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ABSTRACT 
Electrical insulators, which are widely used for electricity 
transmission, are prone to damage and need constant maintenance. 
Traditionally, the inspection job is time-consuming and dangerous 
as workers have to climb electrical towers to access insulators. 
However, deep learning, which offers a safe and quick way to 
automate inspections, requires large amounts of data. Generative 
adversarial networks (GANs) are introduced as a novel approach 

to augmenting data. However, traditional state-of-art GANs are 
either incapable of generating high quality images, or fail to 
generate minority class images when minority class examples are 
very infrequent. In order to mitigate drawbacks of existing GANs, 
a novel GAN model, Balancing and Progressive GANs 
(BPGANs), was proposed for effectively making use of all classes 
information and generating high quality images simultaneously. 
Results show that PGANs, StyleGANs, and BPGANs were able to 
generate high-resolution images and improve classification 

performance. PGANs achieved the better results than BPGANs. 
This may be because BPGANs only provides 2 additional latent 
codes since it is a binary classification, having little effect on 
generating desired images. BPGANs seemed to have difficulties 
generating class-specific images, which might be because that the 
classification loss is too little compared to the source loss and 
optimization was more focused to optimize the source loss. This 
indicates that learning representations of data progressively from 

low resolution to high resolution is an effective approach, 
however, embedding class label information in the fashion of AC-
GANs and BGANs might not be appropriate for augmenting 
binary class data sets. 
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1. INTRODUCTION 
There is a huge demand for electricity in the U.S. U.S. net 
electricity generation increased by 4% in 2018, reaching a record 
high of 4,178 million megawatt hours (MWh), surpassing once 

again the pre-recession peak of 4,157 million MWh set in 2007. 
Both the residential (about 1,500 MWh) and commercial sectors 
(about 1,400 MWh) reached all-time highs for retail sales of 
electricity in 2018 [25]. Power cut can cause large loss to all 
sectors of society. According to the report from the U.S. Energy 
Information Administration in 2013 [19], between 2003 and 2012, 
an estimated 679 widespread power outages occurred due to 
severe weather. Power outages close schools, shut down 

businesses and impede emergency services, costing the economy 
billions of dollars and disrupting the lives of millions of 
Americans. Therefore, regular inspections are required to prevent 
faults that cause power outage. Visual inspections on transmission 
lines is the common way to maintain electricity supply. They are 
usually carried out by skilled worker foot-patrolling or using 
helicopter-assisted methods [16], which is costly and risky. 

Many efforts have been made to help inspect electrical 
transmission lines more efficiently. Drones and robots that are 

capable of patrolling are made to increase inspection safety and 
lower costs [11, 6, 23]. After images and videos are collected 
from robots, trained workers spend huge amount of time to look at 
them looking for any faults. This obviously is time-consuming 
and prone to human bias. To reduce the human bias and better 
classify insulators, new approaches should be explored. 

Huge advances have been seen in the field of deep learning in 
recent years. Various types of deep neural networks (DNN) have 

achieved great success in various computer vision tasks, such as 
image classification [12, 24, 7] and object detection [2, 22, 21]. 
One of the drawbacks of deep learning methods is that they 
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generally require huge amount of data in order to classify 
insulators. When training examples are not sufficient, there are 
several approaches to augmenting data, including image 
oversampling, random rotation, shifts, and etc. However, 
traditional data augmentation techniques do not improve the 

results significantly [1]. In addition to limited data sets, class 
imbalance also creates many problems for neural network 
classifiers [13]. Thus, it is necessary to propose new strategies to 
enrich data set and mitigate data imbalance issues. 

