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Abstract. We address the open problem of unsupervised multimodal
multi-domain image-to-image (I2I) translation using a generative adver-
sarial network with attention mechanism. Previous works, such as Cycle-
GAN, MUNIT, and StarGAN2 are able to translate images among mul-
tiple domains and generate diverse images, but they often introduce
unwanted changes to the background. In this paper, we propose a sim-
ple yet effective attention-based framework for unsupervised I2I transla-
tion. Our framework not only translates solely objects of interests and
leave the background unaltered, but also generates images for multiple
domains simultaneously. Unlike recent studies on unsupervised I2I with
attention mechanism that require ground truth for learning attention
maps, our approach learns attention maps in an unsupervised manner.
Extensive experiments show that our framework is superior than the
state-of-the-art baselines.

Keywords: Image-to-image translation · Attention learning ·
Unsupervised learning

Image-to-image (I2I) translation refers to translating images from one domain to
another featuring different styles, which are visually distinctive among different
domains. An example is the task of turning images of cartoon sketches into real-
life photographs. Many tasks in computer vision can be viewed as I2I translation,
such as image inpainting [1], style transfer as in StyleGAN2 [2], and super-
resolution [3]. Supervised I2I translation tasks need paired data sets that are
costly to obtain, and such tasks are relatively easier to solve than their unsuper-
vised counterpart. Under paired data supervision, I2I translation can be done by
taking a regression approach [4] or using conditional generative models [5]. Our
work addresses the more challenging unsupervised I2I translation task without
access to paired data sets. Most of works on unsupervised I2I translation draw
inspiration from CycleGAN [6] using the cycle consistency constraint, and have
achieved impressive results. More recent studies, such as MUNIT [7] and Star-
GAN2 [8], have improved upon on CycleGAN and are able to translate images
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among multiple domains. These works, however, introduce unwanted changes to
both objects of interest and the background, which is undesired. In our study
we propose a simpler yet effective approach. Our framework only consists of one
generator-discriminator pair and a mapping network, which enable multimodal
and multi-domain translation. Moreover, our framework learns attention maps
by using a attention module, which allows translating objects of interest and
leave the background intact. Extensive experiments show that our framework is
superior or comparable to state-of-the-art (SOTA) baselines. The contributions
of our work can be summarized as follows:

– We propose a novel framework for unsupervised I2I translation with attention
mechanism, which allows for image translation at instance level.

– Our framework learns attention maps with an unsupervised manner, which
does not require segmentation annotations. Our attention module could be
used as a plug-and-play add-on for existing pre-trained I2I translation frame-
works, making them capable of learning attention maps at lower cost than
training an attention module and its generator from scratch.

– Unlike previous works, such as MUNIT and DRIT [9], that require train-
ing n(n − 1) generators for translating images for n domains, we propose
a novel framework architecture, which requires training only one generator-
discriminator pair and achieves multimodal multi-domain I2I translation.

– Extensive experiments on publicly available data sets show that our frame-
work is superior than SOTA baselines.

