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Abstract. We address the open problem of unpaired image-to-image
(I21) translation using a generative model with fine-grained control over
the latent space. The goal is to learn the conditional distribution of trans-
lated images given images from a source domain without access to the
joint distribution. Previous works, such as MUNIT and DRIT, which sim-
ply keep content latent codes and exchange the style latent codes, gener-
ate images of inferior quality. In this paper, we propose a new framework
for unpaired 121 translation. Our framework first assumes that the latent
space can be decomposed into content and style sub-spaces. Instead of
naively exchanging style codes when translating, our framework uses an
interpolator that guides the transformation and is able to produce inter-
mediate results under different strengths of translation. Domain specific
information, which might still exist in content codes, is excluded in our
framework. Extensive experiments show that the translated images using
our framework are superior than or comparable to state-of-the-art base-
lines. Code is available upon publication.
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Content codes - Style codes - Fine-grained control

1 Introduction

Image-to-image (I2I) translation refers to translating images from one domain
to another with different properties. An example is the task of turning images
of cartoon sketches into real-life graphs. Many tasks in computer vision can be
posed as I2] translation, such as image inpainting [1], style and attribute transfer
[2,3], and super-resolution [4]. Paired I2I transfer tasks require paired data sets
that are costly to acquire, and such tasks are relatively easier to solve than their
unpaired counterparts. Chen and Koltun translated paired images of semantic
map to photographic images by taking a regression approach [5]. Isola et al.
framed paired 121 translation tasks using conditional generative models [6]. Our
work addresses the more challenging unpaired 121 task, where no paired data
sets are available. Most of works on unpaired I2I translation draw inspiration
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from CycleGANSs using the cycle consistency constraint [7], and have achieved
impressive results. These models, however, often have little control over the
translation strength and can only provide a single translated image as output.
Furthermore, they often disentangle latent space into domain-invariant (content
codes) and domain-specific parts (style codes). When translating, content codes
are kept while style codes are exchanged. Domain-specific information, however,
might still exist in content codes, which leads to unnatural translation results if
they are not removed [8].

In this work, we show a need for fine-grained control over latent space
by demonstrating the inferior translation capability in previous works that
solely depend on the cycle consistency constraint or translate images by simply
exchanging style codes. Fine-grained control over latent space are manifested in
three aspects: 1) latent codes can be decomposed into content and style, much
like DRIT [9] and MUNIT [10]; 2) an interpolator, which is a neural network, is
employed to guide the transformation of style codes instead of simply exchang-
ing them; and 3) domain-specific information in content codes is removed before
translation for better translation results. Similar to DRIT and MUNIT, our
framework assumes that the latent space can be decomposed into content space
and style space by the content encoder and the style encoder, respectively. Before
decoding the latent codes to obtain translated results, redundant domain-specific
information that exists in content codes is removed. Furthermore, another set of
modules, which we call the interpolator, smoothly guide the transition of style
codes and allow us to generate intermediate images under different degrees of
transformation. In the end, our framework differentiates translated images by
using a discriminator. Extensive experiments demonstrate that our method is
superior than or comparable to state-of-the-art (SOAT) baselines in unpaired
121 translation.

2 Related Work

Generative Adversarial Networks. Ideally, generative models learn how data
is distributed, thus allowing data synthesis from the learned distribution. Since
the advent of GANs [11], generative models have achieved impressive results in
various tasks like image editing [12] and style transfer [3]. GANs try to learn the
data distribution by approximating the similarity of distributions between the
training data and the fake data produced by the learned model. GANs usually
comprise a generator and a discriminator. The entire model learns by playing a
minimax game: the generator tries to fool the discriminator by gradually gener-
ating realistic data samples, and the discriminator, in turn, tries to distinguish
real samples from fake ones. GANs have been improved in various ways. To
produce more realistic samples, an architecture of stacked GANs have been pro-
posed: the laplacian pyramid of GANs [13]; layered, recursive GANs [28]; and
style-based GANs [2,3]. Several studies have attempted to solve the instabil-
ity training of GANs using energy-based GANs [14], Wasserstein GANs [15],
and boundary equilibrium GANs [16]. In this study, we use GANs with their



410 L. Luo et al.

improved techniques to learn the distribution of image data and translate them
among different domains.

