
Paper ID #37681

Computational Thinking Pedagogical + Framework for Early Childhood
Education

Dr. Safia Malallah, Kansas State University

Safia Malallah is a postdoc in the computer science department at Kansas State University working with
Vision and Data science projects. She has ten years of experience as a computer analyst and graphic de-
signer. Besides, she’s passionate about developing curriculums for teaching coding, data science, AI, and
engineering to young children by modeling playground environments. She tries to expand her experience
by facilitating and volunteering for many STEM workshops.

Lior Shamir, Kansas State University

Associate professor of computer science at Kansas State University.

Dr. William Henry Hsu, Kansas State University

William H. Hsu is an associate professor of Computing and Information Sciences at Kansas State Univer-
sity. He received a B.S. in Mathematical Sciences and Computer Science and an M.S.Eng. in Computer
Science from Johns Hopkins University in 1993, and a Ph

Joshua Levi Weese, Kansas State University

Dr. Josh Weese is a Teaching Assistant Professor at Kansas State University in the department of Com-
puter Science. Dr. Weese joined K-State as faculty in the Fall of 2017. He has expertise in data science,
software engineering, web technologies, computer science education research, and primary and secondary
outreach programs. Dr. Weese has been a highly active member in advocating for computer science ed-
ucation in Kansas including PK-12 model standards in 2019 with an implementation guide the following
year. Work on CS teacher endorsement standards are also being developed. Dr. Weese has developed,
organized and led activities for several outreach programs for K-12 impacting well more than 4,000 stu-
dents.

Mr. Salah Alfailakawi, Kansas State University

Salah Alfailakawi is a PhD student in Educational Technology (ET) Graduate Programs at Kansas State
University’s College of Education. His areas of interest include social/cultural issues in ET, the impact of
ET on learners and teachers, as well as pract

©American Society for Engineering Education, 2023



Computational Thinking Pedagogical Framework + for Early Learners 

Safia A. Malallah, Kansas State University, safia@ksu.edu 

Lior Shamir, Kansas State University, lshamir@ksu.edu 

William Henry Hsu, Kansas State University, bhsu@ksu.edu 

Joshua Levi Weese, Kansas State University, weeser@ksu.edu  
 Salah Alfailakawi, Kansas State University, Bosloh@ksu.edu 

 

Abstract: Pedagogy provides a solid foundation for educators to design effective 

teaching and learning experiences. However, very few resources address 

computational thinking (CT) pedagogical experiences for that prepare early 

learners to become problem solvers in the computer science and engineering 

domains, skills that are necessary to meet future industry requirements. To address 

this gap, this paper proposes a framework and models to help educators identify 

available CT experiences to incorporate them into their lessons. The framework 

includes nine pedagogical experiences: (1) Unplugged, (2) Tinkering, (3) Making, 

(4) Remixing, (5) Robotics+, (6) Engineering, (7) Coding, (8) Dataying, and (9) 

Artificial Intelligence (AI).  

 

Introduction 

The growth of computational careers worldwide means that students of all ages, including 

children in early childhood, must be consistently exposed to various problem-solving 

approaches and be creators, not consumers, of technology [1] to meet future industry 

requirements [2]. More meaningful ways exist to train students’ computational thinking (CT) 

abilities as the computer science (CS) domain keeps evolving and generating new important 

buzzwords, such as artificial intelligence (AI) and data science [3]. However, educators who 

lack CS backgrounds often not aware of the available educational CT experiences, and the 

current resources are very limited. Although appropriate CT selection can enhances educational 

goals because it enables increased comprehension of new concepts in various disciplines, 

including language, math, music, and art, educators must be aware of how CT can be utilized to 

determine appropriate applications for K–12 students [4]. 

This paper outlines the Computational Thinking Pedagogical Framework Plus (CTPF+) 

to present various CT pedagogical experiences suitable for early childhood development. The 

framework includes nine pedagogical experiences that cognitively train CT skills: (1) 

Unplugged, (2) Tinkering, (3) Making, (4) Remixing, (5) Robotics +, (6) Engineering, (7) 

Coding, (8) Dataying, and (9) AI. This work also proposes the Foundation-to-Creation model to 

complement the framework and holistically justify the needed foundation, as well as the CT-

HOT thinking process to help educators form CT-related questions. By utilizing the proposed 

framework and models, educators can offer their students meaningful, diverse CT learning 

experiences 

Background 

Child’s Developmental Milestones and Computational Thinking 

Successful CT growth primarily correlates with a child's developmental milestones since 

