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Abstract—In this work, we introduce Attention-based Partially
Decoupled Actor-Critic (APDAC), an actor-critic architecture
for generalization in reinforcement learning, which partially
separates the policy and the value functions. To learn directly
from images, traditional actor-critic architectures use a shared
network to represent the policy and value functions. While a
shared representation allows parameter and feature sharing,
it can also lead to overfitting that catastrophically damages
generalization performance. On the other hand, two separate
networks for policy and value can help to avoid overfitting and
reduce the generalization gap, but at the cost of added complexity
both in terms of architecture design and computation time.
APDAC is a hybrid architecture that builds upon the combined
strengths of both architectures by sharing initial layer blocks of
the network and separating the later ones for policy and value.
APDAC incorporates an attention mechanism to enable robust
representation learning. We present meaningful visualization of
the policy and value that explains the perception of the trained
agent. Our empirical analysis, including an ablation study, shows
that APDAC significantly outperforms the standard PPO baseline
on the challenging RL generalization benchmark Procgen and
achieves performance that is competitive with the recent state-of-
the-art method (IDAAC) while using fewer convolutional layers
and requiring less computational time. Our code is available at
https://github.com/nasiknafi/apdac.

Index Terms—deep reinforcement learning, generalization,
policy-value asymmetry, partial separation, attention, represen-
tation learning

I. INTRODUCTION

Deep reinforcement learning (RL) algorithms have shown
human-level performance on a variety of control tasks [1]–[3].
They can master complex tasks by exploring and specializing
in a training environment given a large number of samples.
Deploying such intelligent systems in real-world applications
requires significant generalization and faster adaptation ca-
pabilities for similar but unseen scenarios or environments.
However, generalizability of this magnitude has yet to be
achieved for standard RL algorithms [4]–[7].

In this work, we consider the problem of generalization
to unseen scenarios or levels of procedurally generated en-
vironments given exposure to a limited number of levels
during training. The levels vary in background, dynamics,
game assets, and attributes of the entities (position, spawn
time, shape, and color); however, all the levels share the same

end goal. Thus, significant generalization capability is needed
to learn a robust policy that performs well on levels, episodes,
or scenarios not encountered during training. Learning a policy
representation that encodes task-relevant attributes is critical to
better generalization in such cases.

Recently, [8] demonstrated a policy-value representation
asymmetry, which suggests that value estimation requires more
information than what is needed to learn an optimal policy.
Thus, shared representation of policy and value function can
lead to overfitting [8]. An alternative to shared representation
is to separate the policy and the value networks [5], [8]. This
helps to disentangle the features necessary to properly estimate
the value and policy function. However, the policy function
cannot be learned in isolation, via stand-alone training. It
requires gradients from the value function to learn the optimal
policy [8]. Thus, additional measures must be taken to improve
the policy network, which increases the complexity of overall
training. Moreover, the two networks entail increased memory
requirements and training time.

As shown in Figure 1, we design a hybrid actor-critic
architecture that provides an excellent alternative to the two
extreme approaches, fully shared and fully separate networks,
by combining the benefits of both while mitigating their dis-
advantages. We propose Attention-based Partially Decoupled
Actor-Critic (APDAC) that shares some early layers of the
network while separating the later (downstream) ones into
policy and value sub-networks fed by the shared blocks. This
partial decoupling recognizes the asymmetry in the policy-
value representation and enables distinct high-level feature
learning for both policy and value. Additionally, we deploy an
attention mechanism in the two separate branches to facilitate
the extraction of relevant features for the policy and value
functions. In order to perform better on new unseen task
episodes, learning minimal and compact representations is cru-
cial [8]. A minimal set of features allows a deep RL network
to avoid spurious correlation between generic attributes of the
episodes (e.g., background color) and the value/policy func-
tion. Consequently, this minimal representation helps to better
capture the relation between task-relevant attributes and the
value/policy function. Our ablative experiments demonstrate
how attention within these sub-networks accounts for gains
over the state-of-the-art baseline by focusing on a minimal set
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Fig. 1: Comparison of architectures: (left) a fully shared network for policy and value, (middle) two explicitly separate networks
for policy and value, and (right) our proposed partially separated network for policy and value function.

of spatial features. We attribute the benefits of our approach
to the hierarchical representation of features and the ability of
attention mechanisms to effectively identify the components
of an input pertinent to the optimization task. Further, we
produce visualizations of the policy and value that reveal
crucial insights into the learned policies and value functions.

