
Optimized Hardware Configuration for High
Performance Computing Systems

Scott Hutchison
Department of Computer Science

Kansas State University
Manhattan, KS 66505, USA
email: scotthutch@ksu.edu

Daniel Andresen
Department of Computer Science

Kansas State University
Manhattan, KS 66505, USA

email: dan@ksu.edu

William Hsu
Department of Computer Science

Kansas State University
Manhattan, KS 66505, USA

email: bhsu@ksu.edu

Mitchell Neilsen
Department of Computer Science

Kansas State University
Manhattan, KS 66505, USA

email: neilsen@ksu.edu

Benjamin Parsons
High Performance Computing Modernization Program

Engineering Research and Development Center
Vicksburg, MS 39180, USA

email: ben.s.parsons@erdc.dren.mil

Abstract—When faced with upgrading or replacing High Per-
formance Computing or High Throughput Computing systems,
system administrators can be overwhelmed by hardware options.
Servers come with various configurations of memory, processors,
and hardware accelerators, like graphics cards. Differing server
capabilities greatly affect their performance and their resulting
cost. For a fixed budget, it is often difficult to determine
what server package composition will maximize the performance
of these systems once they are purchased and installed. This
research uses simulation to evaluate the performance of different
server packages on a set of jobs, and then trains a machine
learning model to predict the performance of un-simulated server
package compositions. In addition to being orders of magnitude
faster than conducting simulations, this model is used to power
a recommender system that provides a precision@50 of 92%.

Index Terms—HPC; Procurement Optimization; Recom-
mender system; XGBoost.

I. INTRODUCTION

When faced with upgrading or expanding a High Per-
formance Computing (HPC) or High Throughput Comput-
ing (HTC) system, administrators of these systems can be
overwhelmed by options. It is a challenging task to get
the best performance for a fixed budget. Server capabilities
(i.e., number and types of processors, amount of memory,
and number and types of Graphics Processing Units (GPU)
or other hardware accelerators) greatly affect their costs,
and for a fixed spending ceiling, it is desirable to get the
“best bang for your buck.” For an HPC system, an optimal
server package composition is dictated by its typical use.
For instance, if many users rely upon a GPU-accelerated
application or library, a higher GPU count may be desirable,
even if this means fewer servers can be purchased. With many
factors to consider, HPC administrators often rely upon their
preferences, intuition, and experience to inform procurement
decisions. This research uses historical job data from an HPC
system, a discrete event simulator, and a machine learning
model to power a recommender system, which can help inform

a hardware procurement decision. These techniques provide
additional information to HPC system administrators about
which set of budget-constrained hardware minimizes wait
time for users’ jobs, and provides quantifiable support for
procurement decisions when upgrading or expanding existing
HPC infrastructure. The contributions of this work can be
summarized as follows:

1) A data set consisting of roughly 12,700 HPC scheduling
simulations, each with a different HPC server set

2) An optimized XGBoost regression model for predicting
average wait time when given a composition of servers

3) A recommender system with precision@50=92%, which
can inform hardware procurement decisions

This paper is laid out as follows: Section II provides
additional background on the problem and describes similar
work done by others, Section III provides the methodology
and some implementation details, Section IV provides details
of formulas for metric calculations, Section V provides the
results of the experiments, and Sections VI provides our final
conclusions.

II. BACKGROUND AND RELATED WORKS

The Open Science Grid (OSG) [1] [2] is a worldwide
collaboration that offers distributed computing for scientific
research. In the central United States, one of the organiza-
tions contributing resources to the OSG is the Great Plains
Augmented Regional Gateway to the Open Science Grid (GP-
ARGO) [3]. In part, GP-ARGO receives funding through
governmental grants. These grants are often used to procure
new equipment to expand or improve the capabilities of GP-
ARGO’s participating organizations. Consequentially, there
is a fixed budget ceiling for HPC equipment procurement,
and the administrator’s goal is to purchase new equipment
that will maximize computational performance for our typical
applications while ensuring costs remain under the fixed grant
budget. The research question for this work is as follows: for a

planned HPC expansion, can experimental simulation provide
an optimal set of hardware under a given budget that will
minimize job wait time?

The challenge of optimal hardware procurement is not
exclusive to our organization. Similar work was done by Evans
et al. [4]. They collected benchmarks for various software
applications on different hardware to optimize the ratio of
Central Processing Unit (CPU) and GPU architectures for HPC
jobs. Their work is similar to ours, but we took a different
approach by using a scheduling simulator to evaluate the
performance of a set of jobs that were actually submitted to an
HPC system. We are solving a very similar problem as Evans
et al., but using a different approach to arrive at an optimal
hardware configuration.

