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Abstract the permutation space of variables using a probabilistic
inference criterion as the fitness function.

Greedy score-based algorithms for learning the e make the case in this paper that the probabilistic
structure of Bayesian networks may produce jnference performance elemerity the absence of a
very dlffer_ent models depending on the order in known gold standard network or any explicit
which variables are scored. These models often  constraints, can provide the feedback needed to search for
vary significantly in quality when applied to a good ordering. We then derive a heuristic based on
inference. Unfortunately, finding the optimal validation by inference (exact inference [LS88, Ne90] for
ordering of inputs entails search through the  gmga|| networks, approximate inference by stochastic
permutation space of variables. Furthermore, in sampling [CDOO] for larger ones). Our primary objective

real-world applications of structure learning, the g jnferential accuracysingthe learned structure.
gold standard network is typically unknown. In

this paper, we first present a genetic algorithm
(GA) that uses a well-known greedy algorithm Dy (Siucture Learring
for structure learning K2) and approximate
inference by importance sampling as primitives
in searching this permutation space. We then D:  Training Data
develop a flexible fithess measure based upon
inferential loss given a specification of evidence.
Finally, we evaluate this GA wrapper using the
well-known networks Asia and ALARM and _ _—
show that it is competitive with exhaustive l, ~ Bvdence Specification : =
enumeration in finding good orderings f&?2, B
resulting in structures with low inferential loss T—
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under importance sampling. ~
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Figure 1. System Design Overview.

1 INTRODUCTION Toward this end, we adapt a flexible, composite fithess

Learning the structure, or causal dependencies, of géasure used in other machine learning systems called
graphical model of probability such as a BayesianWwrappers [KJ97], ~ which  automatically  tune
network (BN) is often a first step in reasoning under Nyperparameters of the learning system such as the
uncertainty. In many machine learning applications, it isordering of input variables. We present the system shown
therefore referred to as a method céusal discovery in Figure 1, a genetic algorithm-based wrapper [CS96,
[PV91]. Finding the optimal structure of a BN from data RPG+98, HWRCO1], and show how it provides a parallel
has been shown to bP-hard [HGC95], even without stpqha_\s_tlc search mech_anlsm for inferential loss-
considering latent (unobserved) or irrelevant (extraneousylinimizing variable orderings. We demonstrate that,
variables.  Therefore, greedgcore-basedalgorithms used in tandem witlK2, it .prO(_juces structures whose loss
[FG98] have been developed to provide more efficientinder importance sampling is nearly as low as any found
structure learning at an accuracy tradeoff. In this papePy exhaustive enumeration of orderings. Finally, we
we examine a general shortcoming of greedy structuréliscuss how this wrapper provides a flexible method for
learning — sensitivity to variable ordering — and develop atuning representation biasefi97] in Bayesian network
genetic algorithm to mitigate this problem by searchingStructure learning using different fitness criteria.



2 VALIDATION OF STRUCTURES
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Figure 2. Probabilistic reasoning environment,
Module [2] from Figure 1.

P(Xe, <o Xe) = |‘J P(x, | Pa, ) )

The graph G represents conditional independence
properties of the distribution. These are tMarkov
independencieseach variableX; is independent of its
non-descendants, given its parents, in G. [EF01] We
denote the annotating CPD parameter8diy ©; thus,B
=(V, E, ©).

We are interested in learning from training dataD
consisting of examples. For simplicity, we assume that
there are no variables that are latent or completely
irrelevant (not weakly relevant [KJ97]). The objective of
structure learning is then to find the arEsfor V = y.
Some structure learning algorithms, suchk&s[CH92],

are greedy in that they add arcs based upon the
incremental gain that each single arc induces in a global
score, such as the Bayesian (Dirichlet) score. [CH92,
FG98]. We us&2 for structure learning — module [A] of
Figure 2 — because it finds structures quicKhgiven a
reasonable ordering. Variables must occur “upstream”

Consider a typical probabilistic reasoning environment, agrom one another (or “downstream” im, i.e., have a

shown in Figure 2, where structure learning [A] is a first
step. The input to this system includes aBedf training
data vectors = (X, ..., X,) €ach containing variables. If
the structure learning algorithm is greedy, an ordeking

on the variables may also be given as input. The structur

learning component of this system produces a graphic

model B = (V, E, ©) that describes the dependencies;

amongX;, including the conditional probability functions.
The inferential performance element [B] of this system
takesB and a new data sl of vectors drawn from the
desired inference space, where only a subvegtof X =
Xy, ..., X, is observable, and infers the remaining
unobserved valueX \ E. We denote the indicator bit
vector for membership irE by lI.. The performance
criterion f is the additive inverse of the (inferential or
utility) loss of [B].

