
 Permutation Genetic Algorithms for Score-Based
Bayesian Network Structure Learning

William H. Hsu Roby Joehanes

Department of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506

 {bhsu | robbyjo}@cis.ksu.edu http://www.kddresearch.org

Abstract

Greedy score-based algorithms for learning the
structure of Bayesian networks may produce
very different models depending on the order in
which variables are scored. These models often
vary significantly in quality when applied to
inference. Unfortunately, finding the optimal
ordering of inputs entails search through the
permutation space of variables. Furthermore, in
real-world applications of structure learning, the
gold standard network is typically unknown. In
this paper, we first present a genetic algorithm
(GA) that uses a well-known greedy algorithm
for structure learning (K2) and approximate
inference by importance sampling as primitives
in searching this permutation space. We then
develop a flexible fitness measure based upon
inferential loss given a specification of evidence.
Finally, we evaluate this GA wrapper using the
well-known networks Asia and ALARM and
show that it is competitive with exhaustive
enumeration in finding good orderings for K2,
resulting in structures with low inferential loss
under importance sampling.

Keywords: approximate inference, Bayesian networks,
score-based structure learning, stochastic sampling

1 INTRODUCTION
Learning the structure, or causal dependencies, of a
graphical model of probability such as a Bayesian
network (BN) is often a first step in reasoning under
uncertainty. In many machine learning applications, it is
therefore referred to as a method of causal discovery
[PV91]. Finding the optimal structure of a BN from data
has been shown to be NP-hard [HGC95], even without
considering latent (unobserved) or irrelevant (extraneous)
variables. Therefore, greedy score-based algorithms
[FG98] have been developed to provide more efficient
structure learning at an accuracy tradeoff. In this paper
we examine a general shortcoming of greedy structure
learning – sensitivity to variable ordering – and develop a
genetic algorithm to mitigate this problem by searching

the permutation space of variables using a probabilistic
inference criterion as the fitness function.

We make the case in this paper that the probabilistic
inference performance element, in the absence of a
known gold standard network or any explicit
constraints, can provide the feedback needed to search for
a good ordering. We then derive a heuristic based on
validation by inference (exact inference [LS88, Ne90] for
small networks, approximate inference by stochastic
sampling [CD00] for larger ones). Our primary objective
is inferential accuracy using the learned structure.

Toward this end, we adapt a flexible, composite fitness
measure used in other machine learning systems called
wrappers [KJ97], which automatically tune
hyperparameters of the learning system such as the
ordering of input variables. We present the system shown
in Figure 1, a genetic algorithm-based wrapper [CS96,
RPG+98, HWRC01], and show how it provides a parallel
stochastic search mechanism for inferential loss-
minimizing variable orderings. We demonstrate that,
used in tandem with K2, it produces structures whose loss
under importance sampling is nearly as low as any found
by exhaustive enumeration of orderings. Finally, we
discuss how this wrapper provides a flexible method for
tuning representation biases [Mi97] in Bayesian network
structure learning using different fitness criteria.

[2] Representation Evaluator
for Bayesian Network

Structure Learning Problems

Genetic Wrapper for Variable Ordering
In Bayesian Network Structure Learning

D: Training Data

: Evidence Specification

Dtrain (Structure Learning)

Dval (Inference)

[1] Permutation Genetic Algorithm

a

Candidate
Ordering

f(a)

Ordering
Fitness

Optimized
Ordering

â

eI
v

Figure 1. System Design Overview.

2 VALIDATION OF STRUCTURES

Consider a typical probabilistic reasoning environment, as
shown in Figure 2, where structure learning [A] is a first
step. The input to this system includes a set D of training
data vectors x = (x1, …, xn) each containing n variables.
If the structure learning algorithm is greedy, an ordering a
on the variables may also be given as input. The structure
learning component of this system produces a graphical
model B = (V, E, Θ) that describes the dependencies
among Xi, including the conditional probability functions.
The inferential performance element [B] of this system
takes B and a new data set Dtest of vectors drawn from the
desired inference space, where only a subvector E of X =
(X1, …, Xn) is observable, and infers the remaining
unobserved values X \ E. We denote the indicator bit
vector for membership in E by Ie. The performance
criterion f is the additive inverse of the (inferential or
utility) loss of [B].

This section specifies the functionality of [A] and [B] and
explains the derivation of f as a function of the ordering a.
In the next section, we show how the environment
depicted in Figure 2 is used as the fitness evaluation
module [2] of the overall GA-based system (Figure 1).