In recent year, generative modeling, as a more promising 
approach to data augmentation, has risen, especially generative 
adversarial networks (GANs). GANs were first introduced in 
2014 [5]. Since then, various GAN extensions were proposed, 

such as CycleGANs, DCGANs, and PGANs [29, 20, 9]. GANs 
have shown superior results compared to traditional data 
augmentation techniques as they are capable of imaging different 
alterations to images such that they have a better understanding of 
them [13]. However, these GANs might not work well when data 
set suffers severe class imbalance issue, because they are trained 
on the minority class examples for generating new examples and 
the GANs are not likely to learn well from a minority class, which 

has very few examples. In order to mediate the class imbalance 
issue, another branch of research has been focusing on developing 
the conditional version of GANs [18, 15, 14] aiming to include 
class label in GANs training. However, these conditional version 
of GANs generally works well with relatively low-resolution data 

set, such as images whose size are only 64 × 64 or 128 × 128. 

To overcome the limitations of existing GANs, we need to assess 
the ability of various GANs on data augmentation and propose 
new approaches based on their existing limitations. Thus, the 
objectives of this study include: 

• Train a DNN classifier on the original data set, which is 
not augmented and is imbalanced, to classify damaged 

insulators against good insulators. The classification 
results can serve as the baseline. 

• Train various GANs models to augment and balance the 
data set. Then, train the same classifier on the 
augmented data set and compare the classification 
performance against the baseline. 

• Propose and develop a new model that is able to make 
use of class label information and can generate high-
resolution images. 

2. RELATED WORK 
In this section, we review on recently proposed GANs for 
generating high-resolution images and GANs for conditional 
image synthesis. 

2.1 Generative Adversarial Networks 
Generative models try to learn the statistical distribution of the 
training data, allowing synthesizing data from the learned 

distribution. The key incentive behind GANs is estimating the 
underlying probability density or probability mass function of the 
observed data. GANs learn the probability distribution implicitly 
by computing the similarity of the distribution between the real 
training examples and the fake data generated by the learned 
model. After the model is trained well, it naturally can be used to 
generate data that have similar distribution as the real data. 
GANs typically consist of a generator and a discriminator. The 

two compete against one another: the generator tries to fool the 
discriminator by producing fake data and the discriminator aims 

to distinguish the fake data from the real data. The learning 
process is guided by a minimax game (See Equation 1) where the 

discriminator (𝐷 ) desires to increase the log-probability when 

images (𝑥) are sampled from the real distribution (𝑝𝑑𝑎𝑡𝑎(𝑥)) and 
wishes to decrease the log-likelihood when data is sampled from 

the generator. Meanwhile, the generator (𝐺) wishes to increase the 
log-likelihood of fake images being classified as real when images 

are sample from the generator 𝑝𝑧(𝑧), where 𝑧 is called the latent 
vector and is usually sampled from a normal distribution. As 
learning progresses the discriminator gets better at classifying the 

data being real or not and the generator becomes better at 
producing realistic data. Naturally, the generator can then be used 
to generate data when training examples are not sufficient. 
 
𝑚𝑖𝑛

𝐺

𝑚𝑎𝑥

𝐷
𝑉(𝐷, 𝐺) =

𝐸

𝑥 ∈ 𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔𝐷(𝑥)]

+
E

𝑧 ∈ 𝑝𝑧(𝑧)
[log⁡(1 − 𝐷(𝐺(𝑧)))] 

(1) 

 

 

2.2 GANs for Generating High-resolution 

Images 
GANs have difficulties in generating high-resolution images as 
they make it easier for the discriminator to distinguish the fake 
images among the real data. High-resolution data also prevents 
from using larger minibatches due to GPU memory limitations 
and thus compromising training stability [9, 18].  Based on the 
work of Wang et al., 2017 [26], Durugkar et al., 2016 [4], and 

Hierarchical GANs [3, 8, 27], Karras et al., 2018 [9] proposed 
PGANs, whose key idea is to  grow both the generator and 
discriminator progressively, starting from easier low-resolution 
images, and add new layers that introduce higher-resolution 
details. This speeds up training and improves stability. Following 
the trace of PGANs and the idea of style transfer, Karras et al., 
2019 [10] proposed a style-based generator for GANs. It features 
an automatically learned, unsupervised separation of high-level 

attributes and stochastic variation in the generated images, which 
enables intuitive, scale-specific control of the image synthesis. 

