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Abstract—Deep learning-based classifiers for object recognition
and classification have been used in the domain of plant disease
detection, particularly lesions from leaf images. In such domains,
as expected, deep neural networks perform better using balanced
data sets than imbalanced ones, as they exhibit some inductive
bias favoring balanced data from each class. However, data sets
for plant disease detection are often imbalanced due to the rarity
of disease lesions in real-world settings. While deep generative
approaches such as generative adversarial networks (GANs) have
been established as an effective means of augmenting high-
dimensional image data, the literature lacks a detailed study of the
effectiveness of GAN-based models on a plant disease detection
task, compared to sampling-based approaches traditionally used
to reduce the skewness of the data. In this paper, we comparatively
evaluate an image classifier based on a dense convolutional neural
network (CNN), trained using a GAN, versus the same CNN
model used in tandem with undersampling, oversampling, and an
adaptation of the Synthetic Minority Over-sampling Technique
(SMOTE). The GAN-based approach is shown to attain signifi-
cantly higher recall and hence F-measure and ROC AUC against
each of these.

Keywords—plant disease detection, class imbalance, data aug-
mentation, sampling vs generative, generative adversarial network

I. INTRODUCTION

Plant disease identification is crucial in agriculture because
it can drastically change crop yield and quality of production.
Failure to detect some viral diseases can have devastating
effects on food sustainability and national economies. There-
fore, research communities from different disciplines such as
microbiology, agronomy, plant science are working to de-
velop novel and accurate methods for plant disease diagnosis.
However, methods that leverage domain knowledge require
the involvement of domain experts and specific equipment.
With the advancement in computational processing of high-
dimensional data such as image, disease detection using only
image data has become feasible.

Disease identification from image data can be considered as
a visual anomaly detection task. Anomaly detection is the task
of identifying or classifying unusual observations from data.
As these anomalous data points can be linked to some sort
of problem or abnormal events such as electricity pilferage,
fraudulent transactions, rare diseases, product defects, etc.,
identification of those events are of particular interest. Due

to the infrequent occurrence of anomalous events, data sets
available for anomaly detection are inherently imbalanced.
Plant disease data sets are no exception and they often suffer
from an imbalance of different magnitude.

The simplest approach to classify anomalous data is to
identify the data points that vary significantly from com-
mon statistical properties of a distribution. Popular machine
learning-based techniques for anomaly detection are decision
trees, k-nearest neighbors (k-NN), k-means clustering, and
support vector machine (SVM) based clustering. In the presence
of imbalanced data, however, these algorithms tend to treat
minority samples as noise and hence produce a strong bias
towards the majority class. Skewed distributions also lead to
failure in learning the true features of the minority class owing
to the lack of enough representative.

Two types of approaches have been used most by researchers
in order to improve the classification performance of imbal-
anced data sets. One approach is to hit the problem from
algorithmic perspective, and another is to look at the problem
from data-level. In the first approach, the classifier itself is
altered at the algorithm level to bias towards the minority class,
while keeping the original data unchanged. For example: cost-
sensitive learning [2] and recognition-based learning [3]. Cost-
sensitive learning emphasizes the cost of different kinds of
misclassification. The aim of this type of learning is to limit the
total cost at minimum level [4]. At the data-level, sampling or
synthesizing techniques are applied to create or delete samples
to accomplish a balanced data distribution [5]. In this paper,
we are particularly interested in the data-level techniques.

In the last few decades, several oversampling-based tech-
niques have been proposed to mitigate the skewness of the data
[6] [7]. Recent deep generative models such as VAE and GAN
have already gained success in generating a variety of complex
data, such as handwritten digits, faces, road signs, bedroom
scenes, and CIFAR images [8] [9] . Therefore, nowadays, it
is usual to artificially generate additional anomalous data to
reduce the imbalance. The quality of the new data is dependent
on these data synthesis techniques and significantly affects the
performance of the classifier. However, most of the previous
works generally compared their works with a baseline or other
works of the same category. For instance, oversampling-based
techniques have been compared with other oversampling-based978-1-7281-7539-3/20/$31.00 ©2020 IEEE
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techniques while generative models are evaluated based on
whether they can outperform the vanilla classifier trained on
data set without augmentation.