2.1 Learning Bayesian Network Structure

Consider a finite set ? = {X1, …, Xn} of discrete random
variables. A Bayesian network is an annotated directed
acyclic graph G = (V, E) that encodes a joint probability
distribution over ? . The nodes of the graph correspond to
the random variables X1, …, Xn. Each node is annotated
with the conditional probability distribution (CPD) that
represents P(Xi | Paxi), where Paxi denotes the parents of
Xi in G. A Bayesian network B specifies the unique joint
probability distribution over ? given by:

P(X1, …, Xn) = ()∏
=

n

i
xi i

Pa|XP
1

 (1)

The graph G represents conditional independence
properties of the distribution. These are the Markov
independencies: each variable Xi is independent of its
non-descendants, given its parents, in G. [EF01] We
denote the annotating CPD parameters of B by Θ; thus, B
= (V, E, Θ).

We are interested in learning B from training data D
consisting of examples x. For simplicity, we assume that
there are no variables that are latent or completely
irrelevant (not weakly relevant [KJ97]). The objective of
structure learning is then to find the arcs E for V = ?.
Some structure learning algorithms, such as K2 [CH92],
are greedy in that they add arcs based upon the
incremental gain that each single arc induces in a global
score, such as the Bayesian (Dirichlet) score. [CH92,
FG98]. We use K2 for structure learning – module [A] of
Figure 2 – because it finds structures quickly if given a
reasonable ordering a. Variables must occur “upstream”
from one another (or “downstream” in a, i.e., have a
higher index) to be considered as candidate parents. If the
number of parents per variable is constrained to a constant
upper bound, K2 has worst-case polynomial running time
in the number n of variables.

Two clear limitations of greediness are inability to
backtrack (i.e., undo the addition of an arc) or consider
the joint effects of adding multiple arcs (parents). This is
why greedy structure learning algorithms are sensitive to
the presence of irrelevant variables in the training data, a
pervasive problem in machine learning [KJ97].
Additionally, K2 is particularly sensitive to the variable
ordering because arcs fail to be added, resulting in
unexplained correlations, whenever candidate parents are
evaluated in any order that precludes a causal
dependency. Were a gold standard structure G* = (V, E*)
available, this would be seen as an inversion in the partial
ordering induced by E*. Preventing missing arcs – i.e.,
“false negatives for causality” – is a challenge in structure
learning as applied to causal discovery [PV91, FG98].

Unfortunately, just as finding the optimal structure is
itself intractable [HGC95], so is finding the optimal
ordering of inputs for a given structure learning
algorithm. Searching the space of permutations of
variables is prohibitive, and defeats the purpose of using a
greedy algorithm. In this paper, we focus on K2 and the
problem of optimizing the variables to be given as its
input. To specify the optimization of variable order as a
search problem, we must define the states (permutations),
operators (re-ordering), initial candidates, and evaluation
criterion.

2.2 Validation by Inference

A desired joint probability distribution function P(X) can
be computed using the chain rule for Bayesian networks,
given above in Equation (1). The most probable

[2] Representation Evaluator
for Bayesian Network
Structure Learning Problems

: Evidence SpecificationeI
v

Dtrain (Structure Learning)

Dval (Inference)

f(a)

Ordering Fitness
(Inferential Loss: MSE)

[B] Probabilistic
Inference
Algorithm
(Exact or

Approximation
by Sampling)

B = (V, E, Θ)
Learned Bayesian Network

[A] Greedy Score-Based
Structure Learning Algorithm

(K2)
and Parameter Estimation

Algorithm

a

Candidate Ordering
(Permutation)

Figure 2. Probabilistic reasoning environment,
Module [2] from Figure 1.

explanation (MPE) is a truth assignment, or more
generally, value assignment, to a query Q = X \ E with
maximal posterior probability given evidence e. Finding
the MPE directly using Equation (1), requires
enumeration of exponentially many explanations.
Instead, a family of exact inference algorithms known as
clique-tree propagation (also called join tree or junction
tree propagation) is typically used in probabilistic
reasoning applications. The first of these algorithms was
developed by Lauritzen and Spiegelhalter [LS88, Ne90].
Although exact inference is important in that it provides
the only completely accurate baseline for the fitness
function f, the problem for general BNs is #P-complete
(thus, deciding whether a particular truth instantiation is
the MPE is NP-complete) [Co90, Wi02].

