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Abstract 
 
Greedy score-based algorithms for learning the 
structure of Bayesian networks may produce 
very different models depending on the order in 
which variables are scored.  These models often 
vary significantly in quality when applied to 
inference.  Unfortunately, finding the optimal 
ordering of inputs entails search through the 
permutation space of variables.  Furthermore, in 
real-world applications of structure learning, the 
gold standard network is typically unknown.  In 
this paper, we first present a genetic algorithm 
(GA) that uses a well-known greedy algorithm 
for structure learning (K2) and approximate 
inference by importance sampling as primitives 
in searching this permutation space.  We then 
develop a flexible fitness measure based upon 
inferential loss given a specification of evidence.  
Finally, we evaluate this GA wrapper using the 
well-known networks Asia and ALARM and 
show that it is competitive with exhaustive 
enumeration in finding good orderings for K2, 
resulting in structures with low inferential loss 
under importance sampling. 

Keywords: approximate inference, Bayesian networks, 
score-based structure learning, stochastic sampling 

1 INTRODUCTION 
Learning the structure, or causal dependencies, of a 
graphical model of probability such as a Bayesian 
network (BN) is often a first step in reasoning under 
uncertainty.  In many machine learning applications, it is 
therefore referred to as a method of causal discovery 
[PV91].  Finding the optimal structure of a BN from data 
has been shown to be NP-hard [HGC95], even without 
considering latent (unobserved) or irrelevant (extraneous) 
variables.  Therefore, greedy score-based algorithms 
[FG98] have been developed to provide more efficient 
structure learning at an accuracy tradeoff.  In this paper 
we examine a general shortcoming of greedy structure 
learning – sensitivity to variable ordering – and develop a 
genetic algorithm to mitigate this problem by searching 

the permutation space of variables using a probabilistic 
inference criterion as the fitness function. 

We make the case in this paper that the probabilistic 
inference performance element, in the absence of a 
known gold standard network or any explicit 
constraints, can provide the feedback needed to search for 
a good ordering.  We then derive a heuristic based on 
validation by inference (exact inference [LS88, Ne90] for 
small networks, approximate inference by stochastic 
sampling [CD00] for larger ones).  Our primary objective 
is inferential accuracy using the learned structure. 

Toward this end, we adapt a flexible, composite fitness 
measure used in other machine learning systems called 
wrappers [KJ97], which automatically tune 
hyperparameters of the learning system such as the 
ordering of input variables.  We present the system shown 
in Figure 1, a genetic algorithm-based wrapper [CS96, 
RPG+98, HWRC01], and show how it provides a parallel 
stochastic search mechanism for inferential loss-
minimizing variable orderings.  We demonstrate that, 
used in tandem with K2, it produces structures whose loss 
under importance sampling is nearly as low as any found 
by exhaustive enumeration of orderings.  Finally, we 
discuss how this wrapper provides a flexible method for 
tuning representation biases [Mi97] in Bayesian network 
structure learning using different fitness criteria. 
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Figure 1.  System Design Overview. 



2 VALIDATION OF STRUCTURES 

 
Consider a typical probabilistic reasoning environment, as 
shown in Figure 2, where structure learning [A] is a first 
step.  The input to this system includes a set D of training 
data vectors x = (x1, …, xn) each containing n variables.  
If the structure learning algorithm is greedy, an ordering a 
on the variables may also be given as input.  The structure 
learning component of this system produces a graphical 
model B = (V, E, Θ) that describes the dependencies 
among Xi, including the conditional probability functions.  
The inferential performance element [B] of this system 
takes B and a new data set Dtest of vectors drawn from the 
desired inference space, where only a subvector E of X = 
(X1, …, Xn) is observable, and infers the remaining 
unobserved values X \ E.  We denote the indicator bit 
vector for membership in E by Ie.  The performance 
criterion f is the additive inverse of the (inferential or 
utility) loss of [B]. 

This section specifies the functionality of [A] and [B] and 
explains the derivation of f as a function of the ordering a.  
In the next section, we show how the environment 
depicted in Figure 2 is used as the fitness evaluation 
module [2] of the overall GA-based system (Figure 1). 