1 Related Work

Generative Adversarial Networks. Ideally, generative models learn how
data is distributed, thus allowing data synthesis from the learned distribution.
Since the advent of GANs [10], generative models have achieved impressive
results in various tasks like image editing [11] and style transfer as in Style-
GAN2. GANs try to learn the data distribution by approximating the similarity
of distributions between the training data and the fake data produced by the
learned model. GANs usually comprise a generator and a discriminator. The
entire model learns by playing a minimax game: the generator tries to fool the
discriminator by gradually generating realistic data samples, and the discrimi-
nator, in turn, tries to distinguish real samples from fake ones. GANs have been
improved in various ways. To produce more realistic samples, an architecture of
stacked GANs has been proposed: the laplacian pyramid of GANs [12]; layered,
recursive GANs [13]; and style-based GANs (StyleGAN and StyleGAN2). Several
studies have attempted to solve the instability training of GANs using energy-
based GANs [14] and Wasserstein GANs [15]. In this study, we use GANs with
their improved techniques to learn the distribution of data and how to translate
among different domains.
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Unsupervised I2I Translation. Unsupervised I2I translation translates
images from one domain to another without paired data supervision. Much suc-
cess in unsupervised I2I translation is due to the cycle consistency constraint,
proposed in three earlier works: CycleGAN, DiscoGAN [16], and DualGAN
[17]. To translate more than two domains, MUNIT and DRIT are proposed.
These methods, however, sample style codes from a standard normal distribu-
tion, which leads to inferior translation results. Moreover, they require train-
ing n(n − 1) generators and n discriminators for translating images among n
domains, which is computationally expensive and time-consuming. Our method
proposes a simpler yet more effective approach that requires only one set of
generator-discriminator. Recent systems such as StarGAN2 and ModularGAN
[18] are developed to perform multimodal image-to-image translation to pro-
duce images with the same content but different contexts. All the aforemen-
tioned methods, however, introduce undesired changes to the background while
translating images.

Attention Learning. Motivated by human attention mechanism, attention has
been successfully applied in various computer vision and natural language pro-
cessing tasks, such as machine translation [19], visual question answering [20],
and image and video captioning [21]. Attention improves the performance of all
these tasks by encouraging the model to focus on the most relevant parts of the
input. In order to focus on the most discriminative semantic part and retain the
background of images during translation, attention mechanism has been intro-
duced into I2I. ConstrastGAN [22] takes a supervised approach and uses segmen-
tation mask annotations as extra input data. Similar to our approach that learns
attention masks without using extra annotation, AttentionGAN [23], ATAGAN
[24], and AGGAN [25] add an attention module to each generator to locate the
object of interest in image-to-image translation tasks. Thus, the background can
be excluded from I2I translation. All these mentioned methods, however, are
only able to translate two domains at a time. In order to remedy the drawbacks
mentioned above, we propose an unified I2I translation framework with atten-
tion mechanism. Instead of having to train n(n−1) generator-discriminator pairs
for learning to translate among n domains, our methods only requires training
one such pair. Thus, our framework reduces training time and memory footprint
with better or comparable translation performance.

2 Methods

2.1 Preliminaries

Let x be an image that belongs to one of many domains. The diagram (a) in Fig. 1
shows an overview of our model. We start from a latent vector z that is sampled
from a standard normal distribution. z goes through a mapping network, which
learns style codes s of a specific domain, where m is a domain label and s =
M(z,m). Meanwhile, we employ a content encoder Ec to extract content codes
c from image inputs. The decoder D takes content and style codes to generate
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reconstructed images x′, which are then used by style encoder Es to produce
reconstructed style codes s′. We compute two L1 losses using the reconstructed
images and style codes. Finally, we use a multi-task discriminator to distinguish
real images from generated ones. During the translation phase, we keep the
same content codes but use the style codes of target domains. Attention maps
are learned using the attention module. Take translating a horse image xm to a
zebra image as an example, shown in the diagram (b) of Fig. 1. The horse image
is processed by the encoder, resulting in style codes sm and content codes cm.
In the meantime, the attention module extracts attention maps att from the
horse image. The style codes of the zebra image sn are exchanged with that of
the horse image. Then, the decoder uses the content codes cm and style codes
sn to generate an intermediate fake zebra image, whose background contains
unwanted changes. We incorporate the attention map with the intermediate fake
zebra image by att × D(cm, sn) + (1 − att) × xm, which results in the final fake
zebra image. Note that we only show the attention branch for translating horse
to zebra due to space limitation, the other direction of translation is similar.

Fig. 1. The structure of our framework. (a) Shows how our framework learns, and
(b) shows cross-domain translation within the horse and zebra domain. The attention
branch of translating zebra2horse is similar to horse2zebra, and thus is not shown.
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2.2 Framework Architecture

In this section, we outline the architecture of different modules in our framework.