Approximate inference refers to approximation of the
posterior probabilities given evidence. One stochastic
approximation method called importance sampling
[CD00] estimates the evidence marginal by sampling
query node instantiations:

P(E = e) = ()∑ =
E\X

eE|E\XP (2)

[CD00] discusses basic variants of importance sampling.
These include probabilistic logic sampling [He86], whose
importance function is the joint distribution function
P(X). By sampling from the network as if no evidence
were given, the priors on source or root nodes are
emphasized, resulting in a possibly suboptimal
importance function as the authors point out. The source
priors are similarly emphasized in forward simulation by
likelihood weighting [SP89, CD00], which samples using
the joint probability of query nodes as the importance
function:

P(X \ E) = ()∑
∉ex

xi i
PaxP | (3)

Welch demonstrates [We96] that even a moderately
complex binary network with deterministic nodes,
approximately the size of ALARM, can be difficult to
sample from by pure forward sampling if there are
enough query nodes (evidence) – the author instantiates 4
of 32 binary nodes with a moderately unlikely evidence
vector, P(e) = 6.5 * 10-4.

One way of scaling up to large networks in a realistic
probabilistic reasoning application is to dynamically adapt
the importance function. [CD00] presents a solution of
this type called adaptive importance sampling (AIS),
where a dynamic importance function is first initialized
using structural heuristics, then empirically trained in
each of several training steps. This is similar to the
hyperparameter sampling stages in Markov chain Monte
Carlo (MCMC) methods [Ne93]. The key issue is
whether we have any prior knowledge regarding the
estimators (e.g., heuristic importance functions).

We have implemented five variants of importance
sampling: forward simulation, logic (aka rejection)

sampling, backward sampling, self and heuristic
importance sampling, and adaptive importance sampling.
Because adaptive importance sampling has been
empirically shown [CD00] to be more robust in the
presence of unlikely evidence e, and because we have
found it to converge quickly in independent experiments,
we use it in our evaluation component, module [B] in
Figure 2 above.

2.3 Deriving Fitness

To optimize the ordering, we considered fitness functions
with three objective criteria. In this paper, however, we
focus solely on the first:

1. Inferential loss: Quality of the network
produced by K2 as detected through inferential
loss evaluated over a holdout validation data set
Dval ≡ D \ Dtrain (see Figure 1) – requires modules
[A] and [B] in Figure 2

2. Model loss: “Size” of the network under a
specified representation – requires module [A]
only and is independent of [B]

3. Ordering loss: Inference and model-independent
measure of data quality given only D and a –
independent of both modules [A] and [B]

() () () ()

() () ()()

()

()()
() ()

1

1

1

1
1

1

1

1

2

=++

=
=≡

⋅

−=

−−=

⋅+⋅+⋅=

∏

∑ ∏

∑ ∑∑

=

= ∈

∈ =∈

cba

D,2KTE,
TE,?,B,Xaritya

a

,amaxa

Df

xPxP'
a

Df

D,fcDfbDfaDf

train

ii

n

i
i

n

i X
ji

b

X

a

j
ijij

X i
a

cba

ixj

i

i

i

a

a,

I,a,

aa,I,a,I,a,

E\XE\X

e

ee

 where

Pa

v

vv

(4)

(5)

(6)

(7)

In related work on genetic wrappers for variable selection
in supervised inductive learning, Hsu et al adapted
Equation (4) [HWRC00, HWRC01] from similar fitness
functions developed by Cherkauer and Shavlik for
decision tree pre-pruning [CS96], Raymer et al for
similarity-based learning (k-nearest neighbor regression)
[RPG+97], and Whitley and Guerra-Salcedo for
connectionist learning [GW99]. This breadth of
applicability demonstrates the generality of simple genetic
algorithms as wrappers for performance tuning in
supervised inductive learning.

Recently, Hsu et al automatically validated the
coefficients a, b, and c for several individual data sets on
a supervised learning task. [HWRC02] Results were
positive in that this approach found application-specific
values for these hyperparameters, and the GA achieved

better generalization accuracy than search-based feature
selection wrappers [KJ97] for a real-world test bed
(prediction of loss ratio in automobile insurance risk
analysis). Controlling the values of a, b, and c
simultaneously proved to be difficult in that large
amounts of validation data were required, and the authors
report that experiments did not indicate conclusively
whether the GA performed better with this single
composite-objective fitness function or a multi-objective
one (i.e., Pareto optimization). Therefore, for clarity, we
set b and c to 0 to ignore fb and fc in the experiments
reported in this paper. In the last section, we discuss the
ramifications of this design choice and possible future
work using the full f.