2.1 Learning Bayesian Network Structure 

Consider a finite set ? = {X1, …, Xn} of discrete random 
variables.  A Bayesian network is an annotated directed  
acyclic graph G = (V, E) that encodes a joint probability 
distribution over ? .  The nodes of the graph correspond to 
the random variables X1, …, Xn.  Each node is annotated 
with the conditional probability distribution (CPD) that 
represents P(Xi | Paxi ), where Paxi denotes the parents of 
Xi in G.  A Bayesian network B specifies the unique joint 
probability distribution over ? given by: 

 

P(X1, …, Xn) = ( )∏
=

n

i
xi i

Pa|XP
1

 (1) 

The graph G represents conditional independence 
properties of the distribution.  These are the Markov 
independencies: each variable Xi is independent of its 
non-descendants, given its parents, in G. [EF01] We 
denote the annotating CPD parameters of B by Θ; thus, B 
= (V, E, Θ). 

We are interested in learning B from training data D 
consisting of examples x.  For simplicity, we assume that 
there are no variables that are latent or completely 
irrelevant (not weakly relevant [KJ97]).  The objective of 
structure learning is then to find the arcs E for V = ?.  
Some structure learning algorithms, such as K2 [CH92], 
are greedy in that they add arcs based upon the 
incremental gain that each single arc induces in a global 
score, such as the Bayesian (Dirichlet) score. [CH92, 
FG98].  We use K2 for structure learning – module [A] of 
Figure 2 – because  it finds structures quickly if given a 
reasonable ordering a.  Variables must occur “upstream” 
from one another (or “downstream” in a, i.e., have a 
higher index) to be considered as candidate parents.  If the 
number of parents per variable is constrained to a constant 
upper bound, K2 has worst-case polynomial running time 
in the number n of variables. 

Two clear limitations of greediness are inability to 
backtrack (i.e., undo the addition of an arc) or consider 
the joint effects of adding multiple arcs (parents).  This is 
why greedy structure learning algorithms are sensitive to 
the presence of irrelevant variables in the training data,  a 
pervasive problem in machine learning [KJ97].  
Additionally, K2 is particularly sensitive to the variable 
ordering because arcs fail to be added, resulting in 
unexplained correlations, whenever candidate parents are 
evaluated in any order that precludes a causal 
dependency.  Were a gold standard structure G* = (V, E*) 
available, this would be seen as an inversion in the partial 
ordering induced by E*.  Preventing missing arcs – i.e.,  
“false negatives for causality” – is a challenge in structure 
learning as applied to causal discovery [PV91, FG98]. 

Unfortunately, just as finding the optimal structure is 
itself intractable [HGC95], so is finding the optimal 
ordering of inputs for a given structure learning 
algorithm.  Searching the space of permutations of 
variables is prohibitive, and defeats the purpose of using a 
greedy algorithm.  In this paper, we focus on K2 and the 
problem of optimizing the variables to be given as its 
input.  To specify the optimization of variable order as a 
search problem, we must define the states (permutations), 
operators (re-ordering), initial candidates, and evaluation 
criterion. 

2.2 Validation by Inference 

A desired joint probability distribution function P(X) can 
be computed using the chain rule for Bayesian networks, 
given above in Equation (1).  The most probable 
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explanation (MPE) is a truth assignment, or more 
generally, value assignment, to a query Q = X \ E with 
maximal posterior probability given evidence e.  Finding 
the MPE directly using Equation (1), requires 
enumeration of exponentially many explanations.  
Instead, a family of exact inference algorithms known as 
clique-tree propagation (also called join tree or junction 
tree propagation) is typically used in probabilistic 
reasoning applications.  The first of these algorithms was 
developed by Lauritzen and Spiegelhalter [LS88, Ne90].  
Although exact inference is important in that it provides 
the only completely accurate baseline for the fitness 
function f, the problem for general BNs is #P-complete 
(thus, deciding whether a particular truth instantiation is 
the MPE is NP-complete) [Co90, Wi02]. 

