horvitz et al. [7]). These are
iterative refinement algorithms that can be interrupted at “any” time and still
produce results of some guaranteed quality. Most stochastic simulation and par-
tial evaluation inference algorithms belong to this category. The second method
is to combine multiple different inference algorithms where each of these may
be more or less appropriate for different characteristics of the problems. The
architecture unifying various algorithms often contains a key meta-reasoning
component which partitions resources between meta-reasoning and reasoning in

G.I. Webb and Xinghuo Yu (Eds.): AI 2004, LNAI 3339, pp. 307–318, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

mailto:hpguo@cs.ust.hk
mailto:bhsu@cis.ksu.edu


308 H. Guo and W.H. Hsu

order to minimize the overall runtime of problem solving and gain a better overall
performance. Work in this category include intelligent reformulation (Breese and
Horvitz [2]), algorithm portfolio (Gomes and Selman [5]), cooperative inference
(Santos et al. [17]), etc.

This paper is concerned with a specific type of meta-reasoning, namely algo-
rithm selection, for the real-time MPE problem with a soft deadline. We use a
learning-based approach to induce an MPE algorithm selection model from the
training data. The learning needs to be done only once and it takes only a few
minutes. Then the learned model is available to anyone as an MPE algorithm
selection meta-reasoner. For an input MPE instance, the meta-reasoner(decision
trees) can select the best algorithm in only a few seconds and achieve the best
overall performance of reasoning. In the following sections we shall first introduce
the MPE problem and the algorithm selection problem. Then we shall describe
the proposed approach and present the main experimental results. Finally we
shall draw the conclusions and discuss future directions.

2 Algorithm Selection for the MPE Problem

2.1 Bayesian Networks and the MPE Problem

A Bayesian network (Pearl [13]) is a pair (G,P) where G is a directed acyclic
graph whose nodes represent random variables, and P is a set of Conditional
Probability Tables(CPTs) — one for each node in G. An evidence E is a set of
instantiated nodes. An explanation is a complete assignment of all node values
consistent with E. The probability of each explanation can be computed in linear
time using the chain rule:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|π(Xi)), (1)

where π(Xi) denotes the parents of node Xi.
MPE is an explanation such that no other explanation has higher probability.

It provides the most likely state of the world given the observed evidence. MPE
has a number of applications in diagnosis, prediction, and explanation. It has
been shown that both exact and approximate MPE are NP-hard (Shimony [15];
Abdelbar and Hedetniemi [1]). Exact MPE algorithms all share a worst-case
complexity exponential in the maximal clique size of the underlying undirected
graph. So approximate algorithms are necessary for large and complex networks.
There are two basic classes of approximate MPE algorithms: stochastic sampling
and search-based algorithms. Most of them are anytime algorithms. However,
each algorithm may work well on some but poorly on other MPE instances.
Under real-time constraints, it would be very helpful if we could know in advance
which algorithm is the best for what instances.



A Learning-Based Algorithm Selection Meta-Reasoner 309

x ∈ S

Problem
Space

F(x)

ω ∈ Rn

Criteria
Space

f ∈ F

Feature
Space a ∈ A

Algorithm
Space

P (A, x) p ∈ Rn

Performance
SpaceF(x): feature extraction procedure

g(p, ω)

Algorithm
Performance

Fig. 1. The abstract model of algorithm selection

2.2 The Algorithm Selection Problem

The algorithm selection problem is to select one among a candidate set of al-
gorithms that solves the input instance the best in some sense. It was first
formulated in (Rice [14]). An abstract model of the algorithm selection problem
is shown in Fig. 1, where the input instance x in the problem space S is repre-
sented as a feature vector f in the feature space. The task is to build a selection
mapping between S and the algorithm space A that provides a good (measured
by w ) algorithm to solve x subject to the constrains that the performance of
the algorithm is optimized.