Encoder. Our encoder has two sub-encoders: the style encoder and the content
encoder. Both start with a convolution layer. The content encoder consists of six
residual blocks [26]. All the layers are downsampled by average pooling operation
(except for the last two layers) and are followed by an instance normalization
(IN) [27]. The style encoder also comprises six residual blocks but without any
activation function expect for the last residual block. Lastly, the style encoder
consists of a convolution layer with leaky ReLU and a reshape operation before
outputting style codes by the linear layer.

Mapping Network. Style codes of domains are modelled by a mapping net-
work, which consists of eight linear layers with ReLU activation function expect
for the last layer.

Decoder. The decoder maps latent codes, which consist of style codes and
content codes, to the original image space. To apply style to images of different
domain, the style codes are injected into the decoder by AdaIN [28] coupled with
residual blocks. The last layer is a convolution layer whose outputs are generated
images.

Attention Module. The attention module has an encoder-decoder architec-
ture. The encoder consists three convolutional blocks, and the decoder has three
convolutional layers with a sigmoid activation function at the end, which outputs
the attention probability map.

Discriminator. The architecture of discriminator is similar to that of the style
encoder except that it has one more convolutional layer to predict domains.

2.3 Training Objectives

In this section, we discuss the loss functions for learning our framework.

Image Reconstruction Loss. After images are encoded to style and content
codes, the decoder maps the latent space back to the image space and recon-
structs the image. Image reconstruction loss is formulated as:

Lx
recon = ‖D(Ec(x),M(z,m)) − x‖1 , (1)

where m is the domain, to which image x belongs.

Style Code Reconstruction Loss. After encoding reconstructed images using
the style encoder, we can obtain reconstructed style codes. We construct the style
code reconstruction loss as follows:

Ls
recon = ‖s − Es(x′)‖1 , (2)

where x′ = D(Ec(x),M(z,m)) and x ∈ Xm.
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Attention Consistency Loss. Images before and after translation should have
the same attention maps. Thus, the attention consistency loss is defined as:

Latt = ‖att(xmn) − att(xm)‖1 , (3)

where xmn is the translated image, which is obtained by att × D(cm, sn) + (1 −
att) × xm. cm is the content information of xm and sn is the style information
of image xn.

Regularization on Style and Content Codes. To further encourage style
codes being domain-variant and content codes being domain-invariant, we add
regularizers on style and content encoders. The style regularizer forces style codes
of different domains to be different by minimizing Ls

regu, which is calculated as:

Ls
regu = −‖D(cm, sm) − D(cm, sn)‖1 − ‖D(cn, sm) − D(cn, sn)‖1 , (4)

where (cm, sm) = (Ec(xm), Es(xm)) and (cn, sn) = (Ec(xn), Es(xn)). cm and sm
are content and style codes of image xm ∈ Xm. cn and sn are content and style
codes of image xn ∈ Xn.

The content regularizer encourages content codes of different domains to be
similar by minimizing Lc

regu, which is formulated as:

Lc
regu = ‖D(cm, sm) − D(cn, sm)‖1 + ‖D(cm, sn) − D(cn, sn)‖1 . (5)

Inspired by StarGAN2, we calculate style diversity as:

Lds = ‖Es(x1) − Es(x2)‖1 , (6)

where x1 = D(Ec(x),M(z1,m)), and x2 = D(Ec(x),M(z2,m)), and z1 and z2
are two random latent vectors.

