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Abstract. High Performance Computing (HPC) users are often pro-
vided little or no information at job submission time regarding how long
their job will be queued until it begins execution. Foreknowledge of a
long queue time can inform HPC user’s decision to migrate their jobs
to commercial cloud infrastructure to receive their results sooner. Vari-
ous researchers have used different machine learning techniques to build
queue time estimators. This research applies the proven technique of K-
Means clustering followed by Gradient Boosted Tree regression on over
700,000 jobs actually submitted to an HPC system to predict a submit-
ted job’s queue time from HPC system characteristics and user provided
job requirements. This method applied to HPC queue time prediction
achieves better than 96% accuracy at classifying whether a job will start
prior to an assigned deadline. Additionally, this research shows that his-
toric HPC CPU allocation data can be used to predict future increases
or decreases in job queue time with accuracy exceeding 96%.

1 Introduction

When a job is submitted to a High Performance Computing (HPC) cluster, a
scheduling application, like SLURM, PBS, LoadLeveler, etc., handles the alloca-
tion of HPC resources in the future to the job’s requirements as specified by the
submitter. If adequate HPC resources are currently unavailable, the job enters
a queue for execution in the future, and future resources are scheduled for that
job’s use. While a job is queued and awaiting execution, the job is making no
forward progress toward its eventual completion. Worse still, it is often unclear
to the user how long it will take until the job begins execution. The user knows
the job is waiting to start, but there is often no way for the user to know if
the job execution will begin in three hours, three days, or three weeks. Users
with a time-critical application facing long queue delays may be willing to mi-
grate jobs to commercial cloud infrastructure, like Amazon’s AWS, Microsoft’s
Azure, Google’s Cloud Computing, etc. Various techniques for predicting job
queue times have been implemented in the past with different trade offs and
accuracy. A machine learning pipeline which uses unsupervised K-Means clus-
tering followed by Gradient Boosted Tree Regression has been used to lower
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error rates when used in other applications. This research investigates if this
machine learning technique can also be used to a predict queue times for HPC
jobs.

The goal of this research is to answer the following questions: For an HPC
system with a given current utilization, can we provide an accurate queue time
prediction for a job which factors in the future state of the HPC cluster? Can
we predict the execution of a job prior to an assigned deadline?

2 Background

Improving HPC utilization, decreasing job queue time, and decreasing job turnaround
time are all active areas of research at Kansas State University (KSU). These
areas would typically apply and are of interest to any HPC cluster manager. De-
veloping an accurate queue time predictor can not only help inform job schedul-
ing, but it can also provide additional information to users about their expected
job start times, and perhaps more importantly, about the length of time they
can expect to wait for their results.

Kumar and Vadhiyar [7] performed a similar job queue time prediction by
using k-nearest neighbors followed by support vector machines to classify jobs
into time bins of various sizes with their probabilities. Though this technique
showed promise, using regression allows for a concrete prediction value for queue
time, as opposed to the most likely time bin this job would fall into.

Jancauskas, et al. [6] conducted similar research on queue time prediction
using Naive Bayes to return a list of probability estimates (ti, pi), where pi
was the probability that a job will start before ti. They used similar features
and achieved excellent accuracy, precision, and recall. An advantage of using
clustering and regression over Naive Bayes is that a concrete start time prediction
can be generated for the current load on the HPC system for an individual job
with certain requirements. This research not only uses different machine learning
techniques for prediction, but also factors in changes of the future state of the
HPC system and the impact those changes have on job queue times, which
Jancauskas, et al. considered outside the scope of their research.

Brown, et al. [2] used a very similar technique as this research, using k-nearest
neighbors followed by gradient boosted tree regression, however they also did not
factor in the future state of the HPC system.

Unsupervised K-Means [8] clustering followed by Gradient Boosted Tree Re-
gression [3] (GBTR) has been used by various researchers to improve the accu-
racy of regression models. For instance, Zheng and Wu [4] used this technique to
improve on short-term wind forecasting, and Liu et al. [9] used this technique to
improve short-term power load forecasting. As this technique has shown promise
in improving prediction accuracy in other areas of research, using clustering fol-
lowed by regression could also improve the accuracy of predicting how long a
job will be queued for execution on an HPC system.
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3 Methodology