CT activities require unique cognitive skills. For example, video games require understanding 

of analogies, processing speed, and deductive reasoning [5], while online search engine usage 

requires recall memory, spelling, and Boolean logic [6]. Typing on a keyboard requires motor 

skills, visual skills, and cognitive ability [7], while technological communication requires 

speech and language skills [8]. Fine motor skills are necessary to control technology [9], while 

gross motor skills and whole-body interaction can improve somatosensory experience [10]. In 



     Steps 1                              Step 2                           Step 3                           Steps 4-5                        Step 6 
     Literature                           Find CT Elements             Find CT Pedagogical              Connect CT Elements            Developing CTPF+ 

                                                                                                        Experience                          & CT Experience                               

 

                                        

addition, social-emotional skills impact repeated trial-and-error activities, leading either to a 

user’s frustration and failure or enhanced group work and reliable communication [11] [12]. 

Positive Technological Development 

Positive Technological Development (PTD) is a theory-based framework considered one of the 

best to promote positive behaviors around children, presented in Figure 1. It integrates 

technology to maximize its positive impact on human flourishing and well-being. It is 

comprised of three levels with standards for positive outcomes, called assets. This level includes 

the six Cs: caring, connection, contribution, competence, confidence, and character. Another 

level is behaviors, whose purpose is to raise the positive behavior around technology. This level 

has six small Cs: communication, collaboration, community building, content creation, 

creativity, and choice of conduct. The third level is classroom practice that involves designing 

and implementing educational experiences that align with the principles of the first two levels 

beside early childhood principles [1].  

 

 
Figure 1. PTD [1] 

 

Higher-Order-Thinking 

Higher Order Thinking (HOT) is an approach that goes beyond simple recall or understanding 

of information by asking questions that involve analyzing, synthesizing, and evaluating 

information to reach a conclusion or decision. The concept of HOT has a long history, dating 

back to the work of educational philosophers such as John Dewey and Jean Piaget in the early 

20th century [13]. 

Method 

Design 

A conceptual framework is a structured approach to organizing and understanding complex 

ideas using a visual representation to define topic elements and their relationships [14]. This 

research combined the conceptual framework approach from methods in previous research [15] 

[16] to develop the CTPF+ framework. The following six stages were used to develop the 

framework: 

 

   
  

  
 

 



Figure 2. Design Steps for the Dataying Framework 
 
 

1. Literature Reviews: Literature reviews start with researching the database and 

identifying relevant studies, screening them to remove duplicates; eliminating the ones 

that do not match search criteria; and checking that they target early childhood. Starting 

with recent literature reviews, we examined the reference section and included items that 

contain pedagogy experiences or tools. The purpose of this step was to understand the 

status of CT in early childhood. 

2. Identify Early Childhood Computational Thinking: This step examines literature 

reviews and identify CT concepts that prove it is suitable for early childhood. This stage 

included clustering, grouping, and eliminating redundant concepts. 

3. Identify Pedagogical Experience with Computational Thinking: This step aimed to 

identify a pedagogical experience used to train CT concepts from literature reviews. 

4. Connection of the Elements: This stage identified relationships between CT concepts 

and pedagogical experiences. Additionally, it examined their binding.  

5. Fill Missing Gaps: This step identified needed knowledge to enhance utilization of 

CTPF+. Several models were constructed to fill the missing gaps 

6. Developing the Framework: This final step and it put all the elements together. 
 

Keywords, Database, and Criteria  

Searching was performed twice for this research. The first round searched the keywords “early 

childhood || preschooler” + “Computational Thinking” + “review.” The exclusion criteria were 

if the research was not for children ages 4 to 7 or if the paper subject is not literature reviews 

published in the past 3 years. The results were filtered by reviewing their abstracts and titles. 

The second round searched the same keywords as the first, except it omitted “review.” The 

exclusion criteria were the same as for round 1 along with papers that did not include pedagogy 

experiences or CT concepts for those ages 4 to 7. The results were filtered by looking at their 

abstracts, titles, and content. The sources used are English conference papers and proceedings; 

government and official websites; and scholarly journals. ProQuest was the search engine used 

for both rounds. 

Results 

Step 1: Literature Reviews 

Analysis of the literature reviews resulted in 142 papers. The original search identified 65 

documents; the rest were discovered by reviewing the references of the original 65. Figure 3.a 

presents chronological order of the papers that met our search criteria. Although we did not 

specify any time frames, we did not come across any results before 2012. MAXQDA tool was 

used to analyze the literature reviews. Figure 3.b. illustrates the percentages of the number of 

papers categorized by their main focus. 