We attempt to investigate the performance of data balancing
techniques from different categories, and specifically how learn-
ing of the classifier is influenced by the addition of new syn-
thetic data. We select four techniques - random undersampling,
random oversampling, SMOTE, and GAN - from four different
categories. As synthetic oversampling-based approaches like
SMOTE are not directly applicable to high-dimensional data
we adapt SMOTE to use it for image data. We carry out
extensive experiments and evaluate the techniques based on
precision, recall, F1 score, and AUC. We show that GAN-
based augmentation outperforms simple undersampling, simple
oversampling, and synthetic oversampling based approaches.
We also analyze the progression of loss function during training
for the training and validation sets. This helps to understand
the learning process particularly to validate underfitting and
overfitting as well as to get an idea of bias-variance trade-off.

II. RELATED WORK

The issue of class imbalance can be addressed by using
a higher weight on error term in the loss function if the
classifier misclassifies samples from minority classes [10], or
by informing the algorithm about prior class probabilities ahead
of time [11]. As discussed in Section I, we are not particularly
interested in algorithm-level solutions, rather our aim is to work
with the data-level methods that operate on the training set and
change its class distribution.

At the data-level, the most widely used approaches are
different sampling methods. A straightforward approach to
achieve balance in the data set is to use undersampling or
oversampling. Undersampling removes majority class samples
from the data set while oversampling randomly adds duplicate
copies of selected samples from minority classes. Oversampling
has been shown to be an effective and robust approach [12],
however, balance is achieved at the cost of an increased risk of
overfitting [6]. In the case of image data set there is also some
variation of random oversampling which replicates random
images adding slight variations such as rotation, translation,
blur, center cropping, contrast, sharpening, etc. This strategy
has been used for a while in a wide range of applications like
plant leave classification [13], concealed cargo inspection [14],
human disease detection [15].

SMOTE is one of the most popular oversampling methods
for dealing with imbalance data set. SMOTE [6] augments
artificial examples by interpolating neighboring data points.
Some extensions of this technique are also available. For
example, Han et al. proposed borderline-SMOTE method to
generate synthetic samples on the borderline between two
classes [7]. As the samples lying on the border are critical
to learning the class boundary, borderline-SMOTE outperforms
general SMOTE. DataBoost-IM generates new synthetic data
by selecting difficult examples with boosting preprocessing and
using information from those selected examples [16]. ADASYN

tries to sample more new data around difficult samples than
simple minority samples [17].

In 2014, Goodfellow et al. proposed generative adversarial
networks (GAN) to generate images [8]. After its successful
appearance, in the last couple of years, a good number of
different architectures were proposed for different types of
image generation. They have already been used in generation
of medical images [18] [19], acoustic scenes [9], plant leaves
[20] etc. In recent years, some GANs have been proposed
specifically to reduce the class imbalance. Radford et al. (2016)
proposed Deep Convolutional GANs (DCGAN) to ensure stable
training in most settings [21]. This model is used as base
architecture for many of the later approaches. WGAN uses
the architecture of DCGAN, however, it incorporates a better
loss function to approximate the data distribution [22]. Zhu
et al. (2017) proposed CycleGAN which aims to create images
with some particular emotions because in emotion classification
some classes of emotions like disgusted are comparatively less
available than other classes like happy or sad [23]. Cenggoro
et al. proposed the class expert generative adversarial network
(CE-GAN) for imbalance data classification which integrates
class-specific data generation at an early stage of the classi-
fier [24]. Data Augmentation Generative Adversarial Network
(DAGAN) ignores the dependency on the class labels and is
capable of generating novel unseen classes of data [25]. As
a result, DAGAN outperforms general GANs in the few-shot
learning scenario.

Sampling-based approaches are proven to be successful in
many data domains. Recently, several published systems have
been developed in attempts to use deep learning and GANs to
detect plant disease [26] [27]. However, there is a lack of liter-
ature comparing the traditional sampling-based techniques with
the most recent GAN-based techniques in the task of image-
based plant disease identification. Also, due to differences in
the experimental settings and the data sets on which they were
trained, these existing systems are not directly comparable to
one another.