We now focus on the first term, fa. This fitness function
computes inferential loss by measuring the predictive
power of the Bayesian network on the data set given a
specification of evidence, Ie. The specific fa we use is the
normalized additive inverse of the root mean squared
error (RMSE), which is the square root of the sum of
squared differences betweeen the sampled, approximate
probabilities P’(xij) and exact probabilities P(xij), over
states xij of variables Xi. [CD00] Note that fa is the only
term that depends on which variables are observable, i.e.,
members of E. We consider this the most important term
just as validation set classification error is considered a
typical estimator of generalization error in supervised
classification learning [Mi97]. Ultimately, a BN B is only
as good as the inferences it can produce on real-world
data given realistic evidence e, and an ordering a is only
as good as the BN that it can induce given a specific
structure learning algorithm. In the next section, we
explain why this is a motivation for GA wrappers in
general.

3 SEARCH-BASED ENHANCEMENT OF
LEARNING
Figure 1 indicates the role of a combinatorial optimization
system for controlling a, in context: a probabilistic
reasoning system based on greedy structure learning can
use an optimized ordering â to enhance structure quality.
This is done by searching for a good a using a “realistic”
inferential criterion and a fixed, greedy structure learning
algorithm such as K2. We now explore this combinatorial
optimization problem and the design of our specific GA.

3.1 Wrapper Approaches to Optimizing Input

Tuning machine learning algorithms for large, complex
data sets is an expensive and difficult task. In addition to
identifying the appropriate inputs for a particular
classification or inference performance element, the
system designer must find a representation for
hypotheses, i.e. the language for expressing the target
concept, and a suitable performance measure by which to
evaluate hypotheses. Making appropriate decisions
regarding the input specification is crucial for tractable
learning, because these determine part of the inductive

bias [Be90, Mi97] of the learning system. Bias, the
preferences of a learning system for one hypothesis over
another other than those dictated by consistency with the
training data, determines how the space of hypotheses (in
our application, BN structures) is to be searched and can
radically affect the tractability of this search.
Unfortunately, effective decisions often depend in subtle
ways upon the learning algorithm, training data, and their
interaction. A mechanism for systematically identifying
good inputs should take the performance element of the
system input into account.1 It must have the ability to
tune the learning system by automatically adjusting the
some aspect of the input specification (e.g., selected
variables, aka feature subsets, or variable orderings a)
and coefficients for quantitative inductive bias such as
those discussed previously. Controlling all of these
parameters, while keeping the machine learning system
efficient and manageable, is not easy.

We approach this problem in BN structure learning by
applying search-based combinatorial optimization and use
validation by inference (presented in the previous section)
as a search heuristic. The high-level mechanisms that
determine a learning system’s representation and
preference biases can be expressed using learning
hyperparameters [Ne93], such as a. Just as a learning
parameter denotes a trainable component of a pattern
detector or classification function, a learning
hyperparameter denotes a controllable component of the
organization, representation, or search algorithm for a
learning problem. Inductive learning systems, or
inducers, are built with such hyperparameters and the
ability to tune them using combinatorial search, based
upon evaluation metrics over validation data. The
benefits to probabilistic learning and reasoning are the
potential for greater flexibility in learning processes, an
increase in generalization quality, and the ability to make
the learning component more automatic and transparent.

3.2 GA-Based Wrappers

A GA is ideal for implementing wrappers where
hyperparameters are naturally encoded as chromosomes
such as bit strings or permutations. This is precisely the
case with variable (feature subset) selection, where a bit
string can denote membership in the subset, and with
variable ordering, where a permutation denotes a, the
order in which nodes are added to the BN. Both of these
are forms of constructive induction where the input

1 The term wrapper as used in machine learning [Ko95,
KJ97] simply refers to this property, wherein the
combinatorial optimization system “wraps around” a
specific inductive learning and classification or inference
ensemble such as the one shown in Figure 2. In the
genetic and evolutionary computation literature, as we
note below, wrappers for tuning GA hyperparameters
have been in use for quite some time. [BGH89, DSG93,
HL99]

representation is changed from the default [Be90] – here,
the full subset ? or an arbitrary ordering a0.