From the point of view of computability theory, the general problem of al-
gorithm selection asks to design a program, or a Turing machine, that takes as
inputs the descriptions of two candidate algorithms, and outputs the best one ac-
cording to some performance criteria such as problem-solving time and solution
quality. By applying Rice’s theorem it can be shown that the general algorithm
selection problem is undecidable (Guo [6]). It implies that, in general, there can
be no hope of finding a pure analytical means of automatic algorithm selection
only from the descriptions of these algorithms. This general result should not
be surprising because the HALTING PROBLEM basically states that in general
you can not even tell whether a Turing machine (algorithm) can halt or not
given arbitrary input.

3 A Machine Learning-Based Approach for
Algorithm Selection

In this paper we turn to a more feasible direction: applying inductive, rather
than analytical approach. Our proposed inductive approach relies significantly
on experimental methods and machine learning techniques. We are partly mo-
tivated by the observation that some easy-to-compute problem features can be
used as good indicators of some algorithm’s performance on the specific class



310 H. Guo and W.H. Hsu

Evaluation

Bagging, Boosting,
Stacking

Learning

Discretization

Feature Selection

Algorithm Performance
Data Collection

Problem Instance
Generation

Fig. 2. The machine learning-based approach for algorithm selection

of instances. This knowledge can help select the best algorithm to gain more
efficient overall computation. In NP-hard problem-solving, researchers have long
noticed that algorithms exploiting special problem instance features can perform
on the particular class of instances better than the worst-case scenario. In light
of this, two of the main directions of this work are to study different instance
features in terms of their goodness as a predictive measure for some algorithm’s
performance and to investigate the relationships between instance characteristics
and algorithms’ performance.

Another motivation comes from the inspiration of automating and mimicking
human expert’s algorithm selection process. In many real world situations, al-
gorithm selection is done by hand by some experts who have a good theoretical
understanding to the algorithms and are also very familiar with their runtime
behaviors. The automation of the expert’s algorithm selection process thus has
two aspects: analytical and experimental. We have already known that the first
aspect is hard to be automated and compiled into a program. In contrast, au-
tomating the experimental aspect is more feasible because of the advancements
that have been made in experimental algorithmic (Johnson [11]), machine learn-
ing (Witten and Frank [18]), and uncertain reasoning techniques (Horvitz et al.
[8]).

The difficulty of automatic algorithm selection is largely due to the uncer-
tainty in the input problem space, the lack of understanding to the working
mechanism of the algorithm space, and the uncertain factors of implementations
and runtime environments. From the viewpoint of expert systems and machine
learning, the algorithm selection system acts as an “intelligent meta-reasoner”



A Learning-Based Algorithm Selection Meta-Reasoner 311

Clique-tree
Propagation

Exact
Gibbs

Sampling

MPE
Algorithms

Stochastic
Sampling

Forward
Sampling

Appro. Hybrid ACO

Search Tabu Search

Multistart
Hillclimbing

Fig. 3. Candidate MPE algorithms

that is able to learn the uncertain knowledge of algorithm selection from its past
experiences and use the learned knowledge (models) to reason on algorithm se-
lection for the input instance in order to make the right decision. This can be
formulated as the following machine learning problem:
The algorithm selection learning problem
Task T : selecting the best algorithm, Best Algm(f), for instance f .
Measure P : percent of correct selections.
Training data E: algorithm performance data collected from experiments.

Since the target function, Best Algm(f), has discrete values, this is indeed a
classification problem. An overview of the procedure is shown in Fig. 2. The first
two steps, including instance generation and algorithm performance data collec-
tion, prepare the training data. The next two steps preprocess the data, including
discretization and feature selection. Then in the learning step, machine learning
algorithms are applied to induce the predictive algorithm selection model. Also,
some meta-learning methods — such as bagging, boosting, and stacking (Witten
and Frank [18]) — can be used here to improve the learned predictive models.
Finally, the best learned model is evaluated on test data.