This section specifies the functionality of [A] and [B] and
explains the derivation dfas a function of the ordering

higher index) to be considered as candidate parents. If the
number of parents per variable is constrained to a constant
upper boundK2 has worst-case polynomial running time

in the numben of variables.

wo clear limitations of greediness are inability to
acktrack (i.e., undo the addition of an arc) or consider
he joint effects of adding multiple arcs (parents). This is
why greedy structure learning algorithms are sensitive to
the presence of irrelevant variables in the training data, a
pervasive problem in machine learning [KJ97].
Additionally, K2 is particularly sensitive to the variable
ordering because arcs fail to be added, resulting in
unexplained correlations, whenever candidate parents are
evaluated in any order that precludes a causal
dependency. Were a gold standard strucGite= (V, E*)
available, this would be seen as an inversion in the partial
ordering induced bye*. Preventing missing arcs — i.e.,
“false negatives for causality” — is a challenge in structure

In the next section, we show how the environmentléarning as applied to causal discovery [PV91, FG98].

depicted in Figure 2 is used as the fithess evaluatio
module [2] of the overall GA-based system (Figure 1).

2.1 Learning Bayesian Network Structure

Consider a finite seg = {Xy, ..., Xy} of discrete random
variables. ABayesian networks an annotated directed
acyclic graphG = (V, E) that encodes a joint probability
distribution overy . The nodes of the graph correspond to
the random variableX, ..., X,. Each node is annotated
with the conditional probability distribution (CPD) that
represent®(X; | Pa; ), wherePa,; denotes the parents of
Xiin G. A Bayesian networlB specifies the unique joint
probability distribution ovey, given by:

rEJnfortunater, just as finding the optimal structure is

itself intractable [HGC95], so is finding the optimal
ordering of inputs for a given structure learning
algorithm.  Searching the space of permutations of
variables is prohibitive, and defeats the purpose of using a
greedy algorithm. In this paper, we focus K& and the
problem of optimizing the variables to be given as its
input. To specify the optimization of variable order as a
search problem, we must define the states (permutations),
operators (re-ordering), initial candidates, and evaluation
criterion.

2.2 Validation by Inference

A desired joint probability distribution functioR(X) can
be computed using the chain rule for Bayesian networks,
given above in Equation (1). Thenost probable



explanation (MPE) is a truth assignment, or more sampling,
importance sampling, and adaptive importance sampling.
Because adaptive
requires empirically shown [CDO0O] to be more robust in the
exponentially many explanations.presence of unlikely evidence, and because we have

generally, value assignment, togaery Q = X \ E with
maximal posterior probability given evidenee Finding
the MPE directly using Equation (1),
enumeration of

backward sampling, self and heuristic

importance sampling has been

Instead, a family of exact inference algorithms known asfound it to converge quickly in independent experiments,

cligue-tree propagatior{also calledjoin tree or junction
tree propagation) is typically used
reasoning applications. The first of these algorithms was
developed by Lauritzen and Spiegelhalter [LS88, Ne90]
Although exact inference is important in that it provides

we use it in our evaluation component, module [B] in
in probabilistic Figure 2 above.

2.3 Deriving Fitness

the only completely accurate baseline for the fitnessTo optimize the ordering, we considered fitness functions

function f, the problem for general BNs #P-complete

with three objective criteria. In this paper, however, we

(thus, deciding whether a particular truth instantiation isfocussolelyon the first:

the MPE isNP-complete) [C090, Wi02].

Approximate inference refers to approximation of the
posterior probabilities given evidence. One stochastic
approximation method calledimportance sampling
[CDO0O0] estimates the evidence marginal by sampling
guery node instantiations:

PE=€)=> P(X\E|E=¢) 2

X\E

[CDO0Q0] discusses basic variants of importance sampling.
These includgrobabilistic logic samplingHe86], whose
importance function is the joint distribution function
P(X). By sampling from the network as if no evidence
were given, the priors on source or root nodes are
emphasized, resulting in a possibly suboptimal
importance function as the authors point out. The source
priors are similarly emphasized forward simulationby
likelihood weighting [SP89, CDO00], which samples using
the joint probability of query nodes as the importance
function:

Px\E)= 3 P(x | Pa, ) 3)

xUe

Welch demonstrates [We96] that even a moderately
complex binary network with deterministic nodes,
approximately the size oALARM can be difficult to
sample from by pure forward sampling if there are,
enough query nodes (evidence) — the author instantiates
of 32 binary nodes with a moderately unlikely evidence
vector,P(e)= 6.5 * 10*.