Key novel contributions of this work are as follows: (i) we
introduce a new hybrid architecture, as shown on the far right
of Fig. 1, that consists of decoupled policy and value subnet-
works (downstream layers) with a shared set of upstream or
early layers; (ii) we develop an integrated attention mechanism
to encourage policy-specific and value-specific feature learning
with minimum overhead; (iii) we demonstrate qualitative and
quantitative performance improvement compared to state-of-
the-art (SOTA) methods on the Procgen benchmark.

II. RELATED WORK

Many recent works have established that lack of general-
ization is a systemic problem in deep reinforcement learning
and popular algorithms tend to overfit to the environment,
resulting in models that seem merely to memorize surface-
level details of the environment rather than learn generalizable
skills [6], [7], [9], [10]. Existing solutions to the generalization
problem include L2 regularization [11], dropout [12], data
augmentation [13], batch normalization [12], and hyperbolic
discounting [14]. It has been shown that the performance of
generalization in RL increases with the number of convolu-
tional layers while learning directly from image observation
[4]. As established in [13], Procgen is a testing suite that uses
procedural content generation to benchmark generalization to
greater effect than traditional benchmarks. Procgen became
popular in recent works advancing generalization in deep
reinforcement learning [8], [15]–[17]. As discussed in [8],
sharing features between policy and value functions can lead
to overfitting, reducing a model’s ability to generalize to new,
unseen environments. In contrast to the previous methods, [5],

[8] make use of fully disconnected policy and value functions.
This provides greater generalization and sample efficiency than
earlier counterparts. However, this performance comes at a
price; more parameters than previous approaches require more
computing power. In addition, certain Procgen environments
require specific hyperparameters to produce reported perfor-
mances. Our method provides results consistent with those in
[8] with fewer convolutional layers while reducing the need
for hyperparameter tuning.

Literature exploring the potential of attention mechanisms
in neural networks has found success across a wide array of
domains, including natural language processing and vision,
both as part of convolutional layers and as stand-alone layers
[18], [19]. Attention has also been utilized in vision models
with great success, yielding strong performance while requir-
ing less computing power and fewer input parameters, with
self-attention and dual attention models being used in pursuits
such as image classification and scene segmentation [19],
[20]. The use of attention mechanisms in deep reinforcement
learning, however, is less prevalent. Some variations of A2C
incorporates a shared attention mechanism [21], [22]. [23]
proposed a self-attention mechanism to rank important patches
of the observation that influence the policy. [24] presented
a spatio-temporal self-attention mechanism for reinforcement
learning in the case of RNN-based policy. However, our work
differs by combining the attention mechanism with a partially
split policy and value network designed to prevent overfitting
and achieve generalization.

III. PRELIMINARIES

While generic RL algorithms deal with a single (PO)MDP,
formulating the problem of generalization considers a distribu-
tion of (PO)MDP that generates similar but distinct instances
of (PO)MDPs with the overall goal to perform better on the en-
tire distribution of (PO)MDPs. Here, we consider a distribution
of POMDPs, denoted by p(m) where m ∈ M , and each in-
stance m is defined by a tuple (Sm,Om,A, Tm,Rm,Ωm, γ),



where Sm is the set of states, Om is the set of observations,
A is the set of actions, Tm(s′|s, a) are the transition probabil-
ities, Ωm(o|s′, a) are the conditional observation probabilities,
Rm(s, a) is the reward function, and γ is the discount factor. If
the agent is trained with a limited number of POMDPs, say n,
then we have Mtrain = {m1,m2, ...,mn}, where mi ∼ p and
i ∈ {1, 2, ..., n}. The ultimate target is to optimize the policy
πθ over the full distribution of POMDPs where the objective
function is defined by J(πθ) = Ep,π,Tm

[∑T
t=0 γ

tRm(st, at)
]
.