Approximate inference refers to approximation of the 
posterior probabilities given evidence.  One stochastic 
approximation method called importance sampling 
[CD00] estimates the evidence marginal by sampling 
query node instantiations: 

P(E = e) = ( )∑ =
E\X

eE|E\XP  (2) 

[CD00] discusses basic variants of importance sampling.  
These include probabilistic logic sampling [He86], whose 
importance function is the joint distribution function 
P(X).  By sampling from the network as if no evidence 
were given, the priors on source or root nodes are 
emphasized, resulting in a possibly suboptimal 
importance function as the authors point out.  The source 
priors are similarly emphasized in forward simulation by 
likelihood weighting [SP89, CD00], which samples using 
the joint probability of query nodes as the importance 
function: 

P(X \ E) = ( )∑
∉ex

xi i
PaxP |  (3) 

Welch demonstrates [We96] that even a moderately 
complex binary network with deterministic nodes, 
approximately the size of ALARM, can be difficult to 
sample from by pure forward sampling if there are 
enough query nodes (evidence) – the author instantiates 4 
of 32 binary nodes with a moderately unlikely evidence 
vector, P(e) = 6.5 * 10-4. 

One way of scaling up to large networks in a realistic 
probabilistic reasoning application is to dynamically adapt 
the importance function.  [CD00] presents a solution of 
this type called adaptive importance sampling (AIS), 
where a dynamic importance function is first initialized 
using structural heuristics, then empirically trained in 
each of several training steps.  This is similar to the 
hyperparameter sampling stages in Markov chain Monte 
Carlo (MCMC) methods [Ne93].  The key issue is 
whether we have any prior knowledge regarding the 
estimators (e.g., heuristic importance functions). 

We have implemented five variants of importance 
sampling: forward simulation, logic (aka rejection) 

sampling, backward sampling, self and heuristic 
importance sampling, and adaptive importance sampling.  
Because adaptive importance sampling has been 
empirically shown [CD00] to be more robust in the 
presence of unlikely evidence e, and because we have 
found it to converge quickly in independent experiments, 
we use it in our evaluation component, module [B] in 
Figure 2 above. 

2.3 Deriving Fitness 

To optimize the ordering, we considered fitness functions 
with three objective criteria.  In this paper, however, we 
focus solely on the first: 
 

1. Inferential loss: Quality of the network 
produced by K2 as detected through inferential 
loss evaluated over a holdout validation data set 
Dval ≡ D \ Dtrain (see Figure 1) – requires modules 
[A] and [B] in Figure 2 

2. Model loss: “Size” of the network under a 
specified representation – requires module [A] 
only and is independent of [B] 

3. Ordering loss: Inference and model-independent 
measure of data quality given only D and a – 
independent of both modules [A] and [B] 
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In related work on genetic wrappers for variable selection 
in supervised inductive learning, Hsu et al adapted 
Equation (4) [HWRC00, HWRC01] from similar fitness 
functions developed by Cherkauer and Shavlik for 
decision tree pre-pruning [CS96], Raymer et al for 
similarity-based learning (k-nearest neighbor regression) 
[RPG+97], and Whitley and Guerra-Salcedo for 
connectionist learning [GW99].  This breadth of 
applicability demonstrates the generality of simple genetic 
algorithms as wrappers for performance tuning in 
supervised inductive learning. 

Recently, Hsu et al automatically validated the 
coefficients a, b, and c for several individual data sets on 
a supervised learning task.  [HWRC02] Results were 
positive in that this approach found application-specific 
values for these hyperparameters, and the GA achieved 



better generalization accuracy than search-based feature 
selection wrappers [KJ97] for a real-world test bed 
(prediction of loss ratio in automobile insurance risk 
analysis).  Controlling the values of a, b, and c 
simultaneously proved to be difficult in that large 
amounts of validation data were required, and the authors 
report that experiments did not indicate conclusively 
whether the GA performed better with this single 
composite-objective fitness function or a multi-objective 
one (i.e., Pareto optimization).  Therefore, for clarity, we 
set b and c to 0 to ignore fb and fc in the experiments 
reported in this paper.  In the last section, we discuss the 
ramifications of this design choice and possible future 
work using the full f. 