 

   
      a. CT and Early Childhood Publications Per Year             b.  CT and Early Childhood Publications Per Category                                                                             

2012 2015 2017 2018 2019 2020 2021 2022 2023

CT and Early Childhood Publications in 
ProQuest



                                                        Figure 3. Summary of the Literature Reviews 

 Four main papers investigated literature reviews about CT in early childhood. First, Yue 

Zeng et al. analyzed 42 studies based on the framework developed by Brennan and Resnick. 

They identified CT as concepts (i.e., control flow/structures, representation, and 

hardware/software); as a practice (i.e., algorithmic design, pattern recognition, abstraction, 

debugging, decomposition, iteration, and generalizing); and as a perspective (i.e., expressing 

and creating, connecting, perseverance, and choices of conduct) [17].  

Second, Jiahong Su et al. also performed a systematic review of studies from 2010 to 

2022, examining 26 research studied that analyzed CT integration into early childhood through 

various approaches such as programming and coding activities; robotics and engineering; game 

design; and storytelling. This paper highlights the common terms associated with CT, concepts, 

and skills that have been mentioned multiple times in the selected studies. These terms include 

“sequencing, conditionals/control structures, iterations/loops, testing and debugging, pattern 

recognition, algorithms, modularity representation, and problem-solving” [18].  

The third paper by Zhang et al. was a systematic review of learning CT using Scratch in 

kindergarten through ninth grade. It utilized a framework developed by Brennan and Resnick to 

assess the effectiveness of different pedagogical approaches to CT education through Scratch. 

They identified that Brennan and Resnick’s framework can be delivered to this age range. 

Furthermore, Zhang identified additional CT skills: input/output; code reading; interpretation 

and communication; utilization of multimodal media; predictive thinking; and human-computer 

interaction. Kindergarten through ninth grade is a wide age group; it is not clear which work for 

kindergarten through second grade [19].  

The fourth paper was published by the Committee on Enhancing Science and 

Engineering in Prekindergarten through Fifth Grade. It supported developing an appropriate 

technique to include CT for young children. The integration is often achieved through the 

STEM-based engineering design (unplugged with a sheet or plugged into tangible technology); 

open-ended applications such as ScratchJr; level-up applications such as Code.org curriculum; 

plugged activities; robotics; unplugged activities; and using C as context to teach other subjects 

like art and music. The committee also contributed suggestions to use CT as a tool for teaching 

students through fifth grade by presenting multiple representations of it. The representations 

should include a range of examples, such as unplugged activities, real-life scenarios, everyday 

language, pseudocode, flowcharts, code tracing/tracking charts and tables, and coding 

languages. The idea is to start with more tangible concepts and gradually progress to more 

abstract ones, ensuring that the representations are developmentally appropriate approximations 

of the coding processes [20].  

Yadav et al. focus on the incorporation of CT into K–12 education. The authors review 

various pedagogical approaches for teaching CT, including coding activities, game design, and 

robotics. They argued that CT should be integrated into the existing curriculum rather than 

taught as a standalone subject and provided examples of how this can be done across multiple 

subject areas [21]. Also, Rehmat et al. focused on exploring effective instructional strategies for 

teaching young learners CT. The authors highlighted the importance of developing CT skills in 

early education and provided an overview of key CT concepts and skills. It was suggested to 

use questioning and modeling techniques to aid students in understanding the robot’s 

movements and associated CT competencies [22]. Additionally, Saxena et al. did an exploratory 

study investigating the effectiveness of unplugged and plugged activities in promoting CT skills 

in early childhood education. The authors developed CT activities that are both unplugged 

(offline) and plugged (using technology) and evaluated their effectiveness in promoting CT 

skills among young learners. The CT skills studied were sequencing, algorithm, procedure, and 

pattern recognition. The study found that both types of activities are effective in promoting CT 

skills, but unplugged activities are more effective in promoting problem-solving and logical 



thinking skills. The authors concluded that combining unplugged and plugged activities can 

successfully promote CT in early childhood education [23]. Hodges et al. established purposeful 

analogous representations of coding processes to evaluate the suitability of these representations 

and their translation in a study of second grade students using a computing device [24]. 

Aggarwal et al. compared physical manipulatives to develop code within the Kodu curriculum 

to students who did not use the manipulatives. The students were divided into two groups. One 

used flashcards and tiles to enter code into the Kodu Game Lab. The other used just paper and 

pencil representations before entering code into the Kodu Game Lab. The authors suggested that 

manipulatives may have diminishing returns and should be scaffolded carefully [25]. 