In our experiment, each game environment from our testbed
corresponds to a distribution of POMDPs p(m) while each
procedurally generated level within that game corresponds to
a sampled POMDP instance according to that distribution.
The model is tested on the full distribution while learning
from a limited number of levels (n = 200 in our case),
thus providing an opportunity to evaluate how the model can
generalize beyond the levels it encounters during training.

IV. ATTENTION-BASED PARTIALLY DECOUPLED
ACTOR-CRITIC

In Attention-based Partially Decoupled Actor-Critic (AP-
DAC), we modify the traditional shared representation of the
actor-critic model by partially separating the policy and the
value functions followed by a shared component. Each of the
partially separated policy and value sub-networks is enhanced
by including attention modules.

A. Partial Decoupling of Policy and Value function

Decoupling the policy and the value functions is crucial
to overcome the problem of overfitting, which is the main
drawback of a shared representation [8]. However, simply
using two explicitly separated networks has serious inherent
disadvantages because the policy function approximation de-
pends on the gradient of the value function. [5] shows that the
straightforward method of just using two separate networks
for policy and value functions causes a performance decrease
when compared to the shared network architecture. To address
this issue, research that uses a separate network approach to
optimize policy and value functions often also uses an auxil-
iary value [5] or advantage head [8] in the policy network (See
the policy network at the middle in Figure 1). This auxiliary
head provides a helpful gradient to the separate policy network
to learn better task-relevant policy representation, whereas the
separate value network optimizes the value function that plays
the original role of the critic. Moreover, the two network
models introduce additional hyperparameters such as update
frequency of the policy network, update frequency of the value
network, and coefficients for the advantage loss.

We leverage the hierarchical representation of image fea-
tures to design our network. Generally, the low-level features
include minor details such as lines, edges, dots, and curves,
whereas the high-level features are composed of multiple low-
level features. Based on this, we hypothesize that, although the
high-level features responsible for accurate estimation of the
policy and value functions may differ, the low-level features
that constitute the high-level features are almost similar for

both. Deep convolutional neural networks (CNN) can learn
the feature representations hierarchically using a sequence of
convolutional and pooling layers. Initial convolutional layers in
a neural network learn the filters to capture low-level features
while the later layers in the pipeline learn to identify larger
objects and shapes. Therefore, we bifurcate the network earlier,
at the convolutional layer level, instead of merely separating
the policy and the value head as in the case of a fully shared
network presented in [4]. This helps to decouple the high-
level feature learning for policy and value on top of the same
features learned by the shared network. Thus, our network
comprises three parts: the part of the network shared between
policy and value parameterized by θ, a second part dedicated to
policy learning parameterized by ϕπ , and a third part dedicated
to value function approximation, which is parameterized by
ϕv . The overall network is trained all together to optimize the
following objective:

JAPDAC(θ, ϕπ, ϕv) = Jπ(θ, ϕπ)−αvLV (θ, ϕv)+αsSπ(θ, ϕπ)
(1)

where Jπ(θ, ϕπ) is the policy gradient objective, LV (θ, ϕv) is
the value loss, Sπ(θ, ϕπ) is an entropy bonus that enables
efficient exploration, and αv and αs are the coefficients
denoting relative weight of the corresponding terms.

We optimize the same clipped surrogate policy objective as
used in PPO [25]:

Jπ(θ, ϕπ) = Êt

[
min

(
rt(θ, ϕπ)Ât, clip(rt(θ, ϕπ), 1− ϵ, 1 + ϵ)Ât

)]
where rt(θ, ϕπ) =

π(θ,ϕπ)(at|st)
π(θ,ϕπ)old

(at|st) , and Ât is the estimation
of the advantage function at timestep t. The only difference is
that the parameters ϕπ are not affected by the value loss LV

while the parameters θ are affected. The value loss LV is a
squared error loss and defined as follows:

LV (θ, ϕv) = Êt

[(
Vθ,ϕv (st)− V̂ targ

t

)2]
(2)

where V̂ targ
t is the value function target.