2.3 GANs for Conditional Image Synthesis 
Another branch of research focuses on GANs that can embed 
label information into GANs training process, aiming to generate 
class-dependent images [14, 15]. Conditional GANs [15] 

incorporate labels (𝑦) into both generator and discriminator by 

modelling the conditional probability: 𝑙𝑜𝑔𝐷(𝑥|𝑦)  and log⁡(1 −
𝐷(𝐺(𝑧|𝑦))). As a result, the objective function in Equation 1 is 
slightly modified into the conditional form (See Equation 2). 
 
𝑚𝑖𝑛

𝐺

𝑚𝑎𝑥

𝐷
𝑉(𝐷, 𝐺) =

𝐸

𝑥 ∈ 𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔𝐷(𝑥|𝑦)]

+
𝐸

𝑧 ∈ 𝑝𝑧(𝑧)
[log⁡(1 − 𝐷(𝐺(𝑧|𝑦)))] 

(2) 

Mariani et al., 2018 proposed Balancing GANs (BGANs) [14] as 
an augmentation tool to restore balance in imbalanced data sets. 
They argued that the few minority-class examples may not be 
enough to train a GAN, so they incorporated all available images 
of majority and minority classes. BGANs try to achieve class 
balance by applying class conditioning in the latent space to drive 
the generation process towards the target class. BGAN features an 
autoencoder that learns an accurate class-conditioning in the 

latent space and then initializes the generator with the encoder. 
Based on conditional GANs, Odena et al., 2017 proposed 
Auxiliary Classifier GANs (AC-GANs) [17], which not only 
supplies both the generator and discriminator with class labels, but 
also includes a classifier to classify the image category. This 



model produces good results and appears to stabilize training 
compared to the standard GAN formulation. The objective 

function has two parts: the loglikelihood of the correct source, 𝐿𝑠, 
and the log-likelihood of the correct class, 𝐿𝑐. 

𝐿𝑠 = 𝐸[log P(𝑆 = 𝑟𝑒𝑎𝑙|𝑋𝑟𝑒𝑎𝑙)]

+ 𝐸[logP(𝑆 = 𝑓𝑎𝑘𝑒|𝑋𝑓𝑎𝑘𝑒)] 
(3) 

𝐿𝑐 = 𝐸[log P(𝐶 = 𝑐|𝑋𝑟𝑒𝑎𝑙)] + 𝐸[logP(𝐶 = 𝑐|𝑋𝑓𝑎𝑘𝑒)] (4) 

𝐷 is trained to maximize 𝐿𝑠 + 𝐿𝑐 while 𝐺 is trained to 

maximize 𝐿𝑐 − 𝐿𝑠 . 𝐶 denotes class labels and 𝑆  is the source of 
images fed into the discriminator. 
 

3. METHOD 
As mentioned in the previous section, existing GANs cannot 
produce high-resolution images and embed class label information 
at the same time. In order to address this limitation, a new GANs 
model, which is called Balancing and Progressive Growing GANs 
(BPGANs), is proposed. 
The idea of BPGANs comes from BGANs, AC-GANs, and 
PGANs. In AC-GANs [17], the GANs embeds the class label 

information by having an extra classifier to predict which class 
images that are fed to discriminator belongs to. Instead of 
sampling from a standard normal distribution for initializing the 
latent vectors when training GANs, BGANs [14] uses a 
variational autoencoder that is trained to obtain a class-
independent latent vector generator, which is then used to provide 
initialization for the random latent vectors for different class 
labels. Lastly, BPGANs also borrows idea from PGANs [9], 
which is able to generate high-resolution data by training the 

generator and the discriminator progressively from low resolution 
to high resolution. The proposed BPGANs model embeds class 
label information during training and is capable of generating 
high-resolution images. The architecture of BPGANs is shown in 
Figure 1, where both generator and discriminator are trained from 

low resolution of 4 × 4  to a high resolution of 512 × 512. The 
objectives of BPGANs are illustrated in Equation 3, 4 and the 

latent vectors (𝑧) were sampled from a dense representation that 
was learned from a class label dependent variational autoencoder. 