We now focus on the first term, fa. This fitness function 
computes inferential loss by measuring the predictive 
power of the Bayesian network on the data set given a 
specification of evidence, Ie.  The specific fa we use is the 
normalized additive inverse of the root mean squared 
error (RMSE), which is the square root of the sum of 
squared differences betweeen the sampled, approximate 
probabilities P’(xij) and exact probabilities P(xij), over 
states xij of variables Xi.  [CD00]  Note that fa is the only 
term that depends on which variables are observable, i.e., 
members of E.  We consider this the most important term 
just as validation set classification error is considered a 
typical estimator of generalization error in supervised 
classification learning [Mi97].  Ultimately, a BN B is only 
as good as the inferences it can produce on real-world 
data given realistic evidence e, and an ordering a is only 
as good as the BN that it can induce given a specific 
structure learning algorithm.  In the next section, we 
explain why this is a motivation for GA wrappers in 
general. 

3 SEARCH-BASED ENHANCEMENT OF 
LEARNING 
Figure 1 indicates the role of a combinatorial optimization 
system for controlling a, in context: a probabilistic 
reasoning system based on greedy structure learning can 
use an optimized ordering â  to enhance structure quality.  
This is done by searching for a good a using a “realistic” 
inferential criterion and a fixed, greedy structure learning 
algorithm such as K2.  We now explore this combinatorial 
optimization problem and the design of our specific GA. 

3.1 Wrapper Approaches to Optimizing Input 

Tuning machine learning algorithms for large, complex 
data sets is an expensive and difficult task.  In addition to 
identifying the appropriate inputs for a particular 
classification or inference performance element, the 
system designer must find a representation for 
hypotheses, i.e. the language for expressing the target 
concept, and a suitable performance measure by which to 
evaluate hypotheses.  Making appropriate decisions 
regarding the input specification is crucial for tractable 
learning, because these determine part of the inductive 

bias [Be90, Mi97] of the learning system.  Bias, the 
preferences of a learning system for one hypothesis over 
another other than those dictated by consistency with the 
training data, determines how the space of hypotheses (in 
our application, BN structures) is to be searched and can 
radically affect the tractability of this search.  
Unfortunately, effective decisions often depend in subtle 
ways upon the learning algorithm, training data, and their 
interaction.  A mechanism for systematically identifying 
good inputs should take the performance element of the 
system input into account.1  It must have the ability to 
tune the learning system by automatically adjusting the 
some aspect of the input specification (e.g., selected 
variables, aka feature subsets, or variable orderings a) 
and coefficients for quantitative inductive bias such as 
those discussed previously.  Controlling all of these 
parameters, while keeping the machine learning system 
efficient and manageable, is not easy. 

We approach this problem in BN structure learning by 
applying search-based combinatorial optimization and use 
validation by inference (presented in the previous section) 
as a search heuristic.  The high-level mechanisms that 
determine a learning system’s representation and 
preference biases can be expressed using learning 
hyperparameters [Ne93], such as a.  Just as a learning 
parameter denotes a trainable component of a pattern 
detector or classification function, a learning 
hyperparameter denotes a controllable component of the 
organization, representation, or search algorithm for a 
learning problem.  Inductive learning systems, or 
inducers, are built with such hyperparameters and the 
ability to tune them using combinatorial search, based 
upon evaluation metrics over validation data.  The 
benefits to probabilistic learning and reasoning are the 
potential for greater flexibility in learning processes, an 
increase in generalization quality, and the ability to make 
the learning component more automatic and transparent. 

3.2 GA-Based Wrappers 

A GA is ideal for implementing wrappers where 
hyperparameters are naturally encoded as chromosomes 
such as bit strings or permutations.  This is precisely the 
case with variable (feature subset) selection, where a bit 
string can denote membership in the subset, and with 
variable ordering, where a permutation denotes a, the 
order in which nodes are added to the BN.  Both of these 
are forms of constructive induction where the input 

                                                        
1 The term wrapper as used in machine learning [Ko95, 
KJ97] simply refers to this property, wherein the 
combinatorial optimization system “wraps around” a 
specific inductive learning and classification or inference 
ensemble such as the one shown in Figure 2.  In the 
genetic and evolutionary computation literature, as we 
note below, wrappers for tuning GA hyperparameters 
have been in use for quite some time. [BGH89, DSG93, 
HL99] 



representation is changed from the default [Be90] – here, 
the full subset ? or an arbitrary ordering a0. 