Certain areas of focus were not covered by the literature reviews and are important for 

this paper. Morgan et al. discussed using engineering to inspire and develop CT skills in young 

children and create the (STEM + C) model. The study involved 85 preschool children who 

participated in a series of design activities involving problem-solving, collaboration, and simple 

coding tools. The results showed that the activities effectively promoted CT skills such as 

decomposition, pattern recognition, and abstraction. The proposed CT in their work is data 

collection, data analysis, data representation, problem decomposition, abstraction, algorithms 

and procedures, automation, simulation, and parallelization [26]. Also important is the AHA! 

Island project. The educational program focuses on training CT concepts using engineering 

through a series of cartoons and hands-on activities to reach low-income families and their 

children ages 4 to 5. It is supported by the National Science Foundation. The program is 

designed to be engaging and interactive by teaching children about concepts such as abstraction, 

algorithmic thinking, pattern recognition, problem deconstruction, design process, debugging 

process, and logical reasoning [27].  

Another important area of focus is Integrated-CT-organization developed pathways to 

include CT in grades K–12 through other non-STEM disciplines. It includes some data science 

elements such as data practice and data analysis [20]. Donna Kotsopoulos proposed that 

“unplugged, tinkering, making, and remixing are effective pedagogical experiences to train CT 

for young children in her Framework (CTPF)” [28]. NAEYC considered “making, tinkering, 

and engineering as three important overlapping concepts to teach STEM” [29]. Williams et al. 

designed an early childhood AI curriculum that depends on building, training, and programming 

a social robot. Williams delivered three AI concepts—knowledge-based systems, supervised 

machine learning, and generative—through introducing the HOT technique. Table 1 presents 

HOT questions using three systems: rock-paper-scissors for KBS, food classification for the 

SML, and music remix for generative AI systems [30]. 

 
Table 1. HOT Questions Using Different Systems 

 
 

Step2: Computational Thinking Elements for Early Childhood 

Based on the literature review, Table 2 presents the 36 identified CT elements (i.e., concepts, 

practice, perspective) suitable for children ages 4–7 years old. Except for skills 1, 2, 7, 8, 34–36, 

which were derived from the literature reviews in round 2, the rest of the CT skills were 

identified from the four literature reviews in round 1.  



 
Table 2. Suitable CT Elements 

 
 

During analysis, similar elements, such as decomposition and modularity, were merged, while 

other elements, such as connection and expiration, were removed. The elements were then 

clustered by their nature into five groups: building solutions process, solution types, technology 

literacy, foundation for CT, and CT skills (Figure 4). 

 

 
Figure 4 . Clustering of CT Elements  

 

Step3: Computational Thinking Pedagogical Experiences 

The results of the previous steps identified two ways to teach with CT (CT as a context and CT 

as a content), in addition to 10 pedagogical experiences: unplugged, tinkering, making, mixing, 

coding, engineering, data science, AI, robotics, and devices. Devices and robotics carry the 

same natures—hardware —so their handling should be similar. Therefore, they were grouped 

into robotics+ to include any computing devices that consist of hardware and software to carry 

out user tasks. 

Several relationships can be identified between the elements. One relationship can be 

based on their ability to build a solution. Some problems (i.e., engineering) require creating 

physical solutions such as building a bridge using macaroni and marshmallows. Another type 

creates digital solutions like creating an app that can count using ScratchJr. A third type uses a 

mix (i.e., robotics) to control a code that makes a robot dance. A fourth type (i.e., data science) 



is based on collecting and analyzing data for insights and decision making. Even AI is part of 

this category. Its primary purpose is to create smart models to solve a problem. Yet, more tools 

are needed to allow children to build their open-ended solutions using AI. Thus, engineering, 

coding, data science, and AI elements are bound under one category: problem-solving.  

This group of roles also can be labeled CT as content. The content itself is a direct use of 

the CT. This infers the category of CT as a context. CT is a medium to of attaining educational 

goals by enabling a deeper comprehension of new concepts in various disciplines—including 

language, math, music, art, and others—through the integration of CT principles. Each problem-

solving element can be practiced using an unplugged activity such as a coding card, tinkering, 

exploring scratch, and “making” by using a recipe (using exact instructions) for baking a cake. 

This denotes the included relationships; everything can be done using almost everything. Thus, 

the framework would include them as overlapping. 

Young students need to start with more concrete experiences and progress toward more 

abstract ones. Progress happens by transitioning between representations. Start with unplugging; 

then tinkering to see how tools work and their capabilities; making to develop a good quality 

product by following an adequate example; and then problem-solving to build their solutions 

with any roles they like. Remixing is the outlier as it requires grasping the skills to avoid being 

overwhelmed by the number of new challenges that might arise. 