 
Figure 1. Architecture of BPGANs 

4. DATA SET 
Drones were used to take images of insulators. Raw insulator 
images were then annotated and labeled as damaged or 

undamaged. Next, images were cropped, and 3,861 individual 
insulators were obtained in total, among which 2,972 are good 
insulators and the rest of 989 insulators are damaged. 80% of 
images were used as training data set and the rest was equally split 
as validation and test data set. Some examples of insulators are 

shown in Figure 2. (𝑎) is a raw image of insulator image taken by 
a drone. (b) and (c) are examples of good and damaged insulator, 
respectively.

 
Figure 2. Examples of Insulators 

5. RESULTS 
In this section, results of various GANs models from the previous 
section, are discussed. GANs were trained with the purpose of 
augmenting the unbalanced data set, so different GANs were then 
used to generate minority-class images. Therefore, a DNN 
classifier trained with data set with and without augmentation was 
used to evaluate the quality of generated images by different 

GANs. In order to assess the diversity of images generated by 
GANs, structural similarity indices (SSIM) [27] were calculated 
and compared among different GANs. 

5.1 Image Quality Assessment 
Several examples of generated damaged insulators by BGANs are 

shown in Figure 3. BGANs is designed to work with images 

whose size is 64 × 64, and since the final output image resolution 

is 512 × 512, so the generated images from BGANs are blurry. 

 

Figure 3. Damaged Insulator Examples Imagined by BGANs 

Three examples of damaged insulators produced by AC-GANs are 

shown in Figure 4. AC-GANs produced images that have better 
quality than that of BGANs, but they are still blurry and difficult 
to distinguish damaged versus good insulators. This might be 
owing to that the classification loss was dominated by the source 
loss and much optimization was done to decrease the source loss. 



 

Figure 4. Damaged Insulator Examples Imagined by AC-

GANs 

Compared to images generated by BGANs and AC-GANs, 
StyleGANs was able to produce images with much higher quality. 
Four examples are shown in Figure 5, where the first three images 
are of better quality and the last one is one of the poorly produced 
image examples. 

 

Figure 5. Damaged Insulator Images Imagined by StyleGANs 

PGANs was able to produce images with similar quality as 
StyleGANs. Four examples are shown in Figure 6, where the first 
three images have better quality and the last one is a little blurry. 
Compare to images generated by StyleGANs, PGANs seems to be 
able to produce images with better image quality, where 

flashovers (white dots on insulators) are clearer to spot. 

 

Figure 6. Damaged Insulator Examples Imagined by PGANs 

BPGANs produced mixed results. Some damaged insulators are 

shown in Figure 7. (𝑎) and (𝑏) look like damaged insulators. (𝑐) 

seems to be a good insulator and (𝑑) and (𝑒) are blurry. The 
reason that some damaged insulators imagined by BPGANs look 
like undamaged insulators might be because that the classification 

loss is too little compared to the source loss and more 
optimization was done to reduce the source loss. 

 

Figure 7. Damaged Insulator Examples Imagined by BPGANs 

In order to assess the quality of generated images from GANs, the 
images were evaluated by a trained classifier. The rationale 
behind this assessment strategy is that more examples can be 
recognized as damaged by the trained classifier, the better the 
image quality. The results from different GANs are summarized 
in Figure 8. As it shows, the trained classifier only recognized 
nearly 30% of damaged insulators produced by BGANs as 

damaged, which makes sense as the image quality of the 
generated images is poor. AC-GANs achieved better results than 
BGANs. StyleGANs and PGANs produce images with much 
higher quality, and as a result more images are recognized as 
damaged. Since BPGANs generated images with mixed quality, it 
did not achieve highest result among all GANs. The results 
showed that PGANs, StyleGANs, and BPGANs produced images 
with high recognition rate. 

