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Abstract. In this paper, we introduce the problem of risky tackle de-
tection from American football practice videos and propose a 3-stage
Convolutional Neural Network (CNN)-based pipeline to improve detec-
tion accuracy. At first, we propose an anomaly detection-based approach
to temporally localize the tackle action. Spatial regions of interest are
then identified using an object recognition model. Finally, 3D convolu-
tion is applied to classify risky and safe tackles based on spatiotemporal
features. Our approach trades off between end-to-end action classifica-
tion from untrimmed videos and precise localization of temporal an-
chors of an action. We conduct our experiment on a newly created data
set that contains 178 annotated videos collected from seven different
practice fields. We empirically demonstrate that our proposed method
outperforms state-of-the-art video classification and anomaly detection
approaches applied directly to untrimmed tackle videos.

Keywords: American Football, Head Injury, Risky Tackle Identifica-
tion, Deep Learning, Sports Video Classification.

1 Introduction

In this work, we address the problem of simultaneous action detection and risk
estimation as a classification task for videos. Such computer vision applications
in sports span a gamut of static scene analysis to high frame rate videos cover-
ing entire practice sessions, and from brief training exercises to plays. The key
rationale for visual analysis of sports videos is monitoring and then providing
early warnings of potentially injurious practices. This would allow coaches to
intervene to prevent injury and mitigate resulting risk and harm, whether phys-
ical, psychological, or financial, from improper tackling. Specifically, the Centers
for Disease Control (CDC) estimates that between 1.6 and 3.8 million sports-
related concussions (SRC) are reported annually with American football showing
the highest proportion of head injuries or concussions among all sports [21] [5].
Research shows that in youth football, on an average, one player out of every 33
players may suffer a concussion during the season. Concussions occur at a rate
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Fig. 1: Representative frames from videos collected at different practice fields.

of 9.9 per 10,000 athlete exposures; where each athlete exposure is considered
one play either in practice or in a game [22]. In addition, head impact may cause
brain injuries such as hemorrhage, hematoma, and edema. Annually, millions
of dollars are spent to treat injured players and maintain reserved players [36].
Furthermore, this adversely affects the teams, both in competitive performance
and reputation.

Two-thirds of all football-related head injuries occur during practice and one-
third during games, 47% of all SRC occur as a result of head-to-head collisions
[4]. Researchers have found that early exposure to American football may have
a long-term neuropsychiatric and cognitive effects such as Chronic Traumatic
Encephalopathy (CTE) due to repeated head impacts [29] [1]. Learning proper
tackle form at an early age is an important developmental milestone for reducing
unnecessary head impacts among youth football players [21] [23].

Identification and correction of improper-tackle techniques is a key step for
establishing a safe playing environment. Coaches wanting to reduce the poten-
tial for player to player head impacts may choose to use blocking dummies when
teaching the skill to young players. Practice tackles are filmed so that athletic
trainers and coaches can identify dangerous postures and provide corrective feed-
back on player performance. However, these video assessments are carried out
manually by human judges [28] [39] [19]. Manual processing of the videos to
classify risky or safe tackle requires a substantial amount of effort and time from
human assessors.

CNN-based architectures have been shown to be successful at extracting
novel visual features directly from RGB images [13] [38]. Use of CNN in tandem
with Long Short-Term Memory (LSTM) network and the introduction of 3D
convolution have made a breakthrough in many video processing tasks such as
activity recognition, event or action localization, anomaly detection [17] [8] [40]
[16] [3] [37]. This influenced researchers to adopt deep learning-based computer
vision approaches in sports analytics [10] [31]. However, the inherent differences
in actions performed in different sports pose a different set of challenges.