Other researchers have attempted to optimize for a partic-
ular application, such as the work Kutzner et al. [5] did to
improve the utilization of GPU nodes when using GROMACs.
Although these techniques are not without their merits for HPC
systems that run a large number of homogeneous applications,
users of the GP-ARGO HPC systems run a wide variety of jobs
and applications. A more broad scheduler-based optimization
was more appropriate for our application.

Various public HPC workloads exist [6], and have been used
by HPC researchers in the past. However, as we are attempting
to identify and evaluate new hardware for a specific HPC
system, log data from that HPC system was utilized as the
workload for this research.

Different scheduling applications like SLURM, HTCondor,
or PBS, operate on HPC systems and perform the function
of assigning HPC resources to jobs. This job to machine
assignment task is as an extension of the online bin packing
problem [7]. For the bin packing problem, the goal is to pack a
sequence of items with sizes between 0 and 1 into as few bins
of size 1 as possible. Each job specifies the resources requested
(the object sizes), and each HPC machine has a certain amount
of available resources (the bins with their respective sizes). The
scheduler is given the task to meet job requirements by assign-
ing them to HPC nodes (pack the objects into the available
bins) as efficiently as possible. This is an online problem as
new jobs are submitted over time to the scheduler. The best
fit bin packing (BFBP) algorithm has been shown by Dosa
and Sgall [8] to use at most ⌊1.7OPT ⌋ bins, ensuring this
algorithm will provide a reasonably close to optimal average
wait time when it is used as an HPC job scheduling algorithm.
Since scheduling algorithms vary between applications, most
being highly customizable, and others being proprietary, a
discrete event simulator utilizing the BFBP algorithm served
as a stand-in for our scheduling application in an attempt to
make it more universally applicable. The BFBP scheduling
algorithm is described in Figure 1.

Although various HPC simulators have been used for similar
research, such as SimGrid [9], GridSim [10], or Alea [11], this
experiment needed a simple discrete event simulator using the
BFBP scheduler. The simulators mentioned above were either
deemed overly complex for our purposes, or they failed to
allow for the three limiting resources (memory, CPUs, and

Algorithm 1 Best Fit Bin Packing Scheduling

1: while The simulation is incomplete do
2: if Some job in the queue can be executed on some

machine then
3: Find the (job, machine) pairing which results in

the fewest remaining resources for some machine. Begin
executing that job on that machine.

4: else
5: Advance simulation time until a new job is sub-

mitted or a running job ends, whichever is sooner.
6: Queue submitted jobs and stop ending jobs.
7: end if
8: end while

Fig. 1. Pseudocode for the best fit bin packing algorithm

GPUs) we were interested in investigating. An HPC scheduler
simulator was also considered, such as the Slurm simulator
developed at SUNY University in Buffalo [12]. Although this
option was investigated further, scaling a job’s actual duration
from the log data to the new machine once it is assigned
to a machine was challenging. As such, a custom discrete
event simulator was developed and utilized for this research.
The simulator allows for three resource constraints in each
machine: memory, CPUs, and GPUs. It is fairly lightweight,
fast, and easy to understand.

A significant consideration when evaluating new server
hardware is the performance increase newer technology or
architectures can provide. Using log data, we know how long
a job took on a machine with known hardware. Since the
specifications for the new hardware under consideration are
also known, the actual duration of the jobs from the historic
log data was scaled using base performance of the processor
as reported by SPEC CPU2017 benchmark, second quarter,
2023 [13].

Knowing how a particular job performed on one set of
hardware and estimating how it will perform on some other
hypothetical set of hardware is challenging. Sharkawi et al.
[14] successfully used a similar SPEC benchmark to estimate
the performance projections of HPC applications. Other re-
searchers, like Wang et al. [15] have pointed out that these
benchmarks fail to account for all the variables affecting job
resource utilization and should be avoided. Although CPU
performance is not the only factor by which we could have
scaled job duration, and perhaps it is not the best factor by
which to scale, it worked well for our purposes. The discrete
event simulator was implemented such that the scaling factor
could be easily changed if other researchers should find a
different factor more relevant to their situation.