With a GA-based wrapper, we seek to evolve 
hyperparameter values using the performance criterion of 
the overall learning system as fitness.  In learning to 
classify, this may simply mean validation set accuracy.  
However, as we have noted, many authors of GA-based 
wrappers have independently derived criteria that 
resemble minimum description length (MDL) estimators – 
that is, they seek to minimize model size and the sample 
complexity of input as well as maximize generalization 
accuracy. [CS96, RPG+97, GW99, HWRC00] 

An additional benefit of GA-based wrappers is that it can 
automatically calibrate “empirically determined” 
constants such as the coefficients a, b, and c introduced in 
the previous section.  As we noted, this can be done using 
individual training data sets rather than assuming that a 
single optimum exists for a large set of machine learning 
problems.  This is preferable to empirically calibrating 
hyperparameters as if a single “best mixture” existed.  
Even if a very large and representative corpus of data sets 
were used for this purpose, there is no reason to believe 
that there is a single a posteriori optimum for 
hyperparameters such as weight allocation to inferential 
loss, model complexity, and sample complexity of data in 
the constructive induction wrapper. 

Finally, GA wrappers can “tune themselves” – for 
example, the GA-Based Inductive Learning (GABIL) 
system of Dejong et al [DSG93] learns propositional rules 
from data and adjusts constraint hyperparameters that 
control how these rules can be generalized.  Mitchell 
notes that this is a method for evolving the learning 
strategy itself. [Mi97]  Many classifier systems also 
implement performance-tuning wrappers in this way. 
[BGH89]  Finally, population size and other constants for 
controlling elitism, niching, sharing, and scaling can be 
controlled using parameterless GAs. [HL99] 

We adapted GAJIT [Fa00], a Java shell for developing 
genetic algorithms, to implement a GA for the 
permutation problem of ordering variables for Bayesian 
network structure learning (using K2) and inference 
(using the Lauritzen-Spiegelhalter algorithm [LS88, 
Ne90] and forward simulation [SP89, CD00]).  We now 
specify the ordering problem and, in the next section, 
present the permutation GA design. 

3.3 Ordering and Structure Learning Problems 

The ordering problem itself is a straightforward search in 
permutation space Α for a value of a that minimizes the 
inferential loss or maximizes its normalized, additive 
inverse, fa.  Some simple combinatorial analysis illustrates 
the relative complexity of the ordering and structure 
learning problems. 
 Clearly |Α| = n! if we suppose that there are no latent or 
irrelevant variables.  From Stirling’s approximation, we 
can estimate that nlgn2≈A .  Meanwhile, we know that 
all elements of structure space are directed acyclic graphs, 

containing some subset of the n2 possible directed edges. 
The size of structure space is thus in ( )2

2nΟ .  Note that 
this includes all directed graphs and is therefore an 
overestimate.  Taking the asymptotic ratio of these two 
counting functions, however, we see that in the limit, 
there are infinitely many possible structures for each 
ordering.  K2, which is deterministic, finds just one such 
structure, so it is not guaranteed that finding a loss-
minimal ordering a will cause it to produce a loss-optimal 
network B, particularly for very large n.  However, 
Friedman conjectures [FLNP00] that searching ordering 
space provides a useful change of representation [Be90] 
that tends to admit smoother interpolation than in 
structure space.  In evolutionary computation terms, this 
would mean that ordering space is less deceptive [Go89] 
than structure space. 

4 GA FOR VARIABLE ORDERING 

4.1 Searching Ordering Space 

The criterion fa is computed by actually learning a BN B = 
K2 (a, Dtrain) – more precisely (E,Θ) = K2 (a, Dtrain). 

E is computed by K2, which makes a single pass through 
a (a permutation of ? = {X1, …, Xn}) and, for each Xi, 
considering only Xj where a(j) > a(i) as a potential parent 
of Xi in E.  It then adds Xj to Paxi by adding (Xj, Xi) to E if 
and only if this increases the Dirichlet score of Paxi, 
evaluated over Dtrain.  This continues until: the set of Xj is 
exhausted, no single parent can be added to incrementally 
increase the score, or a preset (or automatically 
calibrated) limit on the size of Paxi in E is reached.  For 
discrete BNs, Θ is computed simply by populating the 
specified conditional probability tables (CPTs) with 
frequencies computed using Dtrain. 