In the case of a fully decoupled value and policy network
architecture, significant additional overheads are imposed by:
(1) the reliance of policy optimization on the learned value
gradient; (2) an increased number of hyperparameters; and (3)
the consequent higher memory footprint. We show that these
overheads can be overcome by a single network architecture
that just partially separates the policy and the value. At the
same time, our experimental results show that this partial
separation prevents the model from being trapped in the
common pitfalls of the fully shared network.

B. Relevant Feature Learning using Attention

Attention is an effective means to learn high-quality and
meaningful representation. To ensure more discriminative and
relevant feature learning by the partially separated policy
and value sub-networks, we propose to incorporate individual
attention mechanisms within the corresponding blocks of the
network. We apply attention modules similar to the Squeeze
and Excitation (SE) network, which explicitly models the
interdependencies between the channels of its convolutional



Fig. 2: Details of our proposed architecture. The separated
blocks for the policy and value function (at the top) incorporate
attention module (shown as shaded blocks) inside the residual
blocks as well as one before the first convolutional layer and
one after the max pooling layer. The shared blocks (at the
bottom) are similar to the IMPALA CNN architecture [26].
They do not have an attention module.

features [27]. SE block leverages global information to put
relative importance on more useful features than less useful
ones. We use SE blocks only in the later layers (split value
and policy sub-networks). Using a SE block in the later layers
of a deep network enables distinct feature learning in a highly
class-specific manner, while in the initial layers it learns in
a class-agnostic manner. We argue that this characteristic of
the SE block makes it a suitable choice for our task, where
distinct features relevant to policy and value must be learned.

The placement of the attention block within the sub-
networks is a crucial design choice. We identify multiple key
positions in the base IMPALA-CNN architecture [26] and con-
duct extensive experiments to determine the proper positions
for the attention block. Based on the empirical analysis, we
incorporate one SE attention block in each Residual Block just
before the residual connection as shown in Figure 2. We also
add extra SE attention blocks outside of the Residual Block:
one at the beginning of the sub-networks to initially prioritize
the channels and another just after the max pooling layer for
re-weighting the downsampled channels (See Section V-A and
Figure 2 for details). We have found that the placement of
the attention block either after the pooling layer or before
the pooling layer makes a significant difference in terms of
learning improved representation.

Following [27] to utilize global information beyond the
local receptive field of filters, in our implementation, the
squeeze operation in the attention block first encodes a channel
descriptor z ∈ RC through global average pooling. Each
element of z is defined as:

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j), (3)

where uc ∈ RH×W and U = [u1, u2, ..., uc] denotes the
convolved feature output produced by the previous convolu-
tional layer. In the next phase, the excitation operation attempts
to capture channel-wise nonlinear dependencies based on the
channel-descriptor z. The excitation operation is realized by
two fully-connected (FC) layers around a non-linear function:

s = Fex(z,W ) = σ(g(z,W )) = σ(W2δ(W1z)), (4)

where σ refers to the sigmoid activation function, δ refers
to the ReLU function, W1 ∈ RC

r ×C , and W2 ∈ RC×C
r ; r

denotes the reduction ratio parameter between the two FC
layers. Finally, the input feature map U is rescaled as follows
using the learned activation s:

x̄c = Fscale(uc, sc) = scuc, (5)

where X̄ = [x̄1, x̄2, ..., x̄c]. This way, a set of channel
weights is learned to recalibrate the channel response. Thus,
the attention block on the policy and value branch enables
attended feature learning specific to the policy and value
functions respectively. From our experiments, it is evident
that the attention mechanism coupled with the contribution of
Section IV-A helps in attaining the high level generalization.