With a GA-based wrapper, we seek to evolve
hyperparameter values using the performance criterion of
the overall learning system as fitness. In learning to
classify, this may simply mean validation set accuracy.
However, as we have noted, many authors of GA-based
wrappers have independently derived criteria that
resemble minimum description length (MDL) estimators –
that is, they seek to minimize model size and the sample
complexity of input as well as maximize generalization
accuracy. [CS96, RPG+97, GW99, HWRC00]

An additional benefit of GA-based wrappers is that it can
automatically calibrate “empirically determined”
constants such as the coefficients a, b, and c introduced in
the previous section. As we noted, this can be done using
individual training data sets rather than assuming that a
single optimum exists for a large set of machine learning
problems. This is preferable to empirically calibrating
hyperparameters as if a single “best mixture” existed.
Even if a very large and representative corpus of data sets
were used for this purpose, there is no reason to believe
that there is a single a posteriori optimum for
hyperparameters such as weight allocation to inferential
loss, model complexity, and sample complexity of data in
the constructive induction wrapper.

Finally, GA wrappers can “tune themselves” – for
example, the GA-Based Inductive Learning (GABIL)
system of Dejong et al [DSG93] learns propositional rules
from data and adjusts constraint hyperparameters that
control how these rules can be generalized. Mitchell
notes that this is a method for evolving the learning
strategy itself. [Mi97] Many classifier systems also
implement performance-tuning wrappers in this way.
[BGH89] Finally, population size and other constants for
controlling elitism, niching, sharing, and scaling can be
controlled using parameterless GAs. [HL99]

We adapted GAJIT [Fa00], a Java shell for developing
genetic algorithms, to implement a GA for the
permutation problem of ordering variables for Bayesian
network structure learning (using K2) and inference
(using the Lauritzen-Spiegelhalter algorithm [LS88,
Ne90] and forward simulation [SP89, CD00]). We now
specify the ordering problem and, in the next section,
present the permutation GA design.

3.3 Ordering and Structure Learning Problems

The ordering problem itself is a straightforward search in
permutation space Α for a value of a that minimizes the
inferential loss or maximizes its normalized, additive
inverse, fa. Some simple combinatorial analysis illustrates
the relative complexity of the ordering and structure
learning problems.
 Clearly |Α| = n! if we suppose that there are no latent or
irrelevant variables. From Stirling’s approximation, we
can estimate that nlgn2≈A . Meanwhile, we know that
all elements of structure space are directed acyclic graphs,

containing some subset of the n2 possible directed edges.
The size of structure space is thus in ()2

2nΟ . Note that
this includes all directed graphs and is therefore an
overestimate. Taking the asymptotic ratio of these two
counting functions, however, we see that in the limit,
there are infinitely many possible structures for each
ordering. K2, which is deterministic, finds just one such
structure, so it is not guaranteed that finding a loss-
minimal ordering a will cause it to produce a loss-optimal
network B, particularly for very large n. However,
Friedman conjectures [FLNP00] that searching ordering
space provides a useful change of representation [Be90]
that tends to admit smoother interpolation than in
structure space. In evolutionary computation terms, this
would mean that ordering space is less deceptive [Go89]
than structure space.

4 GA FOR VARIABLE ORDERING

4.1 Searching Ordering Space

The criterion fa is computed by actually learning a BN B =
K2 (a, Dtrain) – more precisely (E,Θ) = K2 (a, Dtrain).

E is computed by K2, which makes a single pass through
a (a permutation of ? = {X1, …, Xn}) and, for each Xi,
considering only Xj where a(j) > a(i) as a potential parent
of Xi in E. It then adds Xj to Paxi by adding (Xj, Xi) to E if
and only if this increases the Dirichlet score of Paxi,
evaluated over Dtrain. This continues until: the set of Xj is
exhausted, no single parent can be added to incrementally
increase the score, or a preset (or automatically
calibrated) limit on the size of Paxi in E is reached. For
discrete BNs, Θ is computed simply by populating the
specified conditional probability tables (CPTs) with
frequencies computed using Dtrain.

Once B is fully learned, each example in Dval ≡ D \ Dtrain
is masked with Ie and its complement to obtain separate
evidence and query data. The inferential loss fa is
computed as specified in the previous section. The
ordering problem is a combinatorial search in Α using fa
as a heuristic.

4.2 Permutation Genetic Algorithm Design

Application of genetic algorithms to permutation
problems is discussed in [Go89] and [HH99]. The design
of the GAJIT wrapper illustrated in Figure 1 is as follows.