Progress does not always create solutions; it also can be the consumption of knowledge. 

For example, it could be information consumption apps that teach concepts, like Aha Island, or 

coding games that engage a child in level progress with pre-expected answers and no creativity, 

such as the code.org curriculum. The framework also considers them. 
 

Step4: Connect Pedagogy Experiences and Computational Thinking 

It is recommended to propose CT skills depending on the nature of the problem. In other words, 

which thinking hat does the child need to wear: engineer, coder, or data scientist? Creating 

coding projects requires full coding skills such as events and variables. The following CT sets 

are a recommendation depending on the roles. Note that skills can be combined. 

• Coding and robotics: loops, events, conditionals, parallelism, control flow/structures, code 

communication (i.e., read, understand, modify, communicate), variable. 

• Data science: data collecting, data representation, data analysis. 

• The rest are recommended for all kinds of tasks, including making, tinkering, or a 

combination. 
 

Step5: Fill Missing Gaps 

Figure 5 presents CT Foundation-to-Creation model in a way that connect CT elements with 

pedagogical experience using the findings from the previous steps, children’s developmental 

milestones, and PTD. The model has three levels: foundation, CT skills, and solutions. Level 

one works as a foundation for the model. For a child to be ready to build a solution using CT, 

the child must have skills in the necessary categories. Eight categories from the children’s 

developmental milestones can be used with plugged and unplugged activities. For example, to 

use the sorting CT skills over materials, the logical thinking foundation is employed. 

Additionally, the child needs to understand the problem. So first, the child needs to understand 

the ability to know that the materials will be moved and the order will be changed. Then they 

must identify which relationships are between the elements. If it is a number, the child must 

realize they use a number qualitative relationship (i.e., bigger, smaller, and equal). If it is 

language and literacy, the child needs to understand letter logic (i.e., the order of the alphabet). 

These skills are logical ordering, grouping, and transferring to a domain.  

The second level of the model is CT skills, which build from the foundation. For 

example, creating coding projects like a game requires coding the robotic skills. Because the 



nature of the robot and CT are similar, a child can use loops and events variables. However, 

those are not part of the engineering of the robot. The same can be said with data science—

creating data-driven solutions using skills to collect the data, represent the data, and find insight 

into the analysis. Making, tinkering, and mixed methods can be used for multiple other types of 

projects. 

The third level of the model is creating solutions. Almost all roles and solution-building 

require understanding the problem; preparing and planning; building; checking the solutions; 

and sharing the solutions. The five proposed steps were recommended with the expectation that 

the foundation necessary for each has been attained. For example, understand the problem by 

breaking down complex problems into smaller parts, creating algorithms to solve the smaller 

problems, and planning to save time and resources. PTD frameworks should be integrated with 

these steps to maximize the positive impact while using CT to build solutions 
 

 
 

Figure 5. CT-Foundation-to-Creation Model 
 

Early childhood educators play an essential role in enhancing the CT experience and increasing 

student understanding of CT. Teachers need to determine HOT question types through solution 

building stage (Figure 6). An example of a question for the thinking step could be “I wonder 

what would happen if…?” An example of a testing question could be “Can you show me how to 

use it...?,” and a question for the self-reflection step could be “What was the most interesting 

thing you learned here?” An example question for the improvement step could be “What might 

you do differently next time?” 

 



Figure 6. CT-Thinking Process 

Step 6: Developing the Computational Thinking Pedagogical Framework Plus (CTPF+) 

The CTPF+ has nine main pedagogical experiences that can be implemented using CT as a 

context or content. Together with the CT Foundation-to-Creation model, they can be used as a 

holistic picture to choose the type of CT experience and its expected solutions. This gives 

educators and the child a clear option of the available choices. As shown in Figure 7, the 

hierarchy constructed to allow for expansion to add new computational experiences in the 

problem-solving circle after confirming its suitability for early childhood education (e.g., coding 

was not suitable until ScratchJr and block programming were developed). 

 

 
Figure 7. CTPF+ Framework 

 

Engineering in early childhood is using materials to construct a physical object to solve 

a problem or fulfill a need or desire. The integration of CT in engineering design can help build 

more systematic and efficient engineering solutions. Several curricula can be found to train CT 

using engineering. CT can be used in many different stages of the engineering design process, 

including problem identification, ideation, solution implementation, and evaluation.  