4 The Algorithm Space And The Feature Space

4.1 The Algorithm Space

Our candidate MPE algorithms include one exact algorithm: Clique-Tree Propa-
gation(CTP) (Lauritzen and Spiegelhalter [12]); two sampling algorithms: Gibbs
Sampling (Pearl [13]) and Forward Sampling (also called Likelihood Weighting)
(Fung and Chang [3]) ; two local search-based algorithms: Multistart Hillclimbing
and Tabu Search (Glover and Laguna [4]); and one hybrid algorithm combining
both sampling and search: Ant Colony Optimization(ACO). These algorithms
are chosen because currently they are among the most commonly used MPE
algorithms. A classification of these representative algorithms is shown in Fig. 3.



312 H. Guo and W.H. Hsu

Because of the lack of space, we refer interested readers to (Guo [6]) for detailed
descriptions.

4.2 The Instance Feature Space

An MPE instance consists of three components: the network structure, the CPTs,
and the evidence.

Network characteristics include network topological type and connectedness.
We distinguish three topological types: polytrees, two-level networks(Noisy-OR),
and multiply connected networks. Network connectedness conn is simply calcu-
lated as conn = n arcs

n nodes . These two characteristics have a direct influence on
the exact inference algorithm’s performance. In contrast, sampling algorithms’
performance is rarely affected by them.

CPT characteristics include CPT size and CPT skewness. Since we only con-
sider binary nodes, the maximum number of parents of a node, max parents,
can be used to bound the CPT size. The skewness of the CPTs is computed as
follows (Jitnah and Nicholson [10]): for a vector (a column of the CPT table),
v = (v1, v2, . . . , vm), of conditional probabilities,

skew(v) =
∑m

i=1 | 1
m − vi|

1 − 1
m +

∑m
i=2

1
m

. (2)

where the denominator scales the skewness from 0 to 1. The skewness of a CPT is
the average of the skewness of all columns, whereas the skewness of the network
is the average of the skewness of all CPTs. We will see that CPT skewness has
a significant influence on the relative performance of sampling and search-based
algorithms.

Evidence characteristics includes the proportion and the distribution type of
evidence nodes. Evidence proportion is simply the number of evidence nodes,
n evid, divided by n nodes: n evid

n nodes . Usually, more evidence nodes implies more
unlikely evidence. Hence, the MPE will also be quite unlikely and the probability
that it is hit with any sampling scheme is not very high. The distribution of
evidence nodes also affects the hardness of MPE instances. If most evidence
nodes are “cause” nodes, the problem is called predictive reasoning. If most
evidence nodes are “effect” nodes, it is called diagnostic reasoning. It has been
proven that predictive reasoning is easier than diagnostic reasoning (Shimony
and Domshlak [16]). In our experiments, we will consider three types of evidence
distributions: strictly predictive, strictly diagnostic, and randomly distributed.
An inference problem is called “strictly predictive” if the evidence nodes have
no non-evidence parents; it is called “strictly diagnostic” if the evidence nodes
have no non-evidence children.

We are aware that there might exist some other features that could work
as well or even better. These particular features are chosen mainly because do-
main knowledge, previous literature(Jitnah and Nicholson [10]; Ide and Cozman
[9]; Shimony and Domshlak [16]), and our initial experimental experience all



A Learning-Based Algorithm Selection Meta-Reasoner 313

Reasoning

Algorithm Selection Meta-reasoner

MPE
Instance Examining Computing

MPE
MPE
Result

Exactly
Solvable?

ExactMpeSelector

no

yesFeature
Vector

Predicted
Best

Appro. Algm.

Selecting

ApproMpeSelector

Fig. 4. The algorithm selection meta-reasoner

suggest that they are good indicators of MPE instance hardness and algorithm
performance. The other reason is that they are all easy to compute.