Unpaired I2I Translation. Unpaired 121 translation translates images from
one domain to another without paired data supervision. Much success in
unpaired I2I translation is due to the cycle consistency constraint, proposed
in three earlier works: CycleGANs [7], DiscoGANs [17], and DualGANs [18].
Recent systems such as MUNIT [10] and DRIT [9] were developed to perform
multimodal I2I translation, which refers to producing images with the same
content but different contexts. For example, a winter scene could be translated
into many different summer scenes depending on weather or lighting. To trans-
late more than two domains, StarGAN-V2 [19] and ModularGANs [20] were
proposed. 121 translation methods using GANs that merely rely on cycle con-
sistency constraints usually suffer from the issue of discreteness, which refers to
inability to continuously control the transformation strength. In this study, we
use an interpolator to guide the translation, which allows us to generate visually
appealing intermediate translation results.

Our framework is closely related to MUNIT on that the latent space can be
decomposed into a style sub-space and a content sub-space. Our framework, how-
ever, differs from MUNIT in four aspects: 1. Instead of having to train n(n — 1)
sets of encoder-decoder for translating images between n domains, our framework
consists of only one such set that works for multi-domains; 2. Our framework
does not impose a Gaussian prior distribution for style codes, and instead learns
the distributions during training; 3. Our framework removes redundant domain-
specific information in content codes before translation, thus generating more
natural-looking results; 4. Most unpaired I2I translation models that depend on
the cycle-consistency loss cannot generate sequences of intermediate translation
results. We employ an interpolator module that helps smoothly translate the
latent codes of different domains and produces visually satisfying intermediate
translation results.

3 Methods

3.1 Preliminaries

Let z,,, € X, and z,, € X,, be two images from domain X, and domain X,,. Our
goal is to estimate the conditional distributions p(z,|z,) and p(z, |z, ) using the
learned distribution p(z,—m|Ty) and p(Tm,—n|Tm ), given the marginal distribu-
tion of p(x,,) and p(x,) but without requiring access to the joint distribution of
P(Tm, Tn). Figure 1 shows an overview of our model. Our framework starts with
an encoder E = (Es, E.) that maps images from image space to latent space,
where F is the style encoder and E. is the content encoder. The latent codes
consist of style latent codes (s, s,) and content latent codes (¢, ¢,), where
(ems Sm) = (Be(Tm), Es(zm)) and (cn, sn) = (Ee(zn), Es(x,)). After style codes
are obtained, an interpolator I helps transform the style codes across different
domains. The translated style codes s, and s,,_.,, are obtained by calculating
Sm ok In(Sn — Sm) and 8, + s Iy (S — S5 ), where « is the transformation
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Fig. 1. The structure of our framework. (a) shows within-domain image reconstruction;
(b) shows key components of the decoder. The number of convolutional layers are more
than what the graph shows; (¢) shows cross-domain translation.

strength. Style is injected into the decoder by AdalN [21] operations. Before
injecting the style of the target domain, we remove domain-specific information
by injecting the negative style of the same domain, and the strength of the neg-
ative style is learned during training. Inspired by StyleGAN [2], we introduce
stochastic variation into our model by injecting noise into the decoder. After the
transformed style codes are obtained, the decoder D decodes the style and con-
tent codes back to image space, thus generating translated images ., and T,
where ., = D(¢m, Sm—n) and Ty, = D(cn, Sn—m ). Finally, the discriminator
C tries to differentiate real images from fake ones.

3.2 Framework Architecture

In this section, we outline the architecture of different modules in our framework.

Encoder. Our encoder has two sub-encoders: the style encoder and the content
encoder. The content encoder consists of three convolutional layers and four
residual blocks [22]. All the layers use ReLU activation function and are followed
by an instance normalization (IN) operation [23]. The style encoder starts with
five convolutional layers, which are followed by an adaptive average pooling layer
and a 1x1 convolutional layer. All layers in the style encoder use ReLLU activation
function except for the pooling layer.

Decoder. The decoder maps latent codes, which consist of style codes and
content codes, to the original image space. The style codes go through a mapping
network and are then injected into the decoder by AdaIN [21] operations. The
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mapping network is a three layer multi-layer perceptron network. Each layer
except for the last one is followed by ReLU. Before injecting the style of the
target domain, we remove redundant domain-specific information by injecting
the negative style of the source domain, and the strength of the negative style is
learned via training. Taking transferring the image z,, from the domain X, to
the domain X,, as an example. We first remove domain specific information in
content codes ¢,, by using AdaIN(—3,, * s,,), where 3, is learned via training.
Then, we inject the style codes s,, of image x,, by using AdalN again, which is
AdaIN(sy,,). Inspired by StyleGAN [2], we introduce stochastic variation into our
model by injecting Gaussian noise into the decoder. Our decoder consists of four
residual blocks using AdalN, and two sets of upsample and convolution layers.
The last layer is a convolution layer with hyperbolic tangent activation function.