3.1 Data set

The HPC cluster at KSU is a Beowulf [1] HPC cluster called “Beocat”. Beocat
currently consists of 362 compute nodes with a total of 10980 compute cores and
5.57 Terabytes of memory, and it uses SLURM [16] as the job scheduler. SLURM
logs data from all jobs submitted to Beocat and retains 105 different features
about each job. These features include job submission time, start time, end time,
the number of CPUs requested by the user, the amount of memory and time
requested by the user, etc. The data set used for this research consisted of all jobs
submitted in 2018, which totaled approximately 730,000 jobs. Figure 1 shows the
CPU and memory allocation over time for Beocat for 2018. The calculated CPU
utilization for 2018 was roughly 60%. Jobs can remain queued due to lack of
available CPUs or lack of available memory. This data set was thought to be a
good representative data set with enough data to produce meaningful results.

Fig. 1: CPU and memory allocation over time for KSU HPC system for 2018

3.2 Feature Selection and Calculation

The queue time of a job depends primarily on two factors: the amount of re-
sources available in the HPC and the amount of resources a job is requesting.
Table 1 summarizes and describes the features used for this research.

To calculate BeocatCPUsInUse, the 2018 jobs from the log data were sorted
chronologically by their start and end times. Each time a new job began, the
number of CPUs in use by the cluster was increased by the number of cores
allocated to that job. Each time a job ended, the number of CPUs in use by the
cluster was decreased by the number of cores allocated the that job. The same
strategy was employed to calculate BeocatMemoryInUse.

To calculate QueueDepth, jobs were sorted by their submit times and their
start times. Each time a job is submitted, the queue depth is increased by one.
Each time a job starts, the queue depth is decreased by one.

The requested CPUs, requested memory, and requested time for each job
were directly pulled from the log data to populate the ReqCPUs, ReqMem, and
ReqMinutes features.
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Table 1: Features used
Category Feature Description

HPC features
BeocatCPUsInUse Current allocated CPUs
BeocatMemoryInUse Current allocated memory
QueueDepth The queue depth when job was submitted

Job features

ReqCPUs Number of requested cores for a job
ReqMem Amount of memory requested for a job
ReqMinutes Amount of minutes requested for a job

OwnsResources
True if user has priority access to compute
nodes; False otherwise

Dependent variable QueueTimeInSec Number of seconds from submit until start

There are a number of compute nodes which are available for all Beocat users
to use. Certain resources are owned by departments whose members have priority
access and who can preempt running jobs. The OwnsResources feature was set
to true if there were dedicated resources available which could run that job. If
the job was submitted to only the queues common to all, the OwnsResources

feature was set to false.
To calculate QueueTimeInSec, the submit time for each job was subtracted

from its start time. This time delta object was converted into an integer that
represented the number of seconds each job sat in the queue awaiting job exe-
cution.

3.3 Feature Normalization and Model Development

Min-Max scaling was used on Beocat CPU and memory allocation to return a
value between 0 and 100 which represents the percentage of Beocat currently
allocated.

A vector consisting of ScaledBeocatCPUsInUse, ScaledBeocatMemoryInUse,
QueueDepth, ReqCPUs, ReqMem, and OwnsResources was constructed, and used
to predict QueueTimeInSec. The log data containing roughly 730,000 jobs were
randomly split into an 80% training batch and a 20% testing batch. The train-
ing batch contained roughly 583,000 jobs, and the test batch contained roughly
146,000 jobs.

A base GBTR model was trained using 5-fold cross validation on the training
data, which was then evaluated using the test data. This base model was used
later to predict clusters that contained fewer than 100 elements. This model will
be referred to as the GBTbase in various figures throughout the remainder of
this report.

Since the optimal number of clusters required to group the training data
was initially unclear, iterative K-Means was used to cluster the data using an
increasing number of clusters from 2 to 150. The training data was fed into K-
Means and n clusters were returned, where n = 2, 3, 4, . . . , 150. After clustering,
a GBTR model was developed using 5-fold cross validation for each each cluster
containing more than 100 elements. A small cluster containing fewer than 100



HPC Queue Time Prediction using Clustering and Regression 5

elements would use the GBTbase model to make queue time predictions. These
models were developed using the training data, and then evaluated using the test
data. An unseen-before test input would first be classified by the K-means model,
and then the appropriate GBTR model was used to develop a prediction of the
job’s queue time. The machine learning pipeline’s error rate overall on the test
data was used to determine an ideal number of clusters that minimized the error.
The number of clusters producing a local minimum error rate was identified, and
then that pipeline was selected for further evaluation. This machine learning
pipeline is outlined in Figure 2.