5 Experiments and Results

Our first goal is to identify the class of MPE instances for which the exact
inference algorithm is applicable. When the exact algorithm is not applicable
(most probably due to an out-of-memory error in practice), we need to look at
various approximate algorithms. Thus our second goal is to learn the predictive
model that can determine which approximate algorithm is the best. Therefore,
the algorithm selection meta-reasoner to be learned will consist of two classifiers
as shown in Fig. 4: the ExactMpeSelector for exact algorithm selection, and the
ApproMpeSelector for approximate algorithm selection.

5.1 Data Preparation

In the data preparation phase, we first generate MPE instances with different
characteristics uniformly at random. The random generation of MPE instances
with controlled parameter values is based on a Markov chain method (Ide and
Cozman [9]). It is reasonable and necessary to consider only a subset of all pos-
sible MPE instances , i.e. the set of “Real World Problems” (RWP). In order to
simulate RWP BNs, we first extract the ranges of all characteristic parameter val-
ues from a collection of 13 real world samples, call it DRWBN , and then generate
networks and MPE instances based on the extracted distributions. The ranges of
their characteristic values are as follows: 30 ≤ n nodes ≤ 1, 000; conn ∈ [1.0, 2.0];
maxParents < 10; 0.25 < skewness0.87. These characteristics information are
used to guide the generation of our training datasets.

The first training dataset for learning ExactMpeSelector, DMPE1, is generated
as follows: we first randomly generate networks with connectedness varying from
1.0 to 2.0(with a step of 0.2) and maximum number of parents varying from 3
to 10. The number of nodes used are {30, 50, 80, 100, 120, 150, 200}. We then



314 H. Guo and W.H. Hsu

Table 1. Experiment 1: learning ExactMpeSelector

C45 NaiveB. BN Bagg. Boost. Stack.
c.a. (%) 94.80 82.79 90.06 94.75 94.81 94.56
s.d. (%) 0.27 0.36 0.24 0.25 0.23 0.45

run exact algorithm CTP on these randomly generated networks and record the
performance. To perform inference, CTP first compiles the network into a clique
tree. We record the maximum clique size and label the network as “yes” instance
if the compilation is successful. Otherwise, if it throws out an out-of-memory
error or takes longer than 5 minutes, we label the instance as “no”. DMPE1 has
four numeric attributes: n node, topology, connectedness, and maxParents. The
target class, ifUseExactAlgorithm, takes boolean values representing whether
exact algorithm is applicable or not. We also include these 13 real world networks
into DMPE1. The final DMPE1 contains a total of 1,893 instances.

The second training dataset for learning ApproMpeSelector, DMPE2, only
contains two-level and multiply networks. We generate a set of networks with
different characteristic values and then run all 5 approximate algorithms on
them with different evidence settings. We give each algorithm a fixed number
of samples or search points and label the instance using the best algorithm that
returns the best MPE value. The total number of samples was 300, 1000, or
3,000. DMPE2 has 8 attributes: n node, topology, connectedness, maxParents,
skewness, evidPercent, evidDistri, and n samples. The target class is the best
algorithm for this instance. DMPE2 contains 5,184 instances generated from 192
networks.

5.2 Model Induction

We now apply various machine learning algorithms to induce the predictive al-
gorithm selection models. We consider three different kinds of models: decision
tree learning (C4.5), naive Bayes classifier, and Bayesian network learning (K2).
We also consider three meta-learning methods to combine multiple models: bag-
ging, boosting and stacking, which all use C4.5 as their base learner. So, total,
we have six different learning schemes. Before learning, we also conduct data
preprocessing such as discretization and/or feature selection if necessary.

In experiment 1, we run all 6 learning schemes on DMPE1. Table 1 shows
the classification accuracies of each learned model. We use the best model out
of these 6, i.e. the one that has both high classification accuracy and efficient
reasoning mechanism. We can see that boosting(94.81%), C4.5(94.80%), and
bagging(94.75%) all have a high classification accuracy. We also notice that
NaiveBayes has the worst performance of only 82.79%, which verifies that the
features in DMPE1 are not independent of each other. Since C4.5 is much simpler
and more efficient on reasoning, we use the decision tree learned by C4.5 as the
best model for exact MPE algorithm selection: ExactMpeSelector.