Once B is fully learned, each example in Dval ≡ D \ Dtrain 
is masked with Ie and its complement to obtain separate 
evidence and query data.  The inferential loss fa is 
computed as specified in the previous section.  The 
ordering problem is a combinatorial search in Α using fa 
as a heuristic. 

4.2 Permutation Genetic Algorithm Design 

Application of genetic algorithms to permutation 
problems is discussed in [Go89] and [HH99].  The design 
of the GAJIT wrapper illustrated in Figure 1 is as follows.  

We implemented an elitist permutation GA purely by 
extending the GAJIT classes using order crossover  (OX) 
[HH99].  OX exchanges subsequences of two 
permutations, displacing duplicate indices with holes.  It 
then shifts the holes to one side, possibly displacing some 
indices, and replaces the original subsequence in these 
holes.  If two parents p1 = [3 4 6 2 1 5] and p2 = [4 1 5 3 2 
6] are recombined using OX, with the crossover mask 
underlined, the resulting intermediate representation is i1 
= [- - 5 3 1 4] and i2 = [- - 6 2 4 1], and the offspring are 
o1 = [6 2 5 3 1 4] and o2 = [5 3 6 2 4 1].  Mutation is 



implemented by swapping uniformly selected indices.  
Cataclysmic mutation [GW99] can easily be implemented 
using a shuffle operator, but we did not find this 
necessary. 

The master controller for our GA runs in a Java virtual 
machine.  It manages slaves that concurrently evaluate 
members of its population a.  Each individual is encoded 
as a permutation of the indices {1, …, n}.  Slave 
processes distributed across (4-48 processors) of a 
distributed-shared memory (DSM) compute cluster run 
identical copies of the K2 and inference-based application 
depicted in Figure 2.  Each evaluates the ordering it is 
given by learning B from Dtrain, a holdout segment of D 
(2/3 by default) and returns fa for the validation set Dval ≡ 
D \ Dtrain.  The master GA collects the fitness components 
for all members of its population and then computes f 
(here, f = fa). 

5 EXPERIMENTAL RESULTS AND 
EVALUATION 
We experimented using the GA on data simulated from 
the well-known toy BN Asia [Ne90], which has 8 nodes.  
This is a very simple network to perform inference on 
when the structure is known a priori, but the permutation 
space – which we are searching using only f and the 
synthetic data – has 8! = 40320 orderings.  We also 
performed exploratory experiments using two versions of 
the ALARM network: a subgraph of 13 nodes and the full 
37-node network. 

Figure 3 depicts the histogram of validation set fitness as 
measured exhaustively using Equation 5 and forward 
simulation [SP89, CD00].  Each of the 8! = 40320 fitness 
evaluations was made by running K2 on Dtrain (as shown 
in Figure 2), consisting of 20000 stochastically-generated 
samples, and then evaluating the resulting BN using 
forward simulation on Dtest (a holdout test set not used by 
the GA as Dval in Figure 2) and an evidence bit vector Ie= 

(1 0 0 0 0 0 0 1).  The histogram shown corresponds to 
data generated from the evidence instantiation Visit-to-
Asia = true ∧ Dyspnoea = false.  We note that this is just 
one evidence specification among many plausible ones 
that might occur in “real” applications of this consultative 
BN.  The mean fitness is 0.958, the range is [0.0802, 
0.999], and the standard deviation is 0.039. 

Table 1 summarizes experimental specifications using the 
experimental platform described in the previous section.  
Figure 4 shows the average-fitness curve for Asia using 
the GAJIT wrapper.  Using forward simulation [SP89, 
CD00], we generated 20000 samples for Dtrain, 5000 for 
Dval (used to evaluate fitness in the GA), and 5000 for Dval 
(used to evaluate “generalization fitness” on the ordering 
returned by the GA).  The number of stochastic samples 
used to perform inference on Dval is given in Table 1; for 
all runs, 15000 samples were used to perform inference 
on Dtrain.  The GA uses OX (order crossover), swap-
mutation, and a population of size 10, and was run for 100 
generations.   