III. METHODOLOGY AND EXPERIMENTAL DESIGN

A. Data Set

We use a subset of the PlantVillage data set [28] which
contains images of healthy and infected plant leaves. We select
tomato plant leaves that exhibit severe imbalance across one
class of disease compared to the healthy class. We consider
tomato leaves infected with the mosaic virus as the minority
class and healthy tomato leaves as the majority class. The
data distribution is shown in Table. I. All the leaf images are
captured against a similar grayish background. Fig. 1 presents
some samples from both classes.

TABLE I
NUMBER OF IMAGES IN THE DATA SET

Data Set Healthy Infected Total
Tomato Leaf Image 1590 370 1960
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(a) Healthy Leaves (b) Infected Leaves

Fig. 1. Examples of healthy and infected leaves.

B. Addressing Class Imbalance

In our study, we have identified four overall categories of
data-level approaches to cope with class imbalance - under-
sampling, oversampling, synthetic oversampling, and genera-
tive models. Our comparative experiment design selects one
method as representative from each of these categories and
applies random undersampling, random oversampling, SMOTE,
or a GAN, respectively. A brief description of the selected
approaches are as follows:

1) Random Undersampling: The most commonly used un-
dersampling method is random majority undersampling because
of its simplicity and effectiveness. This approach randomly
removes the samples from the majority class. Earlier works
show in some cases undersampling outperforms oversampling
[29]. However, the removal of data can lead to potential
information loss.

2) Random Oversampling: The random oversampling
method operates by replicating the randomly selected set of
examples from the minority class so that the majority class does
not have an overbearing presence during the training process.
In this approach, a random image is chosen every time from
the original data set until the required number of images are
added to achieve the desired balance. The main drawback of
this approach is the repetition of the same data, which can
induce a bias towards the training instances (and anomalies
represented among them).

3) Adaptation of SMOTE: Rather than adding replicated
data points from the minority class, SMOTE oversamples the
minority class by creating artificial data based on the original
data [6]. SMOTE expands the minority class in a way that
benefits the learning process by introducing at least some
new information. SMOTE generates synthetic samples that
lie, preferably in the feature space, between existing minority
instances. At first, it finds the K-nearest neighbors of a specific
sample xi, then one of these K-nearest neighbors of xi is
randomly chosen and the euclidean distance between xi and
the selected random neighbor x̂i is calculated. The distance
term is multiplied by δ, which is a random number between 0
and 1, and finally, the result is added to the original sample xi.
Mathematically, the newly synthesized data point xnew can be
represented as follows:

xnew = xi + (x̂i − xi) ∗ δ. (1)

In the deep learning setting where we learn the feature vector
of an image data inside the classifier, SMOTE is not particularly
suitable for direct use. Even if we can extract the feature vector
by any means from the image data and find the feature vector
for a synthetic image using SMOTE, constructing the image
from that feature vector without the help of any decoder or
generative model is an important issue. One way to circumvent
this issue is to use the whole image as its feature vector. Thus,
if the width of the image is w pixel, the height of the image is
h pixel, and there are 3 channels, then the size of the feature
vector will be c×w×h. From here in the text, when we mention
SMOTE that will denote this particular adaptation of SMOTE.

4) Wasserstein GAN: As there is a large and growing num-
ber of available GAN models, choosing one is a complicated
task. In 2017, Arjovsky et al. introduced Wasserstein GAN
(WGAN), an alternative to traditional GAN training [22]. Their
approach achieves higher learning stability, addresses the mode
collapse problem, and provides an easy method for hyperparam-
eter tuning. WGANs measure the closeness between the model
distribution and the real distribution by defining some distance
function. Different distance functions have different impacts on
convergence. WGAN minimizes an approximation of the Earth
Mover (EM) distance which they named Wasserstein-1. They
thus eliminate the need for sophisticated network architecture
design and balanced training of discriminator and the generator.

WGAN incorporates DCGAN, which is one of the best Deep
Convolutional Generative Adversarial Network [21], with the
Wasserstein-1 loss function. The generator transforms a random
input vector drawn from a uniform distribution to an image
of the desired shape using a series of deconvolutional layers.
The discriminator is like a classifier that uses convolutional
and fully connected layers. The use of batch normalization
provides higher stability to the network. While all layers of
the discriminator use Leaky ReLU, in the generator the output
layer uses tanh activation and the rest of the layers use ReLU
activation.