In experiment 2, we look at feature selection for approximate MPE algorithm
selection using DMPE2. Each data case has 9 attributes. The first 8 are MPE



A Learning-Based Algorithm Selection Meta-Reasoner 315

Table 2. Experiment 3: learning ApproMpeSelector

C4.5 NaiveB. BN Bagg. Boost. Stack.
c.a (%) 77.75 72.77 76.08 75.44 77.16 77.36
s.d. (%) 0.23 0.03 0.01 0.27 0.26 0.32

instance features and the last one is the target class labelling the best approxi-
mate MPE algorithm. We apply a GA-wrapped C4.5 feature selection classifier
to search for the best feature subset. The wrapper uses C4.5 as the evaluation
classifier and a simple genetic algorithm to search the attribute space. The GA’s
population size and number of generations are 20. The crossover probability is
0.6 and the mutation probability 0.033. The feature subset selected is {n node,
skewness, evidPercent, evidDistri, n samples}. Note that all network struc-
ture features are filtered out. The result agrees with our domain knowledge that
network structure does not affect approximate algorithms’ performance very
much. From now on, we will use this selected subset rather than DMPE2 itself.

In experiment 3, we apply all 6 machine learning algorithms on the selected
feature subset of DMPE2 to induce ApproMpeSelector. The experimental re-
sults(Table 2) show that C4.5 has the highest classification accuracy(77.75%).
Because of this and the fact that C4.5 has a much faster reasoning mechanism,
we choose it as the best model for ApproMpeSelector.

In experiment 4, we study the influences of each individual feature on the
relative performance of different algorithms. We partition the training dataset
used in experiment 3 by each feature’s values and record the number of times of
each algorithm being the best at each feature value level. The results are summa-
rized as follows: (1)Number of Nodes. n nodes affects the relative performance of
two search algorithms, but forward sampling and ACO are almost not affected.
When n nodes increases from 50 to 100 multi-start hillclimbing becomes the best
algorithm more frequently and the chances for tabu search being the best drops
significantly. This can be explained by the constant size of the tabu list used.
When network becomes larger while the tabu list remain the same size, the tabu
list’s influence becomes weaker. This makes it lose its best algorithm position to
multi-start hillclimbing. (2)Number of Samples. Again, the relative performances
of two search algorithms are affected, but forward sampling and ACO’s are not.
When the given number of samples increases from 300 to 1,000 to 3,000, tabu
search becomes the best algorithm more often and multi-start hillclimbing loses
its top rank. It seems that Tabu search can utilize available number of search
points better than multi-start hillclimbing. (3) CPT skewness. Skewness has the
most significant influence on the relative performance of these algorithms as
shown in Table 3. When the skewness is low, the search space is flat and search
algorithms perform much better than sampling algorithms. Multi-start hillclimb-
ing wins the best algorithm two times more than tabu search. When the skewness
is around 0.5, ACO outperforms all other algorithms almost all the time. When
the skewness increases to 0.9, forward sampling and ACO are the winners and
perform equally well. We also notice that forward sampling works better only
for highly skewed networks and ACO works for both highly-skewed networks



316 H. Guo and W.H. Hsu

Table 3. Partitioning DMPE2 by CPT Skewness

skewness
Number of Times of Being Best Algorithm

gibbs. forward. multiHC tabu aco
0.1 0 0 1059 512 157
0.5 0 4 9 174 1677
0.9 0 858 9 28 942

and medium-skewed networks. (4)Evidence Proportion. The result shows that
changing evidence percentage does not affect two search algorithms’ relative
performance, but it affects forward sampling and ACO. ACO is out-performed
by forward sampling as the percentage of evidence nodes increases from 10% to
30%. We should also note that evidence percentage’s influence is much weaker
than that of skewness. (5)Evidence Distribution. The relative performance of
multi-start hillclimbing is not affected. Tabu search is only slightly affected. It
shows that diagnostic inference is relatively hard for forward sampling but is
easy for ACO. In contrast, random distributed evidence is relatively hard for
ACO but is easy for forward sampling.