1. Inferential loss: Quality of the network
produced byK2 as detected through inferential
loss evaluated over a holdout validation data set
Dya =D \ Dyain (s€€ Figure 1) — requires modules
[A] and [B] in Figure 2

2. Model loss “Size” of the network under a
specified representation — requires module [A]
only and is independent of [B]

3. Ordering loss: Inference and model-independent
measure of data quality given only and o —
independent of both modules [A] and [B]

f(a,D,1,)=al¥,(0,D,1,)+b ¥, (@ D) +cLF,(a.D) @
teon)eis (st 3 Py ©
S(atma{ []a1))
f,(.0)=1-" —— (6)
[J a
where a, = arity(X,,B = (1,E.0))
(E0) =K 2(0.,D,)
a+b+c=1 @)

In related work on genetic wrappers for variable selection
supervised inductive learning, Hsat al adapted
quation (4) [HWRCO00, HWRCO1] from similar fitness
functions developed by Cherkauer and Shavlik for

decision tree pre-pruning [CS96], Raymet al for

One way of scaling up to large networks in a realistic similarity-based learningk{nearest neighbor regression)

probabilistic reasoning application is to dynamically adapt{RPG+97],
the importance function. [CDO0O] presents a solution ofconnectionist learning
applicability demonstrates the generality of simple genetic

this type calledadaptive importance samplingAlS),

and Whitley and Guerra-Salcedo for
[GW99]. This breadth of

where a dynamic importance function is first initialized algorithms as wrappers for performance tuning in
using structural heuristics, then empirically trained insupervised inductive learning.

each of several training steps. This is similar to the
hyperparameter sampling stages in Markov chain I\/lomecoefficientsa, b, andc for several individual data sets on

Carlo MCMC) methods [Ne93]. The key issue is ; ;
Whethe('rwwe h)ave any pri[or kn]owledge re{;arding the? supervised leaming task. [HWRC02] Results were
estimators (.g., heuristic importance functions). positive in that this approach found application-specific

values for thesdnyperparametersand the GA achieved
We have implemented five variants of importancebetter generalization accuracy than search-based feature
sampling: forward simulation, logic aka rejection) selection wrappers [KJ97] for a real-world test bed
(prediction of loss ratio in automobile insurance risk

Recently, Hsu et al automatically validated the



analysis). Controlling the values of, b, and ¢ training data, determines how the space of hypotheses (in
simultaneously proved to be difficult in that large our application, BN structures) is to be searched and can
amounts of validation data were required, and the authorgadically affect the tractability of this search.
report that experiments did not indicate conclusivelyUnfortunately, effective decisions often depend in subtle
whether the GA performed better with this single ways upon the learning algorithm, training data, and their
composite-objective fitness function or a multi-objective interaction. A mechanism for systematically identifying
one (i.e., Pareto optimization). Therefore, for clariye  good inputs should take the performance element of the
setb and c to 0 to ignore f, and f. in the experiments system input into account. It must have the ability to
reported in this paper. In the last section, we discuss th&une the learning system by automatically adjusting the
ramifications of this design choice and possible futuresome aspect of the input specification (e.g., selected
work using the fullf. variables,aka feature subsetor variable orderings)
and coefficients for quantitative inductive bias such as
those discussed previously. Controlling all of these
arameters, while keeping the machine learning system
fficient and manageable, is not easy.