 

Figure 8. Recognition Rate of Damaged Insulators by 

Different GANs 

5.2 Image Diversity Assessment 
In order to assess how diverse the generated images are, SSIM 
values were calculated for images from different GANs. For each 
groups of images produce by GANs, 100 images were randomly 
selected and SSIM values were calculated. Figure 9 shows the 
maximum SSIM values and standard deviations for different 
GANs. Low similarity results from all of GANs indicated that 
images do not look like one another within each group. 



 

Figure 9. Similarity Comparison on Images Produced using 

GANs 

To verify how similar imagined examples by GANs to the training 
examples, in other words whether the training overfitted, SSIM 
values were compared against the closest images in the training 

data set. Similarly, 100 images were randomly selected from each 
GANs-produced result, to which 100 closest images from the 
training set were chosen. Then, 100 closest images of the selected 
real images from the training set were chosen. Eventually, the two 
sets of SSIM values were calculated and compared. 

Figure 10 shows the maximum SSIM values and standard 
deviations for different GANs. Bars labelled as fake are similarity 
results from the generated images by GANs and bars labelled as 

real are SSIM values for the training data set. Except for 
StyleGANs, all other GANs models produced images with low 
similarity values than the training data set, which indicates that 
the images produced by GANs are not similar to the training 
images and models did not overfit. 

 

Figure 10. Similarity Comparison between Imagined 

Examples and Training Examples 

5.3 Classification Results 
The ultimate goal of this study is to utilize GANs to augment and 
balance the data set in hope that a better classifier can be obtained 
to distinguish damaged insulators and good insulators. Therefore, 
the final assessment is to train the same classifier on the 
augmented data set, observing if the classification performance 
would increase or not. 

Figure 11 shows that the F1-scores and classification accuracy 

improved for all GANs, expect for the BGANs and AC-GANs, 
compared to the classifier trained on the original classifier. 

Results indicated that classifier trained on data set augmented by 
PGANs achieved highest F1-score and accuracy. 

 

Figure 11. F1-score and Accuracy of Classifier Trained on 

Data set Augmented using GANs 

6. CONCLUSION 
Electricity is of great importance to ensure functionalities of all 
aspects of society, and thus regular electrical inspections are 
needed. Recent advances in deep learning has offered viable 
approaches to automate inspection jobs. However, data 
availability can restrict how deep learning can be successfully 
applied. Generative adversarial networks are capable of learning 
good representations of images and generate imagined ones based 
on learned representations. Therefore, in this study, extensive 
experiments have been conducted on generating images, 

especially damage insulators, based on GANs. 

Results show that BGANs and AC-GANs are able to combine 
class label during training, and thus provide more information 
guiding the generation of damaged insulators. However, they are 
designed to produce relative low-resolution images, and thus 
images generated are blurry and even sabotage the classifier when 
augmenting the data set with images produced by them. 
StyleGANs and PGANs are capable to generate images of much 

higher quality because of the hierarchical architecture in both 
generator and discriminator. However, they are both trained only 
on the damaged insulators, and therefore does not make any use of 
information from the good insulators. Motivated by the 
advantages and drawbacks of existing GANs models, BPGANs is 
proposed. BPGANs is able to make full use of label information 
to generate images with good quality. 