C. Classifier Network Selection

The choice of the classification model is a crucial design
decision for the framework developed in this paper. Since
2012, for image classification and object recognition tasks,
Convolutional Neural Networks (CNNs or ConvNets) and other
deep learning-based approaches have gained popularity over
other approaches due to their high accuracy and robustness.
CNNs are a special type of multi-layer neural network that can
extract a hierarchy of features (in this domain, image-derived
features) directly from image pixels without any preprocessing.

Every year in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), recently proposed approaches for visual
object detection and classification compete with each other.
According to the result of the ILSVRC 2015, the ResNet model
outperforms most of the existing models [30]. Also, surveys of
recent deep CNN models indicate the robustness of the ResNet
model in image classification [31] [32]. Therefore, we selected
ResNet as the representative deep learning classifier.
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ResNet incorporates a residual module which allows training
of very deep networks and mitigates the vanishing gradient
and degradation problems [30]. ResNet makes heavy use of
batch normalization. The residual module enables the training
of neural networks with as many as 152 layers without much
complexity. However, the commonly used variant of ResNet has
50 layers. ResNet-152 and ResNet-50 have single-model top-5
validation error of 4.49% and 5.25% respectively [30]. While
ResNet-152 may lead to a slightly higher accuracy than ResNet-
50, in our experiment this is not a paramount issue as long as
we are comparing all data augmentation approaches using the
same classifier. In consideration of accuracy and training time
trade-offs, we have chosen ResNet-50 for our experiment.

D. Experimental Setup

In our study, we applied 5-fold cross-validation and 20%
of the training data for validation. We made use of the
imbalanced-learn package from scikit-learn library [33] for
random undersampling, random oversampling, and SMOTE.
For WGAN we used the official PyTorch implementation. The
major parameters of the experiment are outlined as follows:

• Size of the images used: 64× 64
• Number of channel in the image: 3
• Dropout rate in classifier network: 0.2
• Learning rate for the optimizer: 0.001
• Number of epochs for GAN training: 200,000
• Number of epochs for classifier training: 3,000
Parameter values are chosen either based on our empirical

study or values documented in relevant published literature.
We conducted the experiment on 64 × 64 RGB images as
the original implementation of WGAN is readily available to
use with the mentioned resolution. We trained the generator
network for 200,000 epochs based on the convergence of the
loss function as illustrated in the original WGAN paper [22].
We tested different learning rates and 0.001 appears to be a
local optimal value. Similar empirical analysis motivated us to
choose 0.2 as the dropout rate. For classifier training, we trained
some of the models for nearly 10,000 epochs and found that the
classifiers converge after 2,000 epochs. Therefore, we reported
the performance of the classifier trained for 3,000 epochs.

IV. RESULTS AND DISCUSSIONS

A. Quality of Augmented Data

The quality of the augmented image plays a significant role
in the performance of the classifier. The following issues need
to be considered while determining the quality of the generated
images:

• Overall quality of the generated images.
• Generated images must represent the desired class.
• Generated images must not be repetitive.
The images generated by SMOTE appear to be little blurry

along edges. As this algorithm calculates an instance interpo-
lated between two similar data points, the generated images
look like overlapping parts of two images. On the other hand,
images generated using GANs are more clear and sharp. The

shapes of the leaves are perfect in most cases. In both cases,
the generated images have some yellowish texture which is a
symptom of the mosaic virus. Based on our qualitative analysis,
GAN-based augmentation seems to have a lot of variation than
SMOTE-based one in this image domain. Fig. 2 shows some
examples of the generated images.

(a) Generated by SMOTE (b) Generated by GAN

Fig. 2. Examples of generated leaf images

B. Evaluation Metrics

Measuring the performance of a classifier applied to imbal-
anced data using traditional metrics such as accuracy is difficult
because they do not take into account the lower number of
instances in each minority class. Rather, precision and recall
have been used frequently for assessing the performance of a
classifier in such cases. Recall helps to understand the number
of misclassification for the positive class, which is infected
leaves in our experiment. Another measure is the F1 score or
F-measure, which combines precision and recall to give a better
indication of the performance. Ranking order metrics such as
Area Under the Curve (AUC) measure assess the performance
of a classifier over all imbalance ratios and hence provide a
summary of the entire range.