5.3 Model Evaluation

Finally, we evaluate the learned algorithm selection meta-reasoner to verify that
it does achieve a better overall performance of reasoning. For a given MPE in-
stance, the meta-reasoner first examines the instance and extracts the feature
vector. Then ExactMpeSelector is called to determine whether it is exactly solv-
able. If the classification result is “yes”, the system then executes the exact
inference algorithm. If it is “no”, ApproMpeSelector will be used to select the
best approximate algorithm. The selected algorithm is then executed and the
final MPE value returned. This procedure is shown in Fig. 4.

We first test ExactMpeSelector on DMpeTest, which contains 405 instances
generated in the same way as previous experiments. ExactMpeSelector identifies
243 “yes” instances correctly. Then we apply ApproMpeSelector on the rest 162
“no” instances. The result shows that there are 123 correctly classified instances
and 39 incorrectly classified instances. The classification accuracy is 75.93%.

To show that the algorithm selection system outperforms any single algo-
rithm, we partition these 162 “no” instances into three groups according to their
skewness. There are 27 unskewed, 54 medium-skewed, and 81 highly-skewed in-
stances. For each group, we compare the total approximate MPE values returned
by each individual algorithm with the total values returned by the algorithm se-
lection system. On medium-skewed and highly-skewed instances, the algorithm
selection system returns the largest total MPE values of 6.0 × 10−6 and 0.16.
On unskewed instances, the system returns the second largest MPE value of
2.1× 10−26. But the largest total, computed by multi-start hill climbing, is only
2.2 × 10−26. The algorithm selection system’s result is almost as good as that.
Adding them all together, the algorithm selection system returns the largest
total MPE value on all 162 instances.



A Learning-Based Algorithm Selection Meta-Reasoner 317

We also test the system on real BNs. First, all 13 real world networks are
correctly classified by ExactMpeSelector. There are 11 “yes” networks. On these
networks, all predicted best approximate algorithms also agree with actual best
algorithms. The two “no” networks are link and munin1. ApproMpeSelector se-
lects ACO as the best approximate algorithm for both. The actual running
of all algorithms on link returns all 0, given 5,000 samples. This is due to
its huge state space(724 nodes, 5.77 × 10277 states) and low skewness(13,715
out of 20,502 numbers are 0). munin1 has 189 nodes and 3.23 × 10123 states.
Given 5,000 samples, ACO returns the best MPE of 5.93 × 10−8. Forward sam-
pling finds the second best MPE of 6.61 × 10−9. All other algorithms just
return 0.

In summary, the test results on both artificial and real Bayesian networks
verify that the learned algorithm selection meta-reasoner can make reasonable
decisions on selecting exact and best approximate MPE algorithms for the input
MPE instance and provides a better overall performance.

6 Conclusions and Discussions

We have reported a machine learning-based approach to build an algorithm se-
lection meta-reasoner for the real-time MPE problem. The system consists of two
predictive models (classifiers). For an input MPE instance, the first one decides
if exact algorithm is applicable. And the second one determines which approxi-
mate algorithm is the best. Different MPE instance characteristics have different
properties and affect different algorithms’ performance. Our experimental results
show that CPT skewness is the most important feature for approximate MPE
algorithm selection. It reveals that in general search-based algorithms work bet-
ter on unskewed networks and sampling algorithms work better on skewed net-
works. Other features, such as n nodes, n samples, evidPercent and evidDistri,
all affect these algorithms’ relative performance to some degree, although not
as strong as skewness does. The learned algorithm selection system uses some
polynomial time computable instance characteristics to select the best algorithm
for the NP-hard MPE problem and gains the best overall performance in terms
of the returned solution quality given the same computational resources. The
time of computing features and selecting the best algorithm are negligible com-
paring to the actual problem solving time. The most important and difficult
task in this scheme is to identify the set of candidate features. The main lim-
itation of this method is that the size of training data grows exponentially in
the number of features used. The fact that training data are generated from a
specific set of real world instances may also limit the learned system’s applicable
range. In the future this scheme could be applied to algorithm selection of other
NP-hard problems and help to build more efficient real-time computation
systems.