V. EXPERIMENTS AND RESULTS

The availability of highly diverse procedurally generated
levels across a wide variety of game environments has mo-
tivated us to choose Procgen as our testbed. We evaluate our
proposed architecture on the complete Procgen benchmark
presented in [4], which consists of 16 environments. We
experiment on the easy difficulty setting for 25 million total
timesteps as recommended in [4]. We train the model on 200
levels and test on the full distribution of the levels. Procgen
environments are designed to have a discrete 15-dimensional
action space. The agent is required to learn the optimal policy
directly from image observations. The observation space is of
the size 64×64×3. No frame stacking is used implying that
the next state depends only on the present observation.

A. Network Architecture

Following previous works involving Procgen, we chose
IMPALA’s deeper residual CNN architecture as our backbone
[4], [5], [8]. This model strikes a good balance between the
achieved reward and the required computational power [4].
This particular IMPALA CNN architecture has 15 convolu-
tional layers divided into three blocks [26]. Each block has
a configuration similar to Conv - Pooling - Residual Block
- Residual Block, as shown in the bottom-middle part of the
Figure 2. Each residual block includes two Conv layers with
an ReLU activation layer. APDAC shares the first two blocks
(10 convolutional layers) of the IMPALA CNN, then branches
out for the third block. Thus, APDAC employs five separate
convolutional layers each for policy and value functions in
order to learn features distinctly. Finally, the separated policy
and value blocks incorporate one attention unit per residual
block along with one at the very beginning of the separated



Fig. 3: Test performance of PPO [4], IDAAC [8], and our proposed APDAC over eight Procgen environments. Means and
standard deviations are calculated over 10 trials, each with a different seed.

blocks and another just following the max pooling layer.
Figure 2 shows the details of the architecture.

We extend the implementation of IDAAC [8] to experiment
with our APDAC architecture. We conduct a hyperparameter
search over the number of epochs per rollout E ∈ [1, 3, 6]
and found E = 1 works best with APDAC. When training
PPO and IDAAC, whenever applicable, we followed the same
hyperparameter setup from [8]. The only difference is that
we reduced the number of mini batch sizes to minimize the
required computational power. We use reduction ratio r = 8
for the SE attention block.

B. Generalization Performance on Test Distribution

In our experiments, we compared the performance of our
network architecture, APDAC, with two representative state-
of-the-art methods for all 16 Procgen environments. PPO
serves as a representative of the models that use fully shared
policy and value networks whereas IDAAC represents those
with separate policy and value networks [25] [4] [8]. In
addition, IDAAC uses a discriminator loss to decrease the
dependency on irrelevant instance-specific aspects of the envi-
ronment. Figure 3 shows the rolling mean test scores averaged
over ten trials for each of the eight environments out of sixteen
from the Procgen benchmark. The rolling standard deviations
between trials are calculated as well, with confidence inter-
vals bounding one standard deviation above and below each
curve. Table I presents the scores on test levels after training
for 25M environment steps for all sixteen environments. In

TABLE I: Scores on test levels after training on 25M environ-
ment steps for all 16 environments. Values are averaged over
10 trials, each with a different seed.

Game PPO IDAAC PDAC(ours) APDAC(ours)
Starpilot 26.4±1.2 34.5±2.9 36.2±1.7 36.9±1.7
Bossfight 6.5±0.4 8.9±0.5 8.9±0.4 8.9±0.3
Caveflyer 4.7±0.4 4.6±0.5 5.8±0.8 5.0±0.5

Chaser 4.7±1.0 6.3±0.9 6.6±1.4 5.9±1.1
Climber 5.8±0.4 8.1±0.5 7.9±0.3 7.7 ±0.3
Coinrun 8.54±0.2 9.1±0.1 9.1±0.2 9.1±0.2

Dodgeball 1.7±0.3 3.4±0.4 3.4±0.5 3.7±0.5
Bigfish 3.7±0.6 18.1±1.6 11.0±1.8 14.1±2.3
Fruitbot 23.9±0.8 26.4±0.5 25.7±0.7 28.3±0.6