Various metrics are typically used when evaluating the
performance of HPC scheduling algorithms. Some of these are
average wait time, HPC utilization, average turnaround time,
makespan, throughput, etc. Which metric is used depends on

the application and function of the HPC system, and different
organizations may value one metric over another. The metric
used for this research was average wait time, or the average
number of seconds each job spent waiting in the job queue
for execution on HPC resources. We presume that the same
techniques could be applied by other researchers using a
different metric, should they prefer a different one.

Recommender systems power a variety of applications like
search engines and music recommendation systems. First, the
hits for the system must be defined. Hits are the elements from
the data set that are relevant to the user’s search. Next, the user
specifies the number of recommendations, k, that they would
like to receive. If the recommender system is precise, a large
portion of the k items returned will be hits.

III. METHODOLOGY

The general plan for optimizing a hardware package for our
fixed budget can be summarized as follows:

1) Receive vendor quotes with potential server options.
2) Generate potential server combinations to purchase un-

der the specified budget which meet our procurement
requirements.

3) Identify a typical set of jobs representing the workloads
typically submitted to our HPC system.

4) Conduct simulations using a subset of the server pack-
ages to schedule the representative job set and compute
metrics to determine their performances.

5) Use machine learning to train and refine a model that
can predict the performance of un-simulated server
combinations.

6) Develop a recommender system using the machine
learning model.

7) Subjectively evaluate the recommended server packages
and make a more informed procurement decision.

A. Generate Server Options

To begin, we received several vendor quotes specifying the
costs and capabilities of 21 potential servers to purchase. When
considering upgrade options, we typically separate servers
into one of three categories: compute nodes, big memory
nodes, or GPU nodes. A compute node typically has a large
number of processor cores, a moderate amount of memory,
and no GPU. A big memory node will have a large amount of
memory with a moderate amount of CPU cores and no GPU.
A GPU node is any node which has a GPU. Table I lays out
the options we received from several different vendors. The
procurement budget was fixed at $1 million, and all possible
server combinations were generated in the following way:

• Separate servers into three categories: compute nodes, big
memory nodes, and GPU nodes.

• Choose all combinations of one node from each category.
• Determine all quantities of the three node types under a

given budget such that there is at least one GPU node
and there is not enough funding remaining to purchase
another node.

TABLE I. SERVER CAPABILITIES AND COSTS UNDER INVESTIGATION

Node type Distinct
nodes

consid-
ered

Memory
range
per

node

CPUs
range
per

node

GPUs
per

node

Cost
range
per

node
Compute 4 256-512

Gb
24-64
cores

0 GPUs $6k-
$10k

Big memory 2 1024
Gb

24-64
cores

0 GPUs $11k-
$13k

GPU 15 256-
1024
Gb

24-64
cores

1-8
GPUs

$14k-
$100k

Fig. 2. The number of jobs submitted over time for the selected day

In our selected job set, many jobs requested GPUs as a
resource. These jobs would automatically fail if at least one
GPU node were not included in a potential server package.
Roughly 127,000 different server combinations met these
requirements. Table II provides an illustrative example of how
the server combinations were generated. Many server options
and packages were omitted from the table for the sake of
brevity.

B. Identify a Representative Set of Jobs

One typical day’s worth of submitted jobs (roughly 16,000
jobs) was subjectively pulled from the log data of the local
HPC system. As with most HPC systems, jobs were submitted
in a bursty manner, and variety of resources were requested.
Figure 2 and Table III display some descriptive statistics and
information about the jobs used by this research.

C. Job Duration Scaling

The submitted jobs were scaled using the base performance
of the processor on the SPEC CPU2017 benchmark suite. The
requested duration was not modified, but the actual duration
of each job was calculated using the following formula:

New duration = logged duration∗logged processor performance
new processor performance

D. Discrete Event Simulator

A discrete event simulator was implemented in Python that
provides the following functionality:

TABLE II. Generated Server Combinations

ComputeNode1, $6,960 ea. BigMemNode1, $11,112 ea. GPUNode1, $14,730 ea. . . . Package Cost Funds Remaining
141 0 1 . . . $996,090 $3,910
139 1 1 . . . $993,282 $6,718
138 2 1 . . . $997,434 $2,566

...
...

...
. . .

...
...

0 1 67 . . . $998,022 $1,978

TABLE III. Descriptive statistics for the pool of selected jobs

Requested
Mem (in

Gb)

Requested
CPUs

Requested
GPUs

Requested
Duration

(in
hours)

Actual
Duration

(in
hours)

Mean 5.12 4.75 0.002 2.82 2.27
Std Dev. 16.73 3.33 0.055 1.02 13.67
Min 1 1 0 0 0
Max 800 64 4 11.20 11.20

• A global clock to keep track of simulation time.
• Several queues, priority queues, or lists to track jobs

as they progress through the execution process: future
jobs, queued jobs, running jobs, completed jobs, and
unrunnable jobs.