318 H. Guo and W.H. Hsu

Acknowledgements

Thanks anonymous reviewers for their valuable comments. This work was par-
tially supported by the HK Research Grants Council under grant
HKUST6088/01E.

References

Abdelbar, A. M., Hedetniemi, S. M.: Approximating MAPs for belief networks in NP-
hard and other theorems. Artificial Intelligence. 102 (1998) 21–38

Breese, J. S., Horvitz, E.: Ideal reformulation of belief networks. In UAI90. (1990)
129–144

Fung, R., Chang, K. C.: Weighting and integrating evidence for stochastic simulation
in Bayesian networks. In UAI89. (1989) 209–219

Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Boston. (1997)
Gomes, C. P., Selman, B.: Algorithm portfolio design: theory vs. practice. In UAI97.

(1997) 190–197
Guo, H.: Algorithm selection for sorting and probabilistic inference: a machine learning-

based approach. PhD thesis, Kansas State University. (2003)
Horvitz, E.: Computation and action under bounded resources. PhD thesis, Stanford

University. (1990)
Horvitz, E., Ruan, Y., Kautz, H., Selman, B., Chickering, D. M.: A Bayesian approach

to tackling hard computational problems. In UAI01. (2001) 235–244
Ide, J. S., Cozman F. G.: Random generation of Bayesian networks. In Brazlian Sym-

posium on Artificial Intelligence, Pernambuco Brazil. (2002)
Jitnah, N., Nicholson, A. E.,: Belief network algorithms: A study of performance based

on domain characterization. In Learning and Reasoning with Complex Representa-
tions. 1359 Springer-Verlag (1998) 169–188

Johnson, D.: A theoretician’s guide to the experimental analysis of algorithms. In M. H.
Goldwasser and D. S. Johnson and C. C. McGeoch, editors, Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation
Challenges. (2002) 215–250

Lauritzen, S. L., Spiegelhalter, D. J.: Local computations with probabilities on graph-
ical structures and their application to expert systems (with discussion). J. Royal
Statist. Soc. Series B 50 (1988) 157-224

Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. San Mateo, CA, Morgan-Kaufmann. (1988)

Rice, J. R.: The algorithm selection problem. In M. V. Zelkowitz, editors, Advances in
computers. 15 (1976) 65–118

Shimony, S. E.: Finding MAPs for belief networks is NP-hard. Artificial Intelligence.
68 (1994) 399–410

Shimony, S. E., Domshlak, C.: Complexity of probabilistic reasoning in directed-path
singly connected Bayes networks. Artificial Intelligence. 151 (2003) 213–225

Santos, E., Shimony, S. E., Williams, E.: On a distributed anytime architecture
for probabilistic reasoning. Technique Report AFIT/EN/TR94-06. Department of
Electrical and Computer Engineering, Air Force Institute of Technology. (1995)

Witten, I. H., Frank, E. Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann. (1999)

Zilberstein, S.: Operational rationality through compilation of anytime algorithms.
PhD Thesis. University of California at Berkeley. (1993)


	Introduction
	Algorithm Selection for the MPE Problem
	Bayesian Networks and the MPE Problem
	The Algorithm Selection Problem

	A Machine Learning-Based Approach for Algorithm Selection
	The Algorithm Space And The Feature Space
	The Algorithm Space
	The Instance Feature Space

	Experiments and Results
	Data Preparation
	Model Induction
	Model Evaluation

	Conclusions and Discussions