Fig. 2: The machine learning pipeline used for this research.

During actual use, users may have individual and specific deadlines. This
information is not currently solicited or collected on Beocat, so it was unavailable
in the log data. An arbitrary deadline for each job was set to be the average queue
time for all jobs in 2018, or 13423 seconds (HH:MM:SS = 03:43:43). A queue time
prediction was made for each job, and it was assessed whether this prediction was
met or exceeded the assigned deadline. Since the actual queue time was known,
a confusion matrix was generated to determine the overall accuracy, precision,
recall, and F1 scores for the machine learning pipeline.

The above mentioned queue time prediction represents a snapshot in time
given the overall HPC system resources allocated for a job with specific re-
quirements. The future state of the HPC may also impact job queue time. For
instance, if cluster allocation increases following a job submission when a large
number of higher priority jobs are started, this queue time estimate may un-
derestimate when a job would actually begin. Alternatively, an HPC allocation
decrease following a job submission due to jobs finishing earlier than expected
may cause a job to begin sooner.

Since the average queue time for Beocat in 2018 was roughly 3 hours and
45 minutes, a sliding time window of 4 hours was used to assess what impact a
change in HPC CPU allocation would have on the change in queue times for HPC
jobs. Figure 3 depicts how average ∆CPUs was calculated. Average ∆queue time
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was calculated in the same manner. In 2018, there were 1,520 four-hour time
windows containing submitted jobs. The time windows were randomly split into
an 80% training batch and 20% testing batch. A linear regression model was
trained using the average ∆CPUs from the training data and used to predict
the average ∆queue time of the test data. Again, the actual change in queue time
was known from the log data, which enabled the calculation of RMSE, accuracy,
precision, recall and the F1 Score for this linear regression model.

Fig. 3: Depiction of ∆CPUs calculation

3.4 Evaluation

Feature correlation was measured using the Pearson Correlation Coefficient [12].
This statistical measure produces a value between -1 and 1, where correlation co-
efficient values closer -1 or 1 indicate a stronger correlation between two features
and a value closer to 0 indicates no or very little correlation.

Each regression model contained some N elements. The machine learning
pipeline and each regression model was evaluated using the Root Mean Squared
Error (RMSE) metric, which is calculated according to the following equation:

RMSE =

√
ΣN

i=0(actual queue timei − predicted queue timei)
2

N

Additionally, the machine learning pipeline was used to compare whether or
not the predicted queue time for each job exceeded the assigned deadline. A
confusion matrix, along with the metrics of accuracy, precision, recall, and the
F1 Score were utilized. The metrics and their descriptions are laid out in Table
2:

The metrics used to assess the change in queue time given the change in CPU
allocation are laid out below in Table 3:

These metrics were calculated in the following way:

Accuracy = TP+TN
TP+TN+FP+FN Precision = TP

TP+FP

Recall = TN
TP+FN F1 Score = 2∗TP

2∗TP+FP+FN
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Table 2: Metrics for Deadline Classification
Metric Description

True Positive (TP) Model predicts job will start before deadline, and it does

True Negative (TN) Model predicts job will start after deadline and it does

False Positive (FP) Model predicts job will start before deadline, but job does not

False Negative (FN) Model predicts job will start after deadline, but job does not

Table 3: Metrics for Future Queue Time Classification
Metric Description

True Positive (TP)
Model predicts average ∆queue time will decrease 4 hours from
now, and it does

True Negative (TN)
Model predicts average ∆queue time will increase 4 hours from
now, and it does

False Positive (FP)
Model predicts average ∆queue time will decrease 4 hours from
now, and it does not

False Negative (FN)
Model predicts average ∆queue time will increase 4 hours from
now, and it does not

4 Results

PySpark is an interface for Apache Spark [17] for the Python [15] programming
language. PySpark was utilized for data wrangling and analysis. PySpark’s ma-
chine learning library, MLlib [10], was utilized for statistical analysis, clustering,
and regression tasks. Matplotlib [5] was used to generate plots and charts.