We now focus on the first ternf,. This fitness function
computes inferential loss by measuring the predictiv
power of the Bayesian network on the data set given
specification of evidencd,. The specifid, we use is the
normalized additive inverse of the root mean squaredVe approach this problem in BN structure learning by
error (RMSE), which is the square root of the sum ofapplying search-based combinatorial optimization and use
squared differences betweeen the sampled, approximatalidation by inferencépresented in the previous section)
probabilities P'(x;) and exact probabilitied(x;), over as a search heuristic. The high-level mechanisms that
statesx; of variablesX;. [CDOO] Note thaff,is the only determine a learning system's representation and
term that depends on which variables albservablei.e.,  preference biases can be expressed using learning
members oE. We consider this the most important term hyperparametergNe93], such asu. Just as a learning
just as validation set classification error is considered garameter denotes a trainable component of a pattern
typical estimator of generalization error in superviseddetector or classification function, a learning
classification learning [Mi97]. Ultimately, a BB isonly = hyperparameter denotes a controllable component of the
as good as the inferences it can produce on real-worldrganization, representation, or search algorithm for a
data given realistic evidenee and an orderingt is only  learning problem.  Inductive learning systems, or
as good as the BN that it can induce given a specifianducers are built with such hyperparameters and the
structure learning algorithm. In the next section, weability to tune them using combinatorial search, based
explain why this is a motivation for GA wrappers in upon evaluation metrics over validation data. The
general. benefits to probabilistic learning and reasoning are the
potential for greater flexibility in learning processes, an
increase in generalization quality, and the ability to make
3 SEARCH-BASED ENHANCEMENT OF the learning component more automatic and transparent.

LEARNING

Figure 1 indicates the role of a combinatorial optimization3.2 GA-Based Wrappers

system for controllinge, in context: a probabilistic A GaA is ideal for implementing wrappers where
reasoning system based on greedy structure learning cafyperparameters are naturally encoded as chromosomes
use an optimized ordering to enhance structure quality. sych as bit strings or permutations. This is precisely the
This is done by searching for a goedising a “realistic”  case with variable (feature subset) selection, where a bit
inferential criterion and a fixed, greedy structure Iearmngstring can denote membership in the subset, and with
algorithm such a&2. We now explore this combinatorial \5riable ordering, where a permutation denotesthe
optimization problem and the design of our specific GA.  order in which nodes are added to the BN. Both of these
are forms of constructive inductionwhere the input

3.1 Wrapper Approaches to Optimizing Input representation is changed from the default [Be90] — here,

. . . ) the full subsef or an arbitrary orderingo.
Tuning machine learning algorithms for large, complex

data sets is an expensive and difficult task. In addition toVith a GA-based wrapper, we seek to evolve

identifying the appropriate inputs for a particular hyperparameter values using the performance criterion of
classification or inference performance element, the
system designer must find a representation for' The termwrapperas used in machine learning [K095,

hypotheses, i.e. the language for expressing the targ&tJ97] simply refers to this property, wherein the

concept, and a suitable performance measure by which tcombinatorial optimization system “wraps around” a
evaluate hypotheses.  Making appropriate decisiongpecific inductive learning and classification or inference
regarding the input specification is crucial for tractableensemble such as the one shown in Figure 2. In the
learning, because these determine part of itiiictive  genetic and evolutionary computation literature, as we
bias [Be90, Mi97] of the learning system.Bias the  note below, wrappers for tuning GA hyperparameters

preferences of a learning system for one hypothesis ovetaye been in use for quite some time. [BGH89, DSGO93,
another other than those dictated by consistency with thf:”_gg]




the overall learning system as fitness. In learning tocounting functions, however, we see that in the limit,

classify, this may simply mean validation set accuracy.there are infinitely many possible structurés each

However, as we have noted, many authors of GA-basedrdering. K2, which is deterministic, finds just one such

wrappers have independently derived criteria thatstructure, so it is not guaranteed that finding a loss-

resemblaninimum description lengtfiMDL) estimators — minimal orderinga will cause it to produce a loss-optimal

that is, they seek to minimize model size and the sampl@etwork B, particularly for very largen. However,

complexity of input as well as maximize generalization Friedman conjectures [FLNPOQO] that searching ordering

accuracy. [CS96, RPG+97, GW99, HWRCO00] space provides a useful change of representation [Be90]

. , . . that tends to admit smoother interpolation than in

2&;?&582@ ber(]:z?it)?afltSA_q‘ZSn?gir\ilgzrjlp;persdEtgr]r%ﬁr;te?j%nstructure space. In evolutionary computation terms, this
- . . would mean that ordering space is lekceptivgd Go89]

constants such as the coefficieaf$, andc introduced in than structure s

X ; ; . pace.