Robotic+ uses robotics and electronic tools with codes to control the robot to solve a 

problem or fulfill a need or desire. Teaching CT using Robotic+ has become an increasingly 

popular method to teach STEM to young children, particularly because it does not always 

require a screen. CT skills are the combination of CT in coding and engineering.  

Artificial intelligence in early childhood makes a machine perform tasks—such as 

decision-making—by learning from humans. There are limited AI tools and curriculum 

research, so we cannot generalize how AI can be used with CT for early childhood. But 

referring to Williams's work, students can learn algorithm, pattern, and abstraction concepts 

within the three key AI concepts. 

Coding is the process of creating instructions that a computer can understand and 

execute specific to a task or application being developed. Children can learn CT through coding 

activities, where CT is originally derived from the coding computer science field. Figure 8 

shows coding development stages to train to code. The first stage is the pre-operational stage, 

which focuses on coding thinking skills using unplugged activities such as exact instruction 

games. The second stage is the concrete implementation stage, which emphasizes operational 

skills for coding and robotics to build projects using progressive coding language. It starts with 

tangible for 3-year-olds, moves to graphical coding for 4-year-olds, and progresses to block and 

hybrids. The final stage is the abstract stage, which requires advanced abstract thinking skills 

and the ability to replace concrete ideas.  
 



 
Figure 8. CT Coding Development Stages 

 

Dataying is an original term intended to be a buzzword for early childhood data science. 

It is the process of solving a simple data-decision problem by collecting a small data sample and 

then analyzing it for insights to make a decision in a way that is suitable for early childhood 

education. Currently, no customized tools exist to support dataying for early childhood. This 

can be used using the unplugged activities. Figure 9 outlines six stages to introduce the 

foundation of data science thinking for children who have never been exposed to data-driven 

solutions [31].  

 
Figure 9. Dataying Framework  [31] 

 

Unplugged with Computational Thinking activities refer to educational activities that 

do not require a screen but rather use physical materials that challenge children to think 

computationally. Unplugged activities can be done both with and without technology. Activities 

without technology include storytelling, worksheets, card games, and real-life tasks. Activities 

with technology use tangible tools and include computer science picture books, watching 

cartoons, graphic novels, and tangible coding, where physical objects are used to represent 

commands in a sequence, teaching children how sequences of instructions can be used to train 

CT.  

Computational Thinking Tinkering is the act of playing with and exploring materials 

through trial and error to discover how things work and how to create things from them. By 

experimenting, individuals can better understand their capabilities, a fundamental skill for 

building solutions. Often, learning happens unintentionally as children put materials together, 

test what happens, and try again. CT tinkering can be applied to a wide range of challenges, 

from fixing a ScratchJr code to placing a listening sensor on a KIBO robot. 



Making is hands-on experimentation going through steps to build a project that does not 

require solving a problem. It is done because it is fun and includes tasks like constructing a desk 

from reading the instructions without having a plan for what they will do with the desk. An 

example of CT making is decomposition skills to understand the needed material to make this 

object. 

Pedagogical remixing is the process of taking pieces of the pedagogical experience and 

using them together to solve a problem. The parts can be combined, modified, or transformed to 

create something new. Children should be encouraged to use materials in ways they might not 

have thought of before. For example, they could use blocks, robots, and scratch apps to build 

animals that move and make a sound. 

CTPF+ Integration 

The CTPF+ can be integrated into the early childhood curriculum by complementing the 

"classroom practices" of the PTD framework - early childhood pedagogy and principles as a 

teaching method using age-appropriate techniques. To begin, teachers should observe the lesson 

goals and then select a CT pedagogical experience suitable or preferable for the lessons from 

CTPF+. Next, identify CT concepts relevant to the pedagogical experience from level-2 in the 

CT-Foundation-to-Creation Model. After identifying the relevant CT concepts, teachers can 

identify the needed foundation for their students from level-1. This will help ensure the students 

have the necessary knowledge to understand and apply the CT concepts and skills. Lastly, 

redesign the lesson using the CT activities to deliver the lesson outcomes. For example, suppose 

an engineering lesson is being taught on building a bridge, and the students need more 

foundation over the comparing skill. In that case, the lesson implementation should focus on the 

comparison, such as which materials are stronger, by doing testing and experiments on strengths 

and weaknesses. The students will use pattern recognition, abstraction, and debugging to train 

the foundation.  

If technology is chosen as a medium for teaching CT, it is recommended that teachers be 

aware of the best practices for using technology around children. This will help ensure that the 

technology used is safe, age-appropriate, and aligns with the curriculum's learning goals [32]. 