Heist 2.6±0.5 3.4±0.2 3.5±0.6 3.6±0.3
Plunder 5.4±0.3 17.5±2.4 5.8±0.6 6.3±0.7
Jumper 5.8±0.3 6.1+±.2 6.0±0.2 6.0±0.2
Leaper 3.6±1.2 5.2 ± 1.7 7.4 ± 1.4 7.6 ± 1.4
Miner 9.1±0.5 6.9±2.2 8.7±0.5 8.9±0.6
Maze 5.4±0.3 5.4±0.2 5.7±0.3 5.7±0.4
Ninja 6.2±0.2 7.1±0.3 6.4±0.2 6.3±0.6

these results, APDAC attains significant gains in performance
compared to the standard shared network approach, PPO [4],
[25]. Furthermore, APDAC performs better or competitively
compared to the existing state-of-the-art, IDAAC, and does
so with fewer convolutional layers and less computing time.
In our particular instantiation, while two separate networks in
IDAAC require 30 (15 for policy; 15 for value) convolutional
layers, our approach requires only 20 (10 shared; 5 for policy;
5 for value). The number of parameters added for attention



Fig. 4: Training and test performance of PPO [4], IDAAC [8], and proposed APDAC over four Procgen environments. Means
and standard deviations are calculated over 10 trials, each with a different seed. The dotted lines refer to the training reward
while the solid line refers to the test reward. In case of APDAC, the gaps between the dotted line and solid line (green) are
similar to the fully decoupled approach, IDAAC (orange) and both are better than PPO (blue).

Fig. 5: Ablation study of the proposed method APDAC with the standard baseline PPO (no decoupling, no attention) and the
ablated version PDAC (partially decoupled but without attention) on the test distribution for four Procgen environments. Means
and standard deviations are calculated over 10 trials, each with a different seed.

TABLE II: Comparison of number of required convolutional
layer and computational time for different approaches

Methods No of Conv. Layer GPU Hours
PPO [4] 15 3-4

IDAAC [8] 30 5-12
APDAC (Ours) 20 3-5

blocks is not significant. Table II shows this comparison. Also,
APDAC requires a run time similar to the shared network
approach (PPO) which is far less than the fully decoupled
approach (IDAAC) in most cases. The reported hours are
based on experiments on an Nvidia GeForce GTX 2080 GPU.
Thus, we conclude that APDAC succeeds as an efficient
hybrid architecture that improves upon its constituent network
topologies.

C. Assessing the Generalization Gap

In addition to analyzing the performance on the test distri-
bution, it is crucial to investigate the performance gap between
training and test tasks or levels. This provides an indication
of how well the model performs on unseen tasks compared to

ones that belong to the training set. It is obvious from Figure 4
that APDAC is capable of reducing the train-test gap (solid vs.
broken line) at the same level of a fully decoupled approach,
IDAAC and far better than the fully shared approach, PPO.

D. Ablation

To evaluate the contributions of each proposed component,
we further experiment with an ablated version of our pro-
posed approach, which eliminates all attention blocks. Thus,
this network includes only the partially separated policy and
value representations and does not incorporate the contribution
mentioned in Section IV-B. We denote this model as Partially
Decoupled Actor-Critic (PDAC). To determine the difference
in performance brought by this ablation, we compare the
results of PPO, APDAC, and the ablation, PDAC, using the
same experimental setup as before. Figure 5 shows the ablation
results from four example environments. APDAC performs
better than PDAC in most cases. Indeed, the comparison
with PPO clearly shows that the main performance gain of
APDAC comes from the partial separation of policy and value
networks. Thus, sharing the initial part of the network does not
harm performance and, in fact, reduces the required number



Fig. 6: Visualization of the value and policy representation for PPO [4], IDAAC [8], the ablation, PDAC, and the proposed
approach, APDAC, on an input sample from three Procgen environments. The red regions correspond to the higher value of
gradients while blue regions correspond to the lower value. For both policy and value, compared to other approaches, APDAC
exclusively prioritizes informative spatial regions (red marked) and constructs asymmetrical representation.

of convolutional layers compared to an architecture with fully
separate value and policy networks. The marginal performance
gains between APDAC and the ablation are an incremental
aspect of this work; however, attention is still a growing field
of study in RL, and our research shows an opportunity to use
attention to achieve generalization (Also, see Figure 6).