the previous section. As we noted, this can be done using

individual training data sets rather than assuming that

single optimum egxists for a large set of machine I?earning§1 GA FOR VARIABLE ORDERING

problems. This is preferable to empirically calibrating

hyperparameters as if a single “best mixture” existed, 1  Searching Ordering Space

Even if a very large and representative corpus of data sets o ) .

were used for this purpose, there is no reason to believéhe criterionf, is computed by actually learning a BBI=

that there is a singlea posteriori optimum for K2 (@, Dyain) — more preciselyl,©) = K2 (0, Dyain)-

hyperparameters such as weight allocation to inferentiag jg computed byK2, which makes a single pass through
loss, model complexity, and sample complexity of data iny, (a permutation ofy = {X,, ..., X;}) and, for eachX;,

the constructive induction wrapper. considering onlyX; wherea(j) > a(i) as a potential parent

Finally, GA wrappers can ‘tune themselves’ — for Of Xiin E. Itthen addsx to Pa, by adding K;, X)) to E if
example, theGA-Based Inductive LearningGABIL) ~ and only if this increases the Dirichlet score By,
system of Dejongt al [DSG93] learns propositional rules €valuated oveDy.ir. This continues until: the set of is

from data and adjusts constraint hyperparameters th&xhausted, no single parent can be added to incrementally
control how these rules can be generalized. Mitchelincrease the score, or a preset (or automatically
notes that this is a method for evolving the learningcalibrated) limit on the size dPa, in E is reached. For
strategy itself. [Mi97] Many classifier systems also discrete BNs,© is computed simply by populating the
implement performance-tuning wrappers in this way.SPecified conditional probability tables (CPTs) with
[BGH89] Finally, population size and other constants forfrequencies computed usifiain.

controlling elitism, niching, sharing, and scaling can begncep js fully learned, each example =D \ Dyan

R val =
controlled usingparameterless GA$HL99] is masked withl and its complement to obtain separate
We adaptedGAJIT [Fa00], a Java shell for developing €vidence and query data. The inferential Idgsis
genetic algorithms, to implement a GA for the computed as specified in the previous section. The
permutation problem of ordering variables for Bayesianordering problem is a combinatorial searchArusingf,
network structure learning (usingt2) and inference @s aheuristic.
(using the Lauritzen-Spiegelhalter algorithm [LS88,
Ne90] andforward simulation[SP89, CDO0]). We now 42 permutation Genetic Algorithm Design
specify the ordering problem and, in the next section,

present the permutation GA design. Application of genetic algorithms to permutation
problems is discussed in [Go89] and [HH99]. The design

] ] of the GAJITwrapper illustrated in Figure 1 is as follows.
3.3 Ordering and Structure Learning Problems ) N )
We implemented an elitist permutation GA purely by

The orde_ring problem itself is a straightforyvgrql search i”extending theGAJIT classes using order crossover (OX)
permutation spaca for a v_alue (_)fa that minimizes the_ [HH99]. OX exchanges subsequences of two
inferential loss or maximizes its normalized, additive hermuytations, displacing duplicate indices with holes. It
inverse f.. Some simple combinatorial analysis illustrateshen shifts the holes to one side, possibly displacing some
the relative complexity of the ordering and structureingices, and replaces the original subsequence in these
learning problems. holes. If two parentg, = [34 6 21 5] andp,=[4 15 32
Clearly A| =n! if we suppose that there are no latent or g1 are recombined using OX, with the crossover mask

irrelevant variables. - From Stirling’s approximation, We ynderlined, the resulting intermediate representatiaia is
can estimate th ‘ = 2"9n  Meanwhile, we know that ___ 531 4] andi, = [- - 6 24 1], and the offspring are

all elements of structure space are directed acyclic graphg, = (62 5 31 4] ando, = [5 3 6 24 1]. Mutation is
containing some subset of tié possm_)leng rected edges. jmplemented by swapping uniformly selected indices.
The size of structure space is thus@2" |. Note that  cataclysmic mutatiofiGW99] can easily be implemented

this includes all directed graphs and 'is therefore ansing “a shuffle operator, but we did not find this
overestimate. Taking the asymptotic ratio of these tWonecessary.