Limitations and Future Work 

The CTPF+ frameworks based on the systematic review collected from ProQuest. Therefore, 

works that can provide different insight into this research may have been missed. Also, most 

literature reviews build their work on Brennan and Resnick, which can lead to bias as it 

influences all the author’s views. Other limitations are the limited work for data science, and AI 

infers the need to have more research to influence the judgments, and the inclusion of CT for 

early childhood. As a future work, the models and framework developed could be branched into 

several qualitative research studies for validation. Additionally, AI inclusion for early childhood 

learning could be studied. 

Acknowledgements 

This work was funded by the National Science Foundation (NSF) with Grant No DRL 

GEGI008182. However, the authors alone are responsible for the opinions expressed in this 

work and do not reflect the views of the NSF. 

References 

[1] A. Strawhacker and M. U. Bers, "Promoting positive technological development in a 

Kindergarten makerspace: A qualitative case study," European Journal of STEM 

Education, vol. 3, no. 3, p. 9, 2018. 



[2] B. Vittrup, S. Snider, K. K. Rose, and J. Rippy, "Parental perceptions of the role of 

media and technology in their young children’s lives," Journal of Early Childhood 

Research, vol. 14, no. 1, pp. 43-54, 2016. 

[3] A. Smith and J. Anderson, "AI, Robotics, and the Future of Jobs," Pew Research Center, 

vol. 6, p. 51, 2014. 

[4] L. Caparrotta, "Digital technology is here to stay and the psychoanalytic community 

should grapple with it," Psychoanalytic Psychotherapy, vol. 27, no. 4, pp. 296-305, 

2013. 

[5] A. Hisam, S. F. Mashhadi, M. Faheem, M. Sohail, B. Ikhlaq, and I. Iqbal, "Does playing 

video games effect cognitive abilities in Pakistani children?," Pakistan journal of 

medical sciences, vol. 34, no. 6, p. 1507, 2018. 

[6] H. Hutchinson, A. Druin, B. B. Bederson, K. Reuter, A. Rose, and A. C. Weeks, "How 

do I find blue books about dogs? The errors and frustrations of young digital library 

users," Proceedings of HCII 2005, pp. 22-27, 2005. 

[7] Indigo. "Unlocking Abilities:  Keys to Developing Touchscreen Skills." 

https://www.indigosolutions.org.au/docs/default-source/unlocking-abilities/touchscreen-

resources/unlocking-abilities-keys-to-developing-touchscreen-

skills.pdf?sfvrsn=b28a3ef5_8 (accessed 2022). 

[8] J. H. Danovitch, "Growing up with Google: How children's understanding and use of 

internet‐based devices relates to cognitive development," Human Behavior and 

Emerging Technologies, vol. 1, no. 2, pp. 81-90, 2019. 

[9] K. E. Wohlwend, "One screen, many fingers: Young children's collaborative literacy 

play with digital puppetry apps and touchscreen technologies," Theory Into Practice, 

vol. 54, no. 2, pp. 154-162, 2015. 

[10] Z. Ren and J. Wu, "The effect of virtual reality games on the gross motor skills of 

children with cerebral palsy: A meta-analysis of randomized controlled trials," 

International journal of environmental research and public health, vol. 16, no. 20, p. 

3885, 2019. 

[11] M. Toeters, M. ten Bhömer, E. Bottenberg, O. Tomico, and G. Brinks, "Research 

through design: a way to drive innovative solutions in the field of smart textiles," in 

Advances in Science and Technology, 2013, vol. 80: Trans Tech Publ, pp. 112-117.  

[12] Z.-J. Zhong, "The effects of collective MMORPG (Massively Multiplayer Online Role-

Playing Games) play on gamers’ online and offline social capital," Computers in human 

behavior, vol. 27, no. 6, pp. 2352-2363, 2011. 

[13] M. H. Hopson, R. L. Simms, and G. A. Knezek, "Using a technology-enriched 

environment to improve higher-order thinking skills," Journal of Research on 

Technology in education, vol. 34, no. 2, pp. 109-119, 2001. 

[14] S. Bas and G. Tegan. "What Is a Conceptual Framework? | Tips & Examples." 

https://www.scribbr.com/methodology/conceptual-framework/ (accessed. 

[15] C. Carroll, M. Patterson, S. Wood, A. Booth, J. Rick, and S. Balain, "A conceptual 

framework for implementation fidelity," Implementation science, vol. 2, pp. 1-9, 2007. 

[16] S. A. Malallah, "Developing computational thinking best practices for early childhood 

education in Kuwait and United States," Kansas State University, 2022.  