K2  FS Samples Best f of final gen 
5000 1500 0.944 
10000 1500 0.960 
20000 150 0.935 
20000 450 0.977 
20000 1500 0.978 

Table 1.  Results for Asia  (5000 samples per fitness 
evaluation in Dval and Dtest) 

The results for the last line were averaged over 3 trials but 
Figure 4 depicts the median result.  Starting from a test 
fitness of 0.4 (inferential loss of 0.6), it improves the test 
fitness to 0.98.  This is only about slightly above the mean 
fitness but it is noteworthy that the gold standard network 
achieves fitness of only 0.98 as well.  We validated this 
using exact inference (the Lauritzen-Spiegelhalter 
algorithm [LS88, Ne90]) to compute the marginals on the 
data and our forward simulation function itself converges 
to negligibly low relative loss. 
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Figure 4.  Fitness curve for last run in Table 1 

As the fitness curve shows, the GAJIT wrapper reaches 
0.98 rather quickly.  The highest fitness achieved by the 
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Figure 3.  Histogram of estimated fitness for all 8! = 
40320 permutations of Asia variables. 



wrapper on any run is 0.99, and inspection shows that the 
corresponding ordering has only one inversion from the 
canonical one given by Neapolitan [Ne90].  This 
inversion is consistent with the partial ordering of the 
canonical B, which means that K2 can still produce the 
best possible structure from it. 

Experiments using ALARM-13 and ALARM-37 indicated 
that although K2 is capable of recovering a graph (V, E) 
close to the gold standard network (Cooper and 
Herskovits report only two graph errors using only 20000 
training examples [CH92], as we used), its algorithm for 
estimating conditional probability tables results in high 
relative inferential loss.  We hypothesize that this is due 
to the skewness of some conditional probability tables 
(CPTs) in both versions of ALARM.   The fitness 
evaluation procedure depicted in Figure 2 is therefore is 
less effective than on Asia.  In continuing work, we are 
hybridizing K2 with other CPT learning algorithms. 

6 DISCUSSION AND FUTURE WORK 
We have considered several continuations of this 
research, grouped into four categories: validation, 
scalability, comparison to other structure learning 
methods, and improvements to the ordering GA. 

First, validation is currently performed by running 
importance sampling for precisely 15000 samples (with 
an importance function update every 100 samples for 
AIS), and this is repeated to find the fitness of the best 
ordering â found by the generational GA.  Experiments 
currently in development run K2 with a range of Dtrain 
sizes to generate a learning curve, and run AIS longer 
with â to get a more accurate evaluation.  Automated 
convergence analysis can be used to adapt the number of 
samples and the AIS update rate.  Fast exact inference to 
find the true inferential loss baseline, a topic of a 
concurrent research project, can test the efficacy of AIS 
itself.  We have focused in this paper on the general case, 
where the gold standard network may not be known, but 
when it is, one can use graph edit distance between the 
BN induced by â and the gold standard as a validation 
measure [CH92]. 

Second, we plan to explore the scalability of the GA 
wrapper by experimenting with larger networks (such as 
ALARM and Pathfinder) with which we have already 
tested AIS and K2 as individual components.  When used 
in a GA, which may evaluate fitness thousands to millions 
of times for this problem, these primitives to become 
bottlenecks.  To make the wrapper feasible, it will be 
necessary to parallelize K2 and AIS. 

Third, there are several algorithms besides greedy search 
for structure learning, such as deterministic score-based 
(sparse candidate, Tabu search) methods, constraint-based 
methods, stochastic sampling in structure space by direct 
(non-greedy) global optimization and stochastic sampling 
in ordering space (to determine structure, without using a 
greedy algorithm such as K2 as an intermediary).  These 

are often less sensitive to variable ordering but may still 
be affected by it.  In continuing work, we plan to compare 
our GA wrapper to these techniques. 

Fourth, the following are promising variants of the GA 
that are high experimental priorities: Pareto optimization 
of (fa, fb, fc) and experimentation with other permutation 
mutation and crossover operators (partially matched and 
cycle crossover). 
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