• Jobs and machines are specified using comma separated
value (csv) files, which is loaded prior to the simulation.

• Machines have three limiting resources: available mem-
ory, CPUs, and GPUs.

• Jobs are specified with the following attributes: submit
time, actual duration, and requested duration, memory,
CPUs, and GPUs. Jobs track their start time and end
time as the simulation progresses to allow for metric
calculation.

• Job end time is set when the job starts running as the job
start time plus the job actual duration.

• When a job starts running on a machine, that machine’s
available resources are decremented by the resources re-
quested by the job. Conversely, when a job completes, the
machine executing it has its available resources increased
by the amount requested by the ending job.

• Jobs with a submit time greater than the current global
clock reside in the future jobs priority queue.

• Jobs with a submit time less than or equal to the current
global clock, but not yet assigned to a machine, reside in
the job queue.

• Jobs that have begun their execution and have an ending
time less than the current global clock, reside in the
running jobs priority queue.

• Jobs with an ending time less than or equal to the current
global clock reside in the completed jobs list.

• If no node in the cluster has adequate resources to run a
particular job, that job is moved to the unrunnable jobs
list.

• In the event that no queued jobs can run on available
resources, the simulation time “fast forwards” to the next
event: either job submission or job ending.

• Jobs in the job queue are run as soon as there are available

resources and are chosen using the best fit bin packing
scheduling algorithm described in Algorithm 1.

• Actual job duration from logged job data can be scaled to
allow for hardware improvement with newer hardware.

E. Machine Learning

Although each simulation completed fairly quickly, requir-
ing no more than 30 minutes each, this particular combi-
nation of server quotes yielded roughly 127,000 combina-
tions that need to be evaluated. To reduce the computational
requirement, every tenth line from the file with the server
combinations was sampled, and roughly 12,700 simulations
for these server packages were completed in parallel us-
ing HPC resources. By sampling from the generated server
packages uniformly, various quantities of each server under
consideration were included in the simulated data. Each server
package was summarized into the package total memory, total
CPUs, and total GPUs, by summing the resources of every
machine comprising the package. The average wait time for
the simulation served as the label for each package. The
data was split into 90% training and 10% test data, and an
XGBoost [16] regression model was trained using training
data. The regression model was evaluated using root mean
squared error (RMSE) on the test data. An accurate regression
model enabled the prediction of the average wait time for
unsimulated server combinations and saved countless hours
of additional simulation.

F. Recommender System

In our case, a hit was defined as a server combination
with an average wait time in the lowest 5% of simulated
combinations (or 632 hits out of the ∼12,700 simulated server
combinations). The value of k was varied to evaluate the per-
formance of the recommender system. Then, once confidence
was gained that our recommender system was functioning
properly, it was used to recommend systems from the entire
server combination pool of 127,000 server combinations. The
recommendations were summarized and evaluated subjectively
before arriving at a final procurement decision.

G. Simplifying Assumptions

The current nodes comprising the HPC system were not
added to the set of nodes simulating the selected jobs. The
benefit current nodes would provide to the new servers under
investigation would be common to all.

Any additional equipment required to install and operate
the new servers (e.g., networking hardware, additional cooling
equipment, server racks, power infrastructure, etc.) were not

deducted from the total procurement budget. It was thought
that these costs would be a relatively fixed regardless of the
server package chosen. The same analysis described in this
research could be done by reducing the total budget by the
cost of additional hardware and then completing the analysis
with a reduced budget.

IV. EVALUATION

Pearson’s Correlation Coefficient [17] determined the extent
of the correlation between the total memory, CPUs, and GPUs
of a package and the average wait time. This coefficient
provides a value between -1 and 1, where values closer to -1
or 1 indicate that the feature and the label are more strongly
correlated. A coefficient of 0 indicates no correlation.