E. Visualization of Value and Policy using Grad-CAM

To understand the agent’s ability to reason about the en-
vironment, we visualize where the agent is attending while
making its decisions. This highlights the important spatial
regions where exactly the agent is focusing on and helps
us to understand in-depth about the key information that is
influencing the agent’s behavior. We generate activation maps
for both value and policy using the Grad-CAM technique,
which uses gradients back-propagated from the final layer [28].
Specifically, we set the last layer before the fully connected
part as the target layer and set the final value and policy
head outputs as the target concept. We visualize the policy
in an action-indiscriminative way as we are more interested in
learning the difference between policy and value activations
rather than action-specific policy.

Figure 6 presents visualizations of the value and policy for
PPO, IDAAC, proposed APDAC, and the ablation PDAC. The
red regions correspond to the higher value of gradients while
blue regions corresponds to the lower value. APDAC produces
more fine-grained and explainable visualization compared to
other approaches. Figure 6 shows that APDAC policy gradients
are highly concentrated in specific spatial regions (see the red
regions). A policy can be optimal by encoding the minimal
task-relevant information from the observation [8]. The visu-

alization reveals that APDAC policy attempts to focus only on
the key information required to act immediately on the envi-
ronment. Compared to the ablation PDAC, APDAC produces
more clear gradients and consequently concise representation.
We observe that APDAC value and policy gradients are highly
asymmetrical. This confirms that an asymmetry truly exists
between the policy and value function representations that
needs to be addressed to achieve better generalization. PPO
produces identical activation maps for policy and value, thus
failing to encode distinct features for policy and value owing
to its shared representation. While IDAAC representations are
asymmetrical, it is evident that these are not plausible enough
to reason about the action in the environment.

In Figure 6, the first row is from the game of Coinrun where
the goal of the agent is to collect the coin at the far right of
the level while avoiding the stationary saw obstacles, moving
enemies, and chasms. In the sample input, the yellow coin is
at the right, and the blueish saw obstacle is just in front of
the agent. We can see the APDAC value function places more
attention on the coin and the specific edges of the terrain. On
the other hand, the policy put attention on the saw obstacle
coming ahead as this needs to be bypassed.

In the game Fruitbot (the second row in Figure 6), a robot
needs to navigate through the gaps in the walls to collect fruit
along the path. It receives a positive reward for collecting fruit,
however, receives a negative reward for a non-fruit object. The
APDAC value column highlights all the fruits in red while the
non-fruit objects are in the blue region. In contrast, the policy
highlights the wall just in front of the robot as this wall must
be avoided.

For Dodgeball (the third row in Figure 6), the player spawns



in a closed room with randomly configured enemies. The
player must kill all the enemies by throwing the ball while
avoiding hitting the walls. When all the enemies are killed,
the player can go to the newly unlocked platform (previously
locked) and receive a large level completion bonus. In the
given example in the third row, all the enemies have been
killed, and the platform turns from red to green showing it
is now unlocked (appears red when locked). APDAC value
function focuses on the platform and the path to the platform.
The policy also highlights the platform because the player
must move closer to it.

VI. CONCLUSION

In this work, we have simultaneously addressed the issue
of limited generalization due to overfitting in a fully shared
actor-critic network and the added complexity in the case
of fully decoupled ones. Our solution, APDAC, differs from
existing methods in the partial separation of its network and
adding attention mechanisms to each split sub-network. Our
empirical results demonstrate highly competitive performance
compared to a fully decoupled state-of-the-art approach while
reducing the number of required convolutional layers and
the computational cost. APDAC learns compact policy rep-
resentations that are robust to the variation of the unseen
task episodes. APDAC appears as a promising way forward
in the pursuit of generalization in deep RL on the grounds
of performance, efficiency, and interpretability. Although at-
tention greatly improves representation learning, the limited
performance gap between APDAC and the ablation can be
considered a limitation of the current work. A hopeful future
direction is to investigate more beneficial structures for the
attention mechanism.
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