4.1 Correlation of Features

Table 4 lays out the Pearson Correlation Coefficients for the features used.
“Slightly correlated” values in Table 4 are displayed using orange text and the
stronger “somewhat correlated” features are displayed using red text. Perhaps
unsurprisingly, there is a slight correlation between the HPC CPUs in use and
the HPC memory in use at any given time, as well as a slight correlation between
the amount of CPUs requested by a user and the amount of memory requested
by a user. The queue depth and queue time are somewhat correlated, and the
queue depth and the amount of memory allocated on the HPC are somewhat
correlated. This makes sense given the relatively large amount of time Beocat
spends with its allocated memory near or at its maximum (See Figure 1).

4.2 K-Means Clustering and GBT Regression

The GBTbase model had a RMSE of 23229.92. This was compared to two naive
guessing strategies of guessing zero queue time for all jobs and guessing the
average queue time from 2018 for all jobs. Naively guessing zero seconds produced
a RMSE of 42818.2, and naively guessing the average queue time (13423.21
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Table 4: Correlation of Features
Feature BeocatCPUsInUse BeocatMemoryInUse QueueDepth ReqCPUs ReqMem ReqMinutes QueueTimeInSec

BeocatCPUsInUse 1 0.195 0.008 0.008 -0.010 -0.067 -0.009

BeocatMemoryInUse 0.195 1 0.392 -0.047 -0.020 -0.036 0.131

QueueDepth 0.008 0.392 1 -0.061 -0.028 -0.091 0.326

ReqCPUs 0.007 -0.047 -0.047 1 0.119 0.057 -0.002

ReqMem -0.010 -0.020 -0.027 0.119 1 0.036 0.003

ReqMinutes -0.067 -0.036 -0.091 0.057 0.036 1 0.074

QueueTimeInSec -0.009 0.131 0.326 -0.002 0.003 0.074 1

seconds) produced a RMSE of 40659.8. It is clear that the base model has a
lower RMSE than these two naive guessing strategies.

It was identified by iterating through the number of generated k-means clus-
ters that 57 clusters produced a local minimum RMSE of 18119.23. As the
number of clusters increased, there was not a significant improvement in ac-
curacy, and it is thought that as the number of clusters continues to increase,
the GBTbase model will be used for more and more clusters as the number of
data points in each cluster decreases. Locating this “elbow” in the data [14]
attempts to prevent overfitting and clustering beyond the point of diminishing
returns. The RMSE of the machine learning pipeline as the number of clusters
was varied is depicted in Figure 4.

Using 57 clusters produces 42 GBTR models for clusters containing more
than 100 elements, and the machine learning pipeline uses the base GBTR model
for the remaining 15 clusters. Each test data point was clustered, and then the
appropriate GBTR model was used to predict the queue time for a job. Each
job’s queue time prediction was compared to its actual queue time, and it was
evaluated if the predicted and actual queue time exceeded the assigned deadline.
The confusion matrix and evaluation metrics can be found in Table 5. Overall,
the machine learning pipeline was excellent at predicting future queue times,
and its accuracy, precision, recall, and F1 Score were all greater than 96%.

Table 5: Confusion Matrix for Machine Learning Pipeline with Metrics
Actual

Total Jobs 145,658
Job runs before
Avg Queue Time

Job runs after
Avg Queue Time

Predicted
Job runs before
Avg Queue Time

TP = 107,208 FP = 1,490

Job runs after
Avg Queue Time

FN = 3,366 TN = 33,594

Metric Value

Accuracy 96.66%

Precision 98.63%

Recall 96.95%

F1 Score 97.79%

4.3 Future HPC Queue Time Prediction

The (∆CPUs, ∆queue time) points and the line-of-best-fit provided by the lin-
ear regression model are depicted in Figure 5. The model achieved a RMSE
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Fig. 4: RMSE of machine learning pipeline as the number of K-Means clusters
was varied.

of 14691.17 seconds. The confusion matrix and evaluation metrics are found in
Table 6. Overall, the linear regression model was excellent at predicting future
queue times, and its accuracy, precision, recall, and F1 Score were all greater
than 96%.

Fig. 5: Change in average CPU allocation vs. change in average queue time

5 Discussion

The correlation between queue depth and the HPC memory in use for Beocat is
supported by the memory in use over time depicted in Figure 1. This confirms
the observations made by Beocat’s system administrators who have determined
that more often than not, Beocat is constrained by its available memory rather
than its available CPUs. This alone has informed the equipment requirements
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Table 6: Confusion Matrix for Queue Time Increase with Metrics
Actual

Total Time Windows 1,520
Future average
∆queue time

decreases

Future average
∆queue time

increases

Predicted

Future average
∆queue time

decreases
TP = 702 FP = 26

Future average
∆queue time

increases
FN = 24 TN = 768

Metric Value

Accuracy 96.71%

Precision 96.43%

Recall 96.69%

F1 Score 96.56%

for purchases of new servers for the HPC system here at KSU. We now procure
servers with larger memory to try to better accommodate our user’s require-
ments. Doing a similar analysis might allow managers of other HPC systems to
better identify hardware that can support the types of jobs their users often run.