The master controllerfor our GA runs in a Java virtual BN. The mean fitness is 0.958, the range is [0.0802,
machine. It manages slaves that concurrently evaluat®.999], and the standard deviation is 0.039.

members of its population. Each individual is encoded
as a permutation of the indices {1, ..n}. Slave
processes distributed across (4-48 processors) of
distributed-shared memory (DSM) compute cluster run,
identical copies of th&?2 and inference-based application C
depicted in Figure 2. Each evaluates the ordering it i%

given by learnings from Dyap, a holdout segment dp (used to evaluate “generalization fitness” on the ordering

(2/3 by default) and returnfg for the validation seD,y = )
D\ D,.,. The master GA collects the fitness Componentsreturned by the GA). The number of stochastic samples

for all members of its population and then computes used to perform inference db is given in Table 1 for
(heref=f,) all runs, 15000 samples were used to perform inference

on Dgain. The GA uses OX (order crossover), swap-
mutation, and a population of size 10, and was run for 100

5 EXPERIMENTAL RESULTS AND generations.
EVALUATION

Table 1 summarizes experimental specifications using the
xperimental platform described in the previous section.
igure 4 shows the average-fithess curve Asia using

he GAJIT wrapper. Using forward simulation [SP89,
D00], we generated 20000 samples By, 5000 for

val (Used to evaluate fithess in the GA), and 50000y

We experimented using the GA on data simulated from | 5000 1500 0.944
the well-known toy BNAsia[Ne90], which has 8 nodes. | 10000 1500 0.960
This is a very simple network to perform inference on | 20000 150 0.935
when the structure is knowa priori, but the permutation 20000 450 0.977
space — which we are searching using oflgnd the 20000 1500 0.978

synthetic data — has 8! = 40320 orderings. We also

performed exploratory experiments using two versions of Table 1. Results forAsia (5000 samples per fitness

the ALARMnetwork: a subgraph of 13 nodes and the full evaluation in Dyaand Dees)
37-node network. The results for the last line were averaged over 3 trials but
Figure 4 depicts the median result. Starting from a test
Frequency of Validation Set Fitness fitness of 0.4 (inferential loss of 0.6), it improves the test

fitness to 0.98. This is only about slightly above the mean
L fitness but it is noteworthy that the gold standard network
achieves fitness of only 0.98 as well. We validated this
using exact inference (the Lauritzen-Spiegelhalter
algorithm [LS88, Ne90]) to compute the marginals on the
data and our forward simulation function itself converges
to negligibly low relative loss.

0.996
0.982
0.969
0.955
0.941
0.927
0.913
0.899

g'zji Inferential RMSE for Forward Simulation
0.858 0.25
0.844 d
0830 0.2 T Sandard
0.816 Network
0.802 3 w 0.15
0 200 400 600 800 1000 1200 1400 g ——K2 Output
o 01 on Op_timal
Figure 3. Histogram of estimated fitness for all 8! = ' ordering
40320 permutations ofAsia variables. 0.05 2 ouput
on GA
Figure 3 depicts the histogram of validation set fitness ag 0 Ordering
measur_edexhaustlvely using Equation 5 and forvyard 1 2693 5385 8077 10769 13461
simulation [SP89, CD00]. Each of the 8! = 40320 fitness K 20K ES: 1500 Samol
evaluations was made by runnit@ on Dy, (as shown ' S amples

in Figure 2), consisting of 20000 stochastically-generated _ ) )
samples, and then evaluating the resulting BN using  Figure 4. Fitness curve for last run in Table 1

forward simulation orDex (@ holdout test semot used by as the fitness curve shows, t@AJIT wrapper reaches
the GA asD,4 in Figure 2) and an evidence bit vecler o gg rather quickly. The highest fitness achieved by the
(1000000 1). The histogram shown corresponds tQyranner on any run is 0.99, and inspection shows that the
data generated from the evidence instantialiésit-to-  cqorresponding ordering has only one inversion from the
Asia = true J Dyspnoea = false We note that this is just .gnonical one given by Neapolitan [Ne90]. This

one evidence specification among many plausible onegersion is consistent with the partial ordering of the
that might occur in “real” applications of this consultative



canonicalB, which means thaK2 can still produce the Fourth, the following are promising variants of the GA
best possible structure from it. that are high experimental priorities: Pareto optimization

. . - of (f,, fo,, fo) and experimentation with other permutation
Experiments usindALARM-13and ALARM-37indicated : iall h
that althoughK2 is capable of recovering a grapH, (E) mutation and crossover operators (partially matched and

cycle crossover).
close to the gold standard network (Cooper andy )

Herskovits report only two graph errors using only 20000
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