Adversarial Loss. GANs are used to match the distribution of translated
results to real image samples, so the discriminator finds real and fake samples
indistinguishable. We use two adversarial losses with one for learning latent-
guided translation and the other for reference-guided translation. Latent-guided
translation refers to using the mapping network to obtain target style codes,
and reference-guided translation uses the style encoder to extract style codes
of target domains. The adversarial loss for learning the discriminator Cm with
latent-guided translation is formulated as:

Ll
adv = E

z∼N(0,I),xn∼p(Xn)
[log(1 − Cm(att × D(cn,M(z,m)) + (1 − att) × xn))]

+ E
xm∼p(Xm)

[log(Cm(xm))],

(7)
where m is the target domain label and the adversarial loss for learning the
discriminator Cm with reference-guided translation is constructed as:

Lr
adv = E

xm∼p(Xm),xn∼p(Xn)
[log(1 − Cm(xnm))] + E

xm∼p(Xm)
[log(Cm(xm))], (8)

where the discriminator Cm tries to tell if images are from the domain m, and
xnm is obtained by att × D(cn, Es(xm)) + (1 − att) × xn.
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Full Objective. Our full objective is formulated as follows:

min
M,E,D

max
C

λ1L
x
recon + λ2L

s
recon + λ3(Ls

regu + Lc
regu)

+ λ4(Ll
adv + Lr

adv) − λ5Lds + λ6Latt,
(9)

where λ1 to λ6 are hyperparameters for each loss term.

Model Training Scheme. We find it difficult for the model to converge when
training the generator and the attention module simultaneously. Therefore, we
first train the generator and the discriminator using 1e−4 as learning rate for
100,000 iterations, which is empirically calibrated. Then, we freeze the param-
eters of the generator when training the attention module for 30,000 iterations
with the same learning rate. Lastly, we jointly train the entire framework for
another 10,000 iterations using a smaller learning rate 5e−5.

3 Experiments

In this section we talk about the data sets, baselines, and evaluation metrics.

Baselines and Data Set. We compare our framework against four baseline
models developed in recent years. CycleGAN is one of the pioneer work in unsu-
pervised I2I, which is used as a baseline model. MUNIT and StarGAN2 achieve
impressive results in unsupervised multimodal I2I translation, against which,
thus, we compare our framework. For the sake of fair comparison, we compare
our approach to AGGAN that is a recently proposed attention-based I2I trans-
lation framework.

We evaluate our framework on the horse2zebra, AFHQ, and map2aerial data
sets. The horse2zebra data set contains images of horses and zebras, and it is
downloaded from ImageNet using keywords wild horse and zebra. There are in
total 1,067 horse images and 1,334 zebra images are used for training, and 120
horse images and 140 zebra images are for testing. The AFHQ data set contains
images of house cats, dogs, and wild animals (e.g. tigers, foxes, and lions). Similar
to StarGAN2, we divide the AFHQ data set into domains of cats, dogs, and wild
animals. The map2aerial data set are scraped from Google Maps, and images
were sampled from in and around New York City. All images are of size 256×256.

Evaluation Metrics. We evaluate the visual quality of translation using the
Amazon Mechanical Turk (AMT), which is based on user preferences given
results of different models. To seek a quantitative measure that does not require
human participation, Structural Similarity Index (SSIM) and Peak Signal-to-
Noise Ratio (PSNR) are employed similar to Chen et al. in AttentionGAN and
AGGAN.

4 Results

In this section, we show the qualitative and quantitative results of the experi-
ments. Ablation study is also carried out to evaluate the effectiveness of several
key design choices.
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Qualitative Results. We utilize the Amazon Mechanical Turk (AMT) to com-
pare our results against the baselines based on user preferences. Given a source
image and a reference image, we instruct AMT workers to select the best transfer
result among all models. We ask 50 questions for all ten workers. As shown in
Table 1, our method outperforms all the baseline models, especially for MUNIT,
CycleGAN, and StarGAN2 that are not attention based I2I translation frame-
work. Similar to MUNIT and StarGAN2, our model is also able to perform
latent-guided and reference-guided translation. We illustrate examples of latent-
guided translation in (a) of the Fig. 2, and Fig. 3 shows examples of I2I transla-
tion guided by reference images of all models. We can see that our model and
AGGAN are capable of preserving the background information and only trans-
lating the objects of interests. CycleGAN and AGGAN are only able to perform
reference-guided translation, thus their latent-guided translation results are not
shown. We present two examples of attention maps of our model comparing
against AGGAN in (b) of the Fig. 2, which shows that our attention maps are
more accurate than AGGAN. From the results we argue that there should be
a clear definition on what “undesired changes” are. It is clear that when per-
forming translation, such as transferring a map into an aerial photo, we would
assume the attention mask to be the entire image (See the attention map in
figure (b) of the Fig. 2). We think it is probably more appropriate to apply such
separation of background and background on domains of horse2zebra instead of
map2aerial.