C. Performance Analysis

We considered the classifier trained on the imbalanced data
set as the baseline. This means that, for the baseline, the training
data set does not include any replicated or generated data.
As a basis of discussion, we consider the infected class as
positive and the healthy class as negative. Table II shows the
value of the evaluation metrics for different approaches. These
results are based on 5-fold cross-validation, and the highlighted
results indicate the best values of each metric. According to
the experimental results, SMOTE achieves the best accuracy.
However, as discussed earlier, accuracy is not the best metric
for an imbalanced data set. In terms of precision, the baseline
appears to be the best method among the four candidates.
Therefore, the rate of misclassification for negative examples is
less for the baseline. As the baseline has more negative samples,
this is a reasonable result. In terms of recall, F1 score, and AUC
- which are particularly significant for the task in hand - the
GAN-based approach outperforms other approaches. Random
undersampling failed to perform any good in terms of all the
metrics. This can be justified by the loss of information due to
the undersampling.
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TABLE II
EVALUATION METRICS FOR DIFFERENT APPROACHES (AVERAGE FOR 5-FOLD CROSS-VALIDATION)

Approach Name Accuracy Precision Recall F1 AUC
Baseline 0.8592 0.6955 0.4838 0.5621 0.8830

Random Undersampling 0.8372 0.5990 0.5838 0.5823 0.8557
Random Oversampling 0.8495 0.6067 0.6486 0.6202 0.8666

SMOTE 0.8663 0.6647 0.5919 0.6259 0.8877
GAN-based 0.8556 0.6136 0.6622 0.6329 0.8925

(a) Baseline (Without data augmentation) (b) Random Oversampling

(c) SMOTE (d) GAN-based

Fig. 3. Visualization of loss function for different data augmentation approaches

The recall for our GAN-based approach is significantly
higher than the baseline and slightly better than that for random
oversampling. Therefore, we can say the GAN-based approach
is good at detecting the positive class which is our prime
objective. Also, the F1 score and AUC are greater for the
GAN-based approach which means it maintains a good balance
in detecting both classes. It is evident from the results that
the GAN-based augmentation is more effective to alleviate
the influence of the skewed data distribution than any other
sampling-based approaches.

We performed a one-sided paired t-test to analyze the sig-
nificance of the GAN-based approach. The p-values at the
95% level of confidence for the F1 score of the GAN-based

approach with respect to the baseline, random undersampling,
random oversampling, and SMOTE-based approaches are 0.01,
0.16, 0.31, and 0.39 respectively. The null hypothesis is re-
jected to significantly differentiate the GAN performance (F1
score) from that of the baseline CNN only, which means that
although GAN performance is uniformly slightly better than
that of all random and synthetic sampling approaches, this
improvement is not statistically significant for the data set used
in this experiment. This indicates a need for further large scale
experiments with other data sets to conclusively establish the
superior precision and recall of the GAN-based approach.

In addition, we noticed that SMOTE and GAN-based ap-
proaches help to avoid overfitting. Because overfitting occurs
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when the hypothesis being evaluated has higher training ac-
curacy than test set accuracy, it may reflect the degree of
bias of the model towards the training data set. This can be
determined by looking at the values of the loss function for
both the training and validation set at the training time. If the
training loss is much lower than the validation loss, we can
conclude that the model is getting a good handle on classifying
the training set, but failing to apply that knowledge on the
validation set. Fig. 3 presents the training and validation loss
function for different approaches. GAN and SMOTE-based
approaches avoid overfitting as they add different samples than
what exists in the original data set. The random oversampling-
based approach is the one that is more prone to overfitting.

V. CONCLUSION AND FUTURE WORK

In this work, we investigated the performance of different
data balancing techniques in the plant disease detection domain.
Our results demonstrate that the GAN-based approach outper-
forms random undersampling, random oversampling, and syn-
thetic oversampling approaches. The variation in the samples
introduced by a GAN-based approach makes it easier for the
classifier to find classification boundaries. Also, the capability
of avoiding overfitting indicates the robustness of the GAN-
based generative approach over the sampling-based approaches
in the plant disease detection task.

Continuing work at present seeks to formulate the task of
infected image generation as a style-transfer problem. Further
work will focus on developing effective and computationally-
efficient algorithms for image data synthesis, constrained by
measures of realism with respect to real-world data.
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