We implemented an elitist permutation GA purely by
extending the GAJIT classes using order crossover (OX)
[HH99]. OX exchanges subsequences of two
permutations, displacing duplicate indices with holes. It
then shifts the holes to one side, possibly displacing some
indices, and replaces the original subsequence in these
holes. If two parents p1 = [3 4 6 2 1 5] and p2 = [4 1 5 3 2
6] are recombined using OX, with the crossover mask
underlined, the resulting intermediate representation is i1
= [- - 5 3 1 4] and i2 = [- - 6 2 4 1], and the offspring are
o1 = [6 2 5 3 1 4] and o2 = [5 3 6 2 4 1]. Mutation is

implemented by swapping uniformly selected indices.
Cataclysmic mutation [GW99] can easily be implemented
using a shuffle operator, but we did not find this
necessary.

The master controller for our GA runs in a Java virtual
machine. It manages slaves that concurrently evaluate
members of its population a. Each individual is encoded
as a permutation of the indices {1, …, n}. Slave
processes distributed across (4-48 processors) of a
distributed-shared memory (DSM) compute cluster run
identical copies of the K2 and inference-based application
depicted in Figure 2. Each evaluates the ordering it is
given by learning B from Dtrain, a holdout segment of D
(2/3 by default) and returns fa for the validation set Dval ≡
D \ Dtrain. The master GA collects the fitness components
for all members of its population and then computes f
(here, f = fa).

5 EXPERIMENTAL RESULTS AND
EVALUATION
We experimented using the GA on data simulated from
the well-known toy BN Asia [Ne90], which has 8 nodes.
This is a very simple network to perform inference on
when the structure is known a priori, but the permutation
space – which we are searching using only f and the
synthetic data – has 8! = 40320 orderings. We also
performed exploratory experiments using two versions of
the ALARM network: a subgraph of 13 nodes and the full
37-node network.

Figure 3 depicts the histogram of validation set fitness as
measured exhaustively using Equation 5 and forward
simulation [SP89, CD00]. Each of the 8! = 40320 fitness
evaluations was made by running K2 on Dtrain (as shown
in Figure 2), consisting of 20000 stochastically-generated
samples, and then evaluating the resulting BN using
forward simulation on Dtest (a holdout test set not used by
the GA as Dval in Figure 2) and an evidence bit vector Ie=

(1 0 0 0 0 0 0 1). The histogram shown corresponds to
data generated from the evidence instantiation Visit-to-
Asia = true ∧ Dyspnoea = false. We note that this is just
one evidence specification among many plausible ones
that might occur in “real” applications of this consultative
BN. The mean fitness is 0.958, the range is [0.0802,
0.999], and the standard deviation is 0.039.

Table 1 summarizes experimental specifications using the
experimental platform described in the previous section.
Figure 4 shows the average-fitness curve for Asia using
the GAJIT wrapper. Using forward simulation [SP89,
CD00], we generated 20000 samples for Dtrain, 5000 for
Dval (used to evaluate fitness in the GA), and 5000 for Dval
(used to evaluate “generalization fitness” on the ordering
returned by the GA). The number of stochastic samples
used to perform inference on Dval is given in Table 1; for
all runs, 15000 samples were used to perform inference
on Dtrain. The GA uses OX (order crossover), swap-
mutation, and a population of size 10, and was run for 100
generations.

K2 FS Samples Best f of final gen
5000 1500 0.944
10000 1500 0.960
20000 150 0.935
20000 450 0.977
20000 1500 0.978

Table 1. Results for Asia (5000 samples per fitness
evaluation in Dval and Dtest)

The results for the last line were averaged over 3 trials but
Figure 4 depicts the median result. Starting from a test
fitness of 0.4 (inferential loss of 0.6), it improves the test
fitness to 0.98. This is only about slightly above the mean
fitness but it is noteworthy that the gold standard network
achieves fitness of only 0.98 as well. We validated this
using exact inference (the Lauritzen-Spiegelhalter
algorithm [LS88, Ne90]) to compute the marginals on the
data and our forward simulation function itself converges
to negligibly low relative loss.

Inferential RMSE for Forward Simulation

0

0.05

0.1

0.15

0.2

0.25

1 2693 5385 8077 10769 13461

Samples

R
M

S
E

Gold
Standard
Network

K2 Output
on Optimal
Ordering

K2 Output
on GA
Ordering

K2: 20K FS: 1500

Figure 4. Fitness curve for last run in Table 1

As the fitness curve shows, the GAJIT wrapper reaches
0.98 rather quickly. The highest fitness achieved by the

Frequency of Validation Set Fitness

0 200 400 600 800 1000 1200 1400
0.802

0.816

0.830

0.844

0.858

0.871

0.885

0.899

0.913

0.927

0.941

0.955

0.969

0.982

0.996

Figure 3. Histogram of estimated fitness for all 8! =
40320 permutations of Asia variables.

wrapper on any run is 0.99, and inspection shows that the
corresponding ordering has only one inversion from the
canonical one given by Neapolitan [Ne90]. This
inversion is consistent with the partial ordering of the
canonical B, which means that K2 can still produce the
best possible structure from it.