Wait time was calculated by analyzing the completed jobs
output from each simulation. The wait time for each job was
the number of seconds from the time the job was submitted
until it began. For N jobs, the average wait time was calculated
as follows:

AvgWaitTime =
ΣN

i=0(Start Timei − Submit Timei)
N

Root Mean Squared Error was utilized for regression model
evaluation calculated according to the following formula:

RMSE =

√
ΣN

i=0(actual wait timei − predicted wait timei)2

N

The performance of the final recommender system was
evaluated using precision@k, recall@k, and F1@k. In general,
precision@k is the proportion of recommended items in the
top-k set that are relevant, and recall@k is the proportion of
relevant items found in the top-k recommendations. F1@k
is the harmonic mean of precision@k and recall@k, which
simplifies them into a single metric. They were calculated
according to the following formulas:

Precision@k =
(# of recommended items @k that are relevant)

(# of recommended items @k)

Recall@k =
(# of recommended items @k that are relevant)

(total # of relevant items)

F1@k =
(2 ∗ precision@k ∗ recall@k)
(precision@k + recall@k)

V. RESULTS

The correlation of features, the performance of the regres-
sion model and the recommender system, and some analysis
about the recommended server compositions are described
below.

A. Feature Correlation

The correlation between the features and the labels is shown
in Table IV. For this set of jobs, the total CPUs in a server
package were most strongly correlated to the average wait
time. For the chosen jobs, the more CPUs a package had, the
lower its average wait time.

Since we are constrained by our available budget of $1
million, choosing to buy one type of node over another is

a zero-sum game. The more GPU nodes we purchase, and the
more GPUs there are per node, the fewer compute nodes or
big memory nodes we are able to afford. This is indicated by
the positive correlation between GPUs and the average wait
time.

TABLE IV. Pearson Correlation Coefficients

TotalMem TotalCPUs TotalGPUs AvgWaitTime
TotalMem 1.00 0.14 -0.54 -0.23
TotalCPUs 0.14 1.00 -0.42 -0.70
TotalGPUs -0.54 -0.42 1.00 0.44

AvgWaitTime -0.23 -0.70 0.44 1.00

B. Regression Model

The XGBoost regression model had a RMSE = 150.13
seconds, indicating that the total memory, CPUs, and GPU
features made excellent predictors for the average wait time for
these jobs when simulated with the discrete event simulator.
The predicted vs. actual wait time is shown in Figure 3. If the
regression model were perfect, all these points would lie upon
the y = x line, and it is clear that this model does a good job
at predicting the average wait time for a given composition of
servers.

Fig. 3. The predicted vs. actual wait times showing the accuracy of our
regression model.

C. Recommender System

The regression model was used to predict the 12,700 labeled
simulations, and their precision@k, recall@k, and F1@k for
various values of k are displayed in Table V. The goal was
to reduce the number of possibilities from roughly 127,000
different possible combinations of servers down to a reason-
able number which could be evaluated by an HPC system
administrator and have a large percentage of the recommended
server combinations be hits (among the best 5% of server
combinations with the lowest average wait times). Although
precision@10 was 100%, it is thought that seeing more server
package options would allow system administrators a wider
variety from which to choose. A system administrator could
easily and quickly review up to 50 recommendations (k = 50),

and more than 46 out of 50 of these recommendations returned
by this system (92%) would be top performing server combi-
nations, which is excellent. Recall@k when k is less than the
number of total hits (632 hits total) is unfairly penalized, but
the recall@k above 632 is also excellent. When k = 1, 000,
the recall@1000 = 91%, meaning the recommender system
successfully retrieved 91% of the top 5% performing server
packages when returning less than 1% of the 127,000 different
options.

TABLE V. Precision@k and Recall@k for Test Data

k value Precision@k Recall@k F1@k
10 1.00 0.02 0.03
50 0.92 0.07 0.13

100 0.81 0.13 0.22
500 0.74 0.59 0.66
632 0.72 0.72 0.72
1000 0.58 0.91 0.71

D. Recommended Compositions

Beyond looking at the individual server compositions rec-
ommended, we wanted to draw some conclusion about the
types and quantity of nodes that the recommender system
returned. The sum of the server quantities for the top 50
recommendations can be found in Table VI. Compute nodes
with the larger number of cores were vastly preferred, and the
recommender system did not recommend spending additional
funds on more memory for the compute nodes. Additionally,
the recommender system preferred the cheaper big memory
node with fewer cores. Finally, for our typical workload,
the recommender system did not recommended purchasing a
large number of GPUs per GPU node, instead recommending
servers with 2 GPUs per server most often. In terms of
our budget breakdown, the recommender system suggests
spending on average 58% of our total budget on compute
nodes, 8% on big memory nodes, and 34% on GPU nodes.