As depicted in Table 5, the accuracy, precision, recall, and F1 Score were all
greater than 96%. Although a somewhat arbitrary deadline was used for each
user’s deadline, this data could be provided by the users at submission time. This
would give more meaningful information to the users of Beocat depending on
how time sensitive their jobs are. Various other values for deadlines were used (1
hour, 8 hours, and 12 hours), all of which produced similar accuracy, precision,
recall, and F1 scores exceeding at least 90%. It can only be concluded that the
machine learning pipeline does a good job at predicting a reasonable start time
for most jobs regardless of the pipeline RMSE.

Using clustering and regression as opposed to other techniques provides a
concrete queue time estimate. The pipeline RMSE was roughly 5 hours of error,
and the average queue time for jobs submitted to Beocat in 2018 was approxi-
mately 3 hours and 45 minutes. The HPC at KSU has comparatively low queue
times for jobs, and other HPC clusters may have queue time measured in the
range of days, or even weeks. An overall 5 hour error rate for the prediction for
Beocat somewhat overshadows the average queue time in our case, but in other
clusters, it might be more meaningful. In practice, queue times for Beocat are
very left-skewed, and most of the jobs submitted to Beocat are executed after a
very short period of time. Only very large jobs spend any significant amount of
time in the queue waiting for resources.

It was shown that the average allocation of HPC CPUs over a 4 hour window
was an effective predictor for an increase or decrease of future queue time for
jobs. This information could further inform machine learning models attempting
to predict queue time for jobs. For instance, the linear regression model could be
run before the queue time deadline assessment to determine if this contributes
to an increase in the accuracy of the queue time prediction from the machine
learning pipeline.
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Finally, this queue time estimation tool could inform a decision to migrate a
job to cloud resources instead of facing a long queue delay. Okanlawon, et al. [11]
conducted research to better inform a user’s decision to either resubmit a job
with different resources or migrate that job to commercial cloud infrastructure.
An accurate queue time estimation tool could offer another data point informing
a user’s decision.

6 Conclusion and Future Work

This research demonstrated that clustering and regression can also be applied
to the task of queue time estimation for HPC systems. The machine learn-
ing pipeline described in this paper was more than 96% accurate at classifying
whether a job would start before an assigned deadline. A simple linear regression
model also achieved greater than 96% when attempting to predict if future queue
times will increase or decrease. These pieces of information could prove vital to
a researcher with a time critical application. It is also a meaningful metric for all
HPC users, so they will be better informed about the start times of their jobs.

Additional analysis is needed to determine why certain jobs were grouped
together into the clusters provided by K-Means. This research fed the cluster
and job feature vector into the K-Means algorithm in search of the number
of cluster producing a local minimum error rate. It is thought that additional
analysis of clusters might shed light onto what is causing certain kinds of jobs to
queue for longer times. Are there certain characteristics of jobs that cause them
to sit in the queue longer? Are there certain characteristics or limitations of the
HPC cluster itself which is contributing to longer queue times? Could additional
HPC user education or better documentation mitigate queue time in some way?
These remain open questions.

Our experience has been that users tend to drastically overestimate their job
requirements at submission times. There is very little downside for a user who
overestimates their resources at submission time. However, there is a very large
downside if a job is killed before completion due to a user requesting insuffi-
cient resources at submit time. In the aggregate, however, mass overestimation
of required resources leads to longer queue times for all users, which can nega-
tively impact user experience overall. Tanash, et al. [13] have looked to machine
learning to determine how actual allocated resources compared to what users
have requested at submit time. Since this queue time predictor relied upon user
submitted requirements for each job, adding a more accurate estimate of actual
resources used would presumably improve the accuracy of a model predicting
queue time.

Finally, informing the machine learning pipeline with the future queue time
prediction may further improve the accuracy of the prediction made by the
machine learning pipeline. It remains to be seen if first applying the future state
of the HPC queue time prediction has measurable impacts on the accuracy of
the clustering and regression pipeline.
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