Interpolator. Our framework has an interpolator to guide style codes transiting
from one domain to another. The interpolator has three convolutional blocks.
The first two use ReLLU activation function, and the last one does not have any
activation function.

Discriminator. We use a multi-scale discriminator, whose architecture is similar
to the one proposed by [29], to distinguish real images from fake ones. At each
scale, images go through five convolutional layers before being downsampled. The
losses at three scales are accumulated for calculating the final discriminator loss.
The discriminator also works as a domain predictor, which consists of a three layer
multi-layer perceptron with ReLLU activation function except for the last one.

3.3 Loss Functions

In this section, we discuss the loss functions and the training algorithm of our
framework.

Image Reconstruction Loss. After images are encoded to style and content
codes, the decoder can map them back to the image space and reconstruct the
image. Therefore, the image reconstruction loss of x,, is formulated as:

Lition = ID(Ec(zm), Es(xm)) — mll , (1)

recon

and L¥». is expressed similarly. After images are translated from one domain

to another, the images in the source domain can be reconstructed by inverting
the process. For example, z,,, has the content of image x,, and the style from
domain X,,. Z.,, is obtained by evaluating D(c,, S,,). Encoding z,,,, again pro-

duces (c},,, s,,), and by decoding D(c/,,, $m ), we can reconstruct &,,, which is now

m’en
denoted by Znm. Thus, we calculate L¥mzm as follows:
Lizen = lmnm — Zmlly = [D(Ee(@mn), Es(@m)) — Tml|; - (2)
Similarly, L¥zmn = ||Znmn — @nl|;. The reconstructed images should be consis-

tent with the semantics of the original images, so we penalize perceptual loss to
minimize the semantic difference:

Ly = |85(D(Ee(@n), Bs(xm))) = Pa(xm)| 3)
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where @3 denotes the ReLU3_1 layer of a pretrained VGG network [27]. We can

similarly calculate the perceptual loss for Lz, ., Lymem, and Lyzme.

Latent Code Reconstruction Loss. By encoding the translated images, we
can obtain a new set of content and style codes. For example, encoding the trans-
lated image ¥, produces (c),, s.,). We construct the latent code reconstruction
loss as follows:
L;econ = ||C;n - cm”l ;Liecon = Hsfn - Sn“l : (4)
Interpolation Loss. Given latent codes of two domains one can interpolate
latent codes in a linear fashion. For example, s,,, + « * (s, — s,,) translates s,
to s, under translation strength . This approach, however, does not guarantee
smooth-looking results as the translation path might not be linear. We employ
an interpolator to smoothly transit style codes of different domains, which is
calculated as s, + « * Iy (Sn — Sm). « controls the translation strength and
is a random value that is uniformly sampled from 0 to 1. Regarding to domain
labels, however, we adopt a linear interpolation strategy. That is to say, we
linearly interpolate the domain labels using the same « and use the interpo-
lated domain label as ground truth. The intuition behind this is that linearly
interpolated images are supposed to have linearly interpolated labels, but lin-
early interpolated images are not guaranteed to be smooth-looking. Therefore,
an interpolator network is trained to guide the translation. The discriminator
C' is trained to produce realistic fake images and also to also predict domains
of images, and we use the binary cross entropy (BCE) loss and adversarial loss
jointly to train the interpolator. The BCE loss function for the interpolator I,
is calculated as:
Ly, = BCE(C(zmn), gt-domain), (5)

where Z,,,,, is a translated image via D(¢p, S+ Iy (Sn — $m)) and gt_domain
is the ground truth domain label, which is linearly interpolated via label,,, + a *
(label,, — label,,). Ly, . can be calculated similarly.

nm

Regularizers on Style and Content Codes. To further encourage style codes
being domain-variant and content codes being domain-invariant, we add regu-
larizers on style and content codes. The style regularizer forces style codes of

different domains to be different by minimizing L7, , which is calculating as:

Las"egu = —[|D(em; 8m) — D(cms sn)lly — [D(cns sm) — D(cn, sn)ll; - (6)

The content regularizer encourages content codes of different domains to be

similar by minimizing L7/, which is formulated as:

Liegu = |D(cm, sm) — D(cn73m>||1 + I1D(em; 8n) — D(Cmsn)Hl . (7)

Adversarial Loss. GANs are used to match the distribution of translated
results to real image samples, so the discriminator finds real and fake samples
indistinguishable. The loss for learning the discriminator C' is formulated as:
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L = E [log(1 — C(D(cm, sm—n)))] + E  [logC(xn)],
cm~p(cm);8m—n~p(sn) Tpn~p(Xn)
(8)

where the discriminator C' tries to differentiate real images from X,, and trans-
lated images @y,n. L™ is obtained similarly.

Model Training. We alternately train our discriminator and the rest of mod-
ules, which are encoders, decoder, mapping network, and the interpolator. The
training procedure of our framework is illustrated in Algorithm 1 using a con-
vergence bound B that is empirically calibrated at 1,000,000.

Algorithm 1: Model training

Result: style encoder Eg, content encoder E ., interpolators I, Inm,
decoder D, and (,,, B, that control the strength of negative
style injected for removing domain dependent information.

n = 0;

while n < B do

Calculate L, L™ according to (8);

Update the discriminator C

Calculate LZm . L¥n - L¥mnm [Znmn gccording to (1), (2);

recon’ recon? recon ’ recon

Calculate Ly, Lz, Lyzem, Lyzme according to (3);
Calculate LS. ons LS ocon according to (4);

Calculate Ly, , Ly, . according to (5);

Calculate L7, g,,, Ly, according to (6), (7);

Update the decoder D, the style encoder E, the content encoder E,
Bm, Bn, and the interpolator I,,,, I,m;

n+ +;

end

mn )

4 Experiments

In this section we talk about the data sets, baselines, and evaluation metrics
that we use for testing our framework.

Data Sets. As in previous research [6,10,12], we use images of shoes and their
edge map images, which are generated by [24]. There are 100,000 images of shoes
+ edges, and 400 images of them are used for testing; the rest are used as the
training data set. The cats < dogs data set is provided in [10], which contains
about 2,300 images of cats and dogs. We retain 100 images of cats and 100
images of dogs for testing with rest for training.

Baselines. We compare our framework against three baseline models developed
in recent years. Our framework is closely related to DRIT and MUNIT, which we
use as baseline models. StarGAN-V2 [19] was recently proposed and achieved
SOTA results on unpaired I2I translation. Therefore, we use StarGAN-V2 as
another baseline in our study.
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Evaluation Metrics. We evaluate the visual quality using Frechét inception
distance (FID) [25] and the diversity of translated images with learned perceptual
image patch similarity (LPIPS) [26]. FID measures the discrepancy between two
sets of images. For each test image in the source domain, we translate it into a
target domain using 10 reference images randomly sampled from the test set of
the target domain. We then calculate FID between the translated images and test
images in the target domain. We calculate FID for every pair of image domains
(e.g. cat <« dog) and report the average value. LPIPS measures the diversity
of generated images using the L, distance between features extracted from the
pretrained AlexNet [30]. For each test image from a source domain, we generate
10 outputs of a target domain using 10 reference images randomly sampled from
the test set of the target domain. Then, we compute the average of the pairwise
distances among all outputs produced from the same input, which are 45 image
pairs. Finally, we report the average of the LPIPS values over all test images.
Lower FID values indicate that the two sets of images have similar distributions.
Higher values of LPIPS indicate higher diversity of generated images.

Freché’t inception distance (FID) [25] and the diversity of translated images
with learned perceptual image patch similarity (LPIPS) [26] are commonly used
for evaluating 121 translation performance. FID measures the distribution simi-
larity between translation results and test set. LPIPS measures the diversity of
generated images. Lower FID values indicate that the two sets of images have
similar distributions. Higher values of LPIPS indicate higher diversity of gener-
ated images.

5 Results

In this section, we provide the qualitative and quantitative results of the experi-
ments. Ablation study is also provided for evaluating the effectiveness of several
key design choices.