StyleGANs, PGANs, and BPGANs are able to produce damaged 

insulators examples with high quality. PGANs produced the best 
quality images with recognition rate about 87%, followed by 
StyleGANs (81%) and BPGANs (80%). The rest of GANs models 
failed to produce good quality images, having low recognition rate 

less than 70%. Low SSIM values by all the GANs models 

indicated that generated images are of great mode and are not 
similar to training data set. The classification accuracy and F1-
score trained on the unaugmented data set is 91.45% and 0.9424. 
After augmenting the original data set, the classifier achieved 
higher F1-scores and classification accuracy. Highest 
improvement was seen on results from PGANs, with classification 
accuracy increased by about 3% and F1-score by 2%. StyleGANs 

and BPGANs also improved classification performance. The 
former achieved accuracy of 93.78% and F1-score of 0.9585, and 
the latter had accuracy of 92.49%, F1-score of 0.9516. BGANs 
and AC-GANs degraded the classification performance compared 
to the baseline as images generated by the two were of low quality. 

The reason why BPGANs had difficulties distinguishing good 
versus damaged insulators might be because the classification loss 



is too little in magnitude compared to the source loss, which tried 
to tell if the images shown to the discriminator are from real or 
fake images. As a result, the optimizer focused more on 
optimizing the parameters to reduce the source loss. Another 
reason might be because there are only two class labels, which 

only provide 2 additional latent codes compared to original 512 
latent codes, having limited effect on the model. Results indicated 
that learning representations of data progressively from low 
resolution to high resolution is an effective approach, however, 
embedding class label information in the fashion of AC-GANs 
and BGANs might not be appropriate for augmenting binary class 
data sets. 

7. ACKNOWLEDGMENTS 
Our thanks to Black and Veatch for providing original insulator 
images and the K-State Laboratory for Knowledge Discovery in 
Databases for providing annotated images and computing power 
to conduct the experiments in this study. 

8. REFERENCES 
[1] Arsenovic, M., Karanovic, M., Sladojevic, S., Anderla, A., 

and Stefanovic, D. 2019. Solving current limitations of deep 
learning based approaches for plant disease 
detection. Symmetry, 11(7), 939. 

[2] Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., and 

Loy, C. C. 2019. Hybrid task cascade for instance 
segmentation. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (pp. 4974-4983). 

[3] Denton, E. L., Chintala, S., and Fergus, R. 2015. Deep 
generative image models using a￼ laplacian pyramid of 
adversarial networks. In Advances in neural information 

processing systems (pp. 1486-1494). 
[4] Durugkar, I., Gemp, I., and Mahadevan, S. 2016. Generative 

multi-adversarial networks. arXiv preprint arXiv:1611.01673. 
[5] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-

Farley, D., Ozair, S., ... and Bengio, Y. 2014. Generative 
adversarial nets. In Advances in neural information 
processing systems (pp. 2672-2680). 

[6] Gulzar, M. A., Kumar, K., Javed, M. A., and Sharif, M. 2018, 
February. High-voltage transmission line inspection robot. 

In 2018 International Conference on Engineering and 
Emerging Technologies (ICEET) (pp. 1-7). IEEE. 

[7] He, K., Zhang, X., Ren, S., and Sun, J. 2016. Deep residual 
learning for image recognition. In Proceedings of the IEEE 
conference on computer vision and pattern recognition (pp. 

770-778). 
[8] Huang, X., Li, Y., Poursaeed, O., Hopcroft, J., and Belongie, 

S. 2017. Stacked generative adversarial networks. 
In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition (pp. 5077-5086). 

[9] Karras, T., Aila, T., Laine, S., and Lehtinen, J. 2017. 
Progressive growing of gans for improved quality, stability, 
and variation. arXiv preprint arXiv:1710.10196. 

[10] Karras, T., Laine, S., and Aila, T. 2019. A style-based 
generator architecture for generative adversarial networks. 
In Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition (pp. 4401-4410). 
[11] Katrasnik, J., Pernus, F., and Likar, B. 2009. A survey of 

mobile robots for distribution power line inspection. IEEE 
Transactions on power delivery, 25(1), 485-493. 

[12] Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2012. 
Imagenet classification with deep convolutional neural 

networks. In Advances in neural information processing 
systems (pp. 1097-1105). 