Fig. 2. (a) Are examples of latent-guided I2I translation results, and (b) compares
attention maps generated by our framework and AGGAN.
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Table 1. Votes from ATM workers for most preferred translation results.

Models User preference (↑)

CycleGAN 8.31 %

MUNIT 2.55 %

StarGAN2 3.13 %

AGGAN 40.93 %

Ours 45.08 %

Fig. 3. Examples of reference-guided I2I translation by different models.
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Fig. 4. An example of reference-guided translation by incrementally adding modules.

Quantitative Results. Similar to MUNIT and StarGAN2, our model is able to
perform latent-guided and reference-guided translation. We evaluate all models
using SSIM and PSNR, which require ground truth attention maps of images.
Similar to AttentionGAN, we obtain attention maps using the DeepLab seman-
tic image segmentation model [29] pretrained on MSCOCO [30] data set. Note
that we only provide quantitative results on the horse2zebra data set because
the DeepLab model is not trained on the map2aerial data set, and no ground
truth attention maps are available for calculating SSIM and PSNR. As Table 2
and Table 3 show, our framework outperforms all baseline models, especially
for CycleGAN, MUNIT, and StarGAN2 for a large margin. Again, CycleGAN
and AGGAN are not capable of performing latent-guided translation. Therefore,
quantitative results on these two models are not reported.

Table 2. Quantitative comparison on reference-guided translation.

Models horse2zebra zebra2horse

SSIM(↑) PSNR (↑) SSIM(↑) PSNR (↑)

CycleGAN 0.7313 21.96 0.8453 26.31

MUNIT 0.1176 14.89 0.3664 15.29

StarGAN2 0.3281 16.86 0.4729 19.43

AGGAN 0.9686 33.16 0.9843 43.02

Ours 0.9699 36.12 0.9851 44.11

Table 3. Quantitative comparison on latent-guided translation.

Models horse2zebra zebra2horse

SSIM(↑) PSNR (↑) SSIM(↑) PSNR (↑)

MUNIT 0.1925 11.66 0.3901 13.88

StarGAN2 0.3353 18.87 0.4953 19.92

Ours 0.9712 33.76 0.9857 43.14
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Ablation Studies. To further validate effects of key design choices in our
framework, we carry out ablation studies on the horse2zebra data set, whose
results are shown in Table 4 and Fig. 4. Let the model without style, content
regularizer, and attention module be the naive model. We can see that adding
attention greatly helps increase translation results.

Table 4. SSIM and PSNR results of incrementally adding modules to our framework
for reference-guided translation on the horse2zebra data set.

Modules SSIM (↑) PSNR (↑)

Naive model 0.3062 12.73

+ style, content regularizer 0.3511 19.04

+ attention masks 0.9699 36.12

5 Conclusions and Discussion

In this research, we present a simple yet effective attention-based framework for
unsupervised I2I translation. Our framework not only translates solely objects
of interests and leave the background unaltered, but also generates images for
multiple domains simultaneously. Unlike similar studies on unsupervised I2I with
attention mechanism that require ground truth for learning attention maps, our
approach learns attention maps in an unsupervised manner. The qualitative
and quantitative results show that our framework is superior than the SOTA
baselines.
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