Experiments using ALARM-13 and ALARM-37 indicated
that although K2 is capable of recovering a graph (V, E)
close to the gold standard network (Cooper and
Herskovits report only two graph errors using only 20000
training examples [CH92], as we used), its algorithm for
estimating conditional probability tables results in high
relative inferential loss. We hypothesize that this is due
to the skewness of some conditional probability tables
(CPTs) in both versions of ALARM. The fitness
evaluation procedure depicted in Figure 2 is therefore is
less effective than on Asia. In continuing work, we are
hybridizing K2 with other CPT learning algorithms.

6 DISCUSSION AND FUTURE WORK
We have considered several continuations of this
research, grouped into four categories: validation,
scalability, comparison to other structure learning
methods, and improvements to the ordering GA.

First, validation is currently performed by running
importance sampling for precisely 15000 samples (with
an importance function update every 100 samples for
AIS), and this is repeated to find the fitness of the best
ordering â found by the generational GA. Experiments
currently in development run K2 with a range of Dtrain
sizes to generate a learning curve, and run AIS longer
with â to get a more accurate evaluation. Automated
convergence analysis can be used to adapt the number of
samples and the AIS update rate. Fast exact inference to
find the true inferential loss baseline, a topic of a
concurrent research project, can test the efficacy of AIS
itself. We have focused in this paper on the general case,
where the gold standard network may not be known, but
when it is, one can use graph edit distance between the
BN induced by â and the gold standard as a validation
measure [CH92].

Second, we plan to explore the scalability of the GA
wrapper by experimenting with larger networks (such as
ALARM and Pathfinder) with which we have already
tested AIS and K2 as individual components. When used
in a GA, which may evaluate fitness thousands to millions
of times for this problem, these primitives to become
bottlenecks. To make the wrapper feasible, it will be
necessary to parallelize K2 and AIS.

Third, there are several algorithms besides greedy search
for structure learning, such as deterministic score-based
(sparse candidate, Tabu search) methods, constraint-based
methods, stochastic sampling in structure space by direct
(non-greedy) global optimization and stochastic sampling
in ordering space (to determine structure, without using a
greedy algorithm such as K2 as an intermediary). These

are often less sensitive to variable ordering but may still
be affected by it. In continuing work, we plan to compare
our GA wrapper to these techniques.

Fourth, the following are promising variants of the GA
that are high experimental priorities: Pareto optimization
of (fa, fb, fc) and experimentation with other permutation
mutation and crossover operators (partially matched and
cycle crossover).

Acknowledgements
This research was supported by the National Science
Foundation under a subaward of cooperative agreement
NSF-9874732. The authors thank Haipeng Guo,
Benjamin B. Perry, and Julie A. Thornton for the original
implementation of the GA wrapper.

References
[Be90] D. P. Benjamin, editor. Change of Representation
and Inductive Bias. Kluwer Academic Publishers,
Boston, 1990.
[BGH89] L. B. Booker, D. E. Goldberg, and J. H.
Holland. Classifier Systems and Genetic Algorithms.
Artificial Intelligence, 40:235-282, 1989.
[CD00] J. Cheng and M. J. Druzdzel. AIS-BN: An
adaptive importance sampling algorithm for evidential
reasoning in large Bayesian networks. Journal of
Artificial Intelligence Research (JAIR), 13:155-188,
2000.
[CH92] G. F. Cooper and E. Herskovits. A Bayesian
Method for the Induction of Probabilistic Networks from
Data. Machine Learning, 9(4):309-347, 1992.
[Co90] G. F. Cooper. The computational complexity of
probabilistic infernece using bayesian belief networks.
Artificial Intelligence, 42(2-3):393-405. Elsevier, 1990.
[CS96] K. J. Cherkauer and J. W. Shavlik. Growing
Simpler Decision Trees to Facilitiate Knowledge
Discovery. In Proceedings of the Second International
Conference of Knowledge Discovery and Data Mining
(KDD-96), Portland, OR, August, 1996.
[DSG93] K. A. DeJong, W. M. Spears, and D. F. Gordon.
Using genetic algorithms for concept learning. Machine
Learning, 13:161-188, Kluwer Academic Publishers,
1993.
[EF01] G. Elidan and N. Friedman. Learning the
Dimensionality of Hidden Variables. In Proceedings of
the Seventeenth Conference on Uncertainty in Artificial
Intelligence (UAI-2001), Morgan-Kaufmann, 2001.
[FG98] N. Friedman and M. Goldszmidt. Learning
Bayesian Networks From Data. Tutorial, American
National Conference on Artificial Intelligence (AAAI-
98), Madison, WI. AAAI Press, San Mateo, CA, 1998.
[FLNP00] N. Friedman, M. Linial, I. Nachman, and D.
Pe’er, Using Bayesian networks to analyze expression
data. In Proceedings of the Fourth Annual International