Qualitative Results. We show several example translation results by different
models in the graph (a) of Fig. 2. To evaluate visual quality of translation results,
we utilize the Amazon Mechanical Turk (AMT) to compare our results against
the baselines based on user preferences. Given a source image and a reference
image, we instruct AMT workers to select the best transfer result among all mod-
els. We ask 60 questions for all ten workers. As shown in Table 1, our method
slightly outperforms StarGAN-V2 [19] and exceed MUNIT [10] and DRIT [9] for
a large margin. Unlike the baselines, which suffer from the issue of discreteness
and can only produce one final translation image, our framework can generate
sequences of intermediate translation results by interpolating style codes using
different translation strengths. The graph (b) in Fig.2 shows results of trans-
lating between the cat and dog domain under different strengths of translation.
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Our framework uses ., + @ * Iy (Sy, — S ) during interpolation, which generates
smooth-looking intermediate results. Other baselines cannot produce intermedi-
ate translation results by default. If we interpolate the style codes linearly using
Sm + a * (S, — Sim), we can see that the translation results by StarGAN-V2 and
MUNIT contain artifacts, and the results by DRIT only differ in lighting.

Quantitative Results. The qualitative observations above are confirmed via
quantitative evaluations. As Table 2 shows, StarGAN-V2 achieves the lowset FID
and highest LPIPS on the cat2dog data set among all models, but results by our
model are comparable to StarGAN-V2. Translated images by our model on the
edges2shoes have lower FID and higher LPIPS values than all the baselines.

Table 1. Votes from ATM workers for most preferred style transfer results.

Models Performance (1)
MUNIT 13.22%

DRIT 15.06%
StarGAN-V2 | 35.11%

Ours 36.61%

Table 2. Quantitative evaluation of image translation using FID and LPIPS. Cat
images are translated to dog images, and edges are translated to shoe images.

Metric Data set DRIT | MUNIT | StarGAN-V2 | Ours
FID (]) cat2dog 148.87 1122.04 | 18.81 21.53
FID (]) edge2shoes | 273.93 | 274.11 | 63.78 61.33
LPIPS (1) | cat2dog 0.251 |0.263 0.355 0.341
LPIPS (7) | edge2shoes | 0.108 |0.110 0.114 0.126

Ablation Studies. To further validate effects of key loss functions and design
choices in our framework, we carry out ablation studies on the cat2dog data
set. Let the model without domain-specific information removal (3, 8,), inter-
polators, latent codes regularizers, and noise injection be the naive model. We
incrementally add modules to the naive model and calculate FID and LPIPS val-
ues. The quantitative evaluations are shown in Table 3, and qualitative results
are in Fig. 3.
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Source Reference DRIT MUNIT StarGAN-V2  Ours

(a) Examples of unpaired I2I translation results from cats to dogs and edges to
shoes. The first column are source images, and the second column are images of
the target domain. The rest are results from various models.

Source Reference . . 0.75

(b) Examples of translating cats to dogs under different translation strengths by
interpolating the style codes between two domains. The values from 0.25 tol represent
different strength levels. (1) is the results by our framework; (2) is by StarGAN-V2;
(3) is by MUNIT; (4) is by DRIT.

Fig. 2. Examples of translating results by our framework. (a) compares translation
results by different baselines; (b) shows examples of interpolation by all models.
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+ noise, + noise, + noise, + noise,
style regu style regu, styleregu,  style regu,
contentregu  content regu, content regu,
interpolator  interpolator,

Py Pn

Source Target naive + noise

Fig. 3. Ablation study of our framework, which shows examples of translating cats to
dogs by incrementally adding modules.

Table 3. FID and LPIPS results of incrementally adding modules to our framework.
LPIPS values for the naive model are not reported as it is a deterministic model.

Modules FID (|) LPIPS (1)
Naive model 103.30 | —

+ Noise injection 76.88 0.326

+ Style regularization 59.21 0.329

+ Content regularization 47.70 0.331

+ Interpolators 30.45 0.333

+ Domain-specific 21.53 |0.341
Information elimination

6 Conclusions

In this research, we have presented a new framework for unpaired 121 translation.
Our framework proposes fine-grained control over latent codes for achieving bet-
ter translation results. We show that removing redundant domain-specific infor-
mation during cross-domain translation helps produce better results. We also
show that rather than simply exchanging style codes, an interpolator can help
guide the transformation to generate more visually appealing images, which also
allows us to produce intermediate translation results. The qualitative results and
quantitative evaluations show that our framework is superior than or comparable
to the SOTA baselines in unpaired 121 translation.
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