[17] Y. Zeng, W. Yang, and A. Bautista, "Computational thinking in early childhood 

education: Reviewing the literature and redeveloping the three-dimensional framework," 

Educational Research Review, p. 100520, 2023. 

[18] J. Su and W. Yang, "A Systematic Review of Integrating Computational Thinking in 

Early Childhood Education," Computers and Education Open, p. 100122, 2023. 

[19] L. Zhang and J. Nouri, "A systematic review of learning computational thinking through 

Scratch in K-9," Computers & Education, vol. 141, p. 103607, 2019. 

https://www.indigosolutions.org.au/docs/default-source/unlocking-abilities/touchscreen-resources/unlocking-abilities-keys-to-developing-touchscreen-skills.pdf?sfvrsn=b28a3ef5_8
https://www.indigosolutions.org.au/docs/default-source/unlocking-abilities/touchscreen-resources/unlocking-abilities-keys-to-developing-touchscreen-skills.pdf?sfvrsn=b28a3ef5_8
https://www.indigosolutions.org.au/docs/default-source/unlocking-abilities/touchscreen-resources/unlocking-abilities-keys-to-developing-touchscreen-skills.pdf?sfvrsn=b28a3ef5_8
https://www.scribbr.com/methodology/conceptual-framework/


[20] Tamara J. Moore, "The Integration of Computational Thinking in Early Childhood and 

Elementary Education," ed: Committee on Enhancing Science and Engineering in 

Prekindergarten through Fifth Grade, 2020. 

[21] A. Yadav, H. Hong, and C. Stephenson, "Computational thinking for all: Pedagogical 

approaches to embedding 21st century problem solving in K-12 classrooms," 

TechTrends, vol. 60, pp. 565-568, 2016. 

[22] A. P. Rehmat, H. Ehsan, and M. E. Cardella, "Instructional strategies to promote 

computational thinking for young learners," Journal of Digital Learning in Teacher 

Education, vol. 36, no. 1, pp. 46-62, 2020. 

[23] A. Saxena, C. K. Lo, K. F. Hew, and G. K. W. Wong, "Designing unplugged and 

plugged activities to cultivate computational thinking: An exploratory study in early 

childhood education," The Asia-Pacific Education Researcher, vol. 29, no. 1, pp. 55-66, 

2020. 

[24] C. B. Hodges, S. Moore, B. B. Lockee, T. Trust, and M. A. Bond, "The difference 

between emergency remote teaching and online learning," 2020. 

[25] A. Aggarwal, C. Gardner-McCune, and D. S. Touretzky, "Evaluating the effect of using 

physical manipulatives to foster computational thinking in elementary school," in 

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science 

Education, 2017, pp. 9-14.  

[26] M. M. Hynes et al., "Inspiring Computational Thinking in Young Children's 

Engineering Design Activities (Fundamental)," in 2016 ASEE Annual Conference & 

Exposition, 2016.  

[27] "AHA! Island." WGBH Educational Foundation. ahaisland.org (accessed. 

[28] D. Kotsopoulos et al., "A pedagogical framework for computational thinking," Digital 

Experiences in Mathematics Education, vol. 3, no. 2, pp. 154-171, 2017. 

[29] NAEYC. "What You Need to Know About Tinkering,  Making, and Engineering." 

https://www.naeyc.org/sites/default/files/globally-

shared/downloads/PDFs/resources/pubs/sample_what_you_need_to_know_about_tinker

ing_making_and_engineering.pdf (accessed 2022). 

[30] J. Su and W. Yang, "Artificial intelligence in early childhood education: A scoping 

review," Computers and Education: Artificial Intelligence, p. 100049, 2022. 

[31] S. Malallah, J. Weese, L. Shamer, and W. Hsu, "Data Science (Dataying) for Early 

Childhood," presented at the ASEE Annual Conference, 2023. 

[32] S. Malallah, J. Weese, and K. Alsalmi, "The "besTech" Technology Practice Framework 

for Early Childhood Education," presented at the ASEE Annual Conference, 2023. 
 

 

 

https://www.naeyc.org/sites/default/files/globally-shared/downloads/PDFs/resources/pubs/sample_what_you_need_to_know_about_tinkering_making_and_engineering.pdf
https://www.naeyc.org/sites/default/files/globally-shared/downloads/PDFs/resources/pubs/sample_what_you_need_to_know_about_tinkering_making_and_engineering.pdf
https://www.naeyc.org/sites/default/files/globally-shared/downloads/PDFs/resources/pubs/sample_what_you_need_to_know_about_tinkering_making_and_engineering.pdf