Conference on Computational Molecular Biology
(RECOMB 2000), ACM-SIGACT, April 2000.
[Go89] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley,
Reading, MA, 1989.
[GW99] C. Guerra-Salcedo and D. Whitley. Genetic
Approach to Feature Selection for Ensemble Creation. In
Proceedings of the 1999 International Conference on
Genetic and Evolutionary Computation (GECCO-99).
Morgan-Kaufmann, San Mateo, CA, 1999.
[HGC95] D. Heckerman, D. Geiger, and D. Chickering,
Learning Bayesian networks: The combination of
knowledge and statistical data. Machine Learning,
20(3):197-243, Kluwer, 1995.
[HH98] R. L. Haupt and S. E. Haupt. Practical Genetic
Algorithms. Wiley-Interscience, New York, NY, 1998.
[HL99] G. Harik and F. Lobo. A parameter-less genetic
algorithm. Illinois Genetic Algorithms Laboratory
technical report 99009, 1999.
[HWRC00] W. H. Hsu, M. Welge, T. Redman, and D.
Clutter. Genetic Wrappers for Constructive Induction in
High-Performance Data Mining. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO-2000), Las Vegas, NV. Morgan-Kaufmann,
San Mateo, CA, 2000.
[HWRC02] W. H. Hsu, M. Welge, T. Redman, and D.
Clutter. Constructive Induction Wrappers in High-
Performance Commercial Data Mining and Decision
Support Systems. Knowledge Discovery and Data
Mining, Kluwer, 2002.
[KJ97] R. Kohavi and G. H. John. Wrappers for Feature
Subset Selection. Artificial Intelligence, Special Issue on
Relevance, 97(1-2):273-324, 1997.
[Fa00] M. Faupel. GAJIT genetic algorithm package.
URL: http://www.angelfire.com/ca/Amnesiac/gajit.html,
2000.
[Mi97] T. M. Mitchell. Machine Learning. McGraw-
Hill, New York, NY, 1997.
[LS88] S. L. Lauritzen and D. J. Spiegelhalter. Local
computations with probabilities on graphical structures
and their application to expert systems. Journal of the
Royal Statistical Society, Series B 50, 1988.
[Ne90] R. E. Neapolitan. Probabilistic Reasoning in
Expert Systems: Theory and Applications. Wiley-
Interscience, New York, NY, 1990.
[Ne93] R. M. Neal. Probabilistic Inference Using
Markov Chain Monte Carlo Methods. Technical Report
CRG-TR-93-1, Department of Computer Science,
University of Toronto, 1993.
[PV91] J. Pearl and T. S. Verma, A theory of inferred
causation. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Second International
Conference. Morgan Kaufmann, San Mateo, CA, 1991.
[RPG+97] M. Raymer, W. Punch, E. Goodman, P.
Sanschagrin, and L. Kuhn, Simultaneous Feature
Extraction and Selection using a Masking Genetic
Algorithm, In Proceedings of the 7th International
Conference on Genetic Algorithms, pp. 561-567, San
Francisco, CA, July, 1997.

[SP89] R. D. Schacter and M. A. Peot. Simulation
approaches to general probabilistic inference on belief
networks. In Uncertainty in Artificial Intelligence 5, p.
221-231, Elsevier Science Publishing Company, New
York, NY, 1989.
[We96] R. L. Welch. Real-Time Estimation of Bayesian
Networks. In Proceedings of UAI-96, Morgan-
Kaufmann, 1996.
[Wi02] Wikipedia Online Encyclopedia, Sharp-P. URL:
http://www.wikipedia.com/wiki/Sharp-P, 2002.