TABLE VI. Recommendations Drawn from Model Predicted Results

Node Type Node Description Sum of Servers Across
Top 50

Compute Nodes

Cheapest w/ 256Gb 232
Cheapest w/ 512Gb 0
Expensive w/ 256Gb 3,467
Expensive w/ 512Gb 0

Big Memory Nodes Cheapest w/ 1024Gb 232
Expensive w/ 1024Gb 111

GPU Nodes 2 GPUs in one server 732
4 GPUs in one server 267

VI. CONCLUSIONS

This recommender system is not intended to replace the
expertise of HPC administrators when it comes to decisions
for hardware procurement. It is our hope that this tool can
provide a data-driven technique which will help narrow the
search space with which administrators are confronted when
they make procurement decisions. Returning to the research
question: experimental simulation coupled with a regression

model enabled a recommender system to return server compo-
sitions under a given budget with low average wait times with
a precision@50 of 92%. Additionally, the discrete event sim-
ulator, job data set, machine learning code, and recommender
system code are released under the GPLv3 license should
other researchers find it useful (https://github.com/shutchison/
Optimal-Hardware-Procurement-for-a-HPC-Expansion).

REFERENCES

[1] R. Pordes et al., “The open science grid,” in J. Phys. Conf. Ser., vol. 78
of 78, p. 012057, 2007.

[2] I. Sfiligoi et al., “The pilot way to grid resources using glideinwms,”
in 2009 WRI World Congress on Computer Science and Information
Engineering, vol. 2 of 2, pp. 428–432, 2009.

[3] “The great plains augmented regional gateway to the open science grid.”
https://gp-argo.greatplains.net/. Accessed 2023-01-18.

[4] R. T. Evans et al., “Optimizing gpu-enhanced hpc system and cloud
procurements for scientific workloads,” in International Conference on
High Performance Computing, pp. 313–331, Springer, 2021.

[5] C. Kutzner et al., “More bang for your buck: Improved use of gpu nodes
for gromacs 2018,” Journal of computational chemistry, vol. 40, no. 27,
pp. 2418–2431, 2019.

[6] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using
the parallel workloads archive,” Journal of Parallel and Distributed
Computing, vol. 74, no. 10, pp. 2967–2982, 2014.

[7] S. Martello and P. Toth, Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, Inc., 1990.

[8] G. Dósa and J. Sgall, “Optimal analysis of best fit bin packing,” in Au-
tomata, Languages, and Programming: 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part
I 41, pp. 429–441, Springer, 2014.

[9] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing, vol. 74,
pp. 2899–2917, June 2014.

[10] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” Concurrency and computation: practice and experience,
vol. 14, no. 13-15, pp. 1175–1220, 2002.

[11] D. Klusáček, M. Soysal, and F. Suter, “Alea–complex job scheduling
simulator,” in Parallel Processing and Applied Mathematics: 13th Inter-
national Conference, PPAM 2019, Bialystok, Poland, September 8–11,
2019, Revised Selected Papers, Part II 13, pp. 217–229, Springer, 2020.

[12] N. A. Simakov et al., “Slurm simulator: Improving slurm scheduler
performance on large hpc systems by utilization of multiple controllers
and node sharing,” in Proceedings of the Practice and Experience on
Advanced Research Computing, pp. 1–8, 2018.

[13] “Second quarter 2023 spec cpu2017 results,” 2023.
https://www.spec.org/cpu2017/results/res2023q2, Accessed on June
14, 2023.

[14] S. Sharkawi et al., “Performance projection of hpc applications using
spec cfp2006 benchmarks,” in 2009 IEEE International Symposium on
Parallel & Distributed Processing, pp. 1–12, IEEE, 2009.

[15] Y. Wang, V. Lee, G.-Y. Wei, and D. Brooks, “Predicting new workload
or cpu performance by analyzing public datasets,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 15, no. 4, pp. 1–21,
2019.

[16] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pp. 785–794, 2016.

[17] K. Pearson, “Vii. note on regression and inheritance in the case of two
parents,” proceedings of the royal society of London, vol. 58, no. 347-
352, pp. 240–242, 1895.

https://github.com/shutchison/Optimal-Hardware-Procurement-for-a-HPC-Expansion
https://github.com/shutchison/Optimal-Hardware-Procurement-for-a-HPC-Expansion

	Introduction
	Background and Related Works
	Methodology
	Generate Server Options
	Identify a Representative Set of Jobs
	Job Duration Scaling
	Discrete Event Simulator
	Machine Learning
	Recommender System
	Simplifying Assumptions

	Evaluation
	Results
	Feature Correlation
	Regression Model
	Recommender System
	Recommended Compositions

	Conclusions
	References