[13] Leevy, J. L., Khoshgoftaar, T. M., Bauder, R. A., and Seliya, 
N. 2018. A survey on addressing high-class imbalance in big 
data. Journal of Big Data, 5(1), 42. 

[14] Mariani, G., Scheidegger, F., Istrate, R., Bekas, C., and 
Malossi, C. 2018. Bagan: Data augmentation with balancing 
gan. arXiv preprint arXiv:1803.09655. 

[15] Mirza, M., and Osindero, S. 2014. Conditional generative 
adversarial nets. arXiv preprint arXiv:1411.1784. 

[16] Nguyen, V. N., Jenssen, R., and Roverso, D. 2018. 
Automatic autonomous vision-based power line inspection: 
A review of current status and the potential role of deep 
learning. International Journal of Electrical Power & 

Energy Systems, 99, 107-120. 
[17] Odena, A., Olah, C., and Shlens, J. 2017, August. 

Conditional image synthesis with auxiliary classifier gans. 
In Proceedings of the 34th International Conference on 

Machine Learning-Volume 70 (pp. 2642-2651). JMLR. org. 
[18] House, W. 2013. Economic benefits of increasing electric 

grid resilience to weather outages. Washington, DC: 
Executive Office of the President. 

[19] Radford, A., Metz, L., and Chintala, S. 2015. Unsupervised 
representation learning with deep convolutional generative 

adversarial networks. arXiv preprint arXiv:1511.06434. 
[20] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. 2016. 

You only look once: Unified, real-time object detection. 
In Proceedings of the IEEE conference on computer vision 
and pattern recognition (pp. 779-788). 

[21] Ren, S., He, K., Girshick, R., and Sun, J. 2015. Faster r-cnn: 
Towards real-time object detection with region proposal 
networks. In Advances in neural information processing 
systems (pp. 91-99). 

[22] Shruthi, C. M., Sudheer, A. P., and Joy, M. L. 2019. Dual 

arm electrical transmission line robot: motion through 
straight and jumper cable. Automatika, 60(2), 207-226. 

[23] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., 
Anguelov, D., and Rabinovich, A. 2015. Going deeper with 
convolutions. In Proceedings of the IEEE conference on 

computer vision and pattern recognition (pp. 1-9). 
[24] Woodward, M. 2019. Record U.S. Electricity Generation in 

2018 Driven by Record Residential, Commercial Sales. U.S. 
Energy Information Administration. 

[25] Yang, J., Kannan, A., Batra, D., and Parikh, D. 2017. Lr-gan: 
Layered recursive generative adversarial networks for image 
generation. arXiv preprint arXiv:1703.01560. 

[26] Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., 

and Metaxas, D. N. 2017. Stackgan: Text to photo-realistic 
image synthesis with stacked generative adversarial networks. 
In Proceedings of the IEEE International Conference on 
Computer Vision (pp. 5907-5915). 

[27] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. 
2004. Image quality assessment: from error visibility to 

structural similarity. IEEE transactions on image 
processing, 13(4), 600-612. 

[28] Zhu, J. Y., Park, T., Isola, P., and Efros, A. A. 2017. 
Unpaired image-to-image translation using cycle-consistent 
adversarial networks. In Proceedings of the IEEE 

international conference on computer vision (pp. 2223-2232). 

 

 

 



Columns on Last Page Should Be Made As Close As 
Possible to Equal Length 

 

 

Authors’ background 
Your Name Title* Research Field Personal website 

Lei Luo Ph. D. candidate Computer vision http://leiluoray.com 

William Hsu Full professor machine learning, 
probabilistic reasoning, and 
data science 

http://people.cs.ksu.edu/~bhsu/ 

Shangxian Wang Ph. D. student Medical image analysis, 
computer vision 

 

*This form helps us to understand your paper better, the form itself will not be published. 

*Title can be chosen from: master student, Phd candidate, assistant professor, lecture, senior lecture, associate 
professor, full professor 

 