Risky Tackle Detection from American Football Practice Videos 3

Automatic detection of the risky forms of tackle solely based on videos can
greatly improve a coach’s ability to correct player behavior and reduce the likeli-
hood that the players sustain head impacts. More importantly, this will help the
players to find out the overall safety ratings of their tackles just after performing
them rather than waiting for more than a week while the coaches analyze the
videos. To the best of our knowledge, no prior research has attempted to classify
tackles from videos of American football practice. In our work, we first exploit
an anomaly detection mechanism to temporally segment the informative frames
containing the tackle and then leverage an existing state-of-the-art object de-
tection model to extract regions of interest from those frames. In last stage, a
customized 3D ConvNet is used to classify risky and safe tackles from the spa-
tiotemporally segmented frame sequence.

To summarize, our key contributions are as follows:

– We introduce the task of risky tackle detection directly from videos of Amer-
ican football practice with a tackle dummy.

– We present a set of 178 labeled American football tackle practice videos
collected in the United States.

– We propose a framework for detecting risky tackles from practice videos
using only video-level annotation.

– We conduct a comparative analysis of our proposed pipeline with state-of-
the-art video classification and anomaly detection approaches for untrimmed
video and evaluate the results in terms of precision, recall, and F1-score.

2 Related Work

Video Classification: One of the core tasks of video processing is video clas-
sification, commonly referred as activity recognition. In the last few decades,
it was very common to use hand-crafted features for video representation. Spa-
tiotemporal interest points (STIPs) [27], 3D variants of scale-invariant feature
transform (SIFT-3D) [33], and histogram of oriented gradients (HOG-3D) [24],
improved Dense Trajectories (iDT) [41] demonstrated promising results. Recent
CNN-based approaches have already gained success over those hand-crafted fea-
tures [17] [8] [40]. One common approach is to extract frame-level features using
2D convolution followed by Long Short-Term Memory (LSTM) cells to capture
temporal dynamics from those frame-level features [8]. 3D ConvNet eliminates
the need for LSTM blocks by extending 2D convolution into the temporal di-
mension, making it well-suited for spatiotemporal feature learning directly from
video [40] [16].

Two-stream networks [35] [3] utilize both RGB frames and optical flow frames.
Optical flow can capture apparent motion information invariant to appearance.
The RGB and flow frames are fed into identical ConvNet to extract features
and are fused at some particular stage. C3D [40], I3D [3], R(2+1)D have proved
that a video classification network trained on a sufficiently large data set such as
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Kinetics[18], Sports-1M [17] can be used to extract video features for completely
different tasks from other domains.

A different approach, however, is to consider binary video classification as an
anomaly detection problem. Most anomaly detection approaches use unsuper-
vised or semi-supervised methods such as dictionary learning [45], topic model-
ing [15], histograms [6], or autoencoders [44] to learn the distribution of normal
video, so it can distinguish the anomalies. Some recent approaches attempt to
solve the problem with supervised learning using both normal and anomalous
videos with video-level annotation [37].

Action Localization: Most techniques for action localization assume that
untrimmed input videos are annotated with the temporal anchor of the action.
They then treat the task as an iterated image classification task, where the
system needs to classify each candidate window derived from running a tempo-
ral sliding window over the whole video [30] [10]. More recently, to reduce the
number of candidate windows, temporal action proposals [9] [14] have been intro-
duced. Buch et al. [2] presented a single-stream temporal action proposal (SST)
to mitigate the issue of multiple passes over the same video frames. However,
all of these approaches require manual annotations for atomic actions which is
subjective, laborious, and time-consuming. Shou et al. [34] proposed a multi-
stage CNN to solve the temporal localization problem. Although it relaxes the
requirement of exact temporal annotation, its benefit is overshadowed by the
complexity of multi-scale candidate segment generation and multiple network
training.

Approaches that completely forgo action-level temporal annotation generally
use a learning framework for multiple instance selection [25] [26] [37]. This allows
localization of action or anomalous events by finding key instances in untrimmed
videos. The video segments are considered instances, and the key instances are
learned based on only video-level labels.

Object Detection: Object detection refers to identifying an object and its
localization. Region-Based Convolutional Neural Networks (R-CNN) [11] have
shown impressive results in object detection. The process includes a sequence of
CNN-based feature extraction, object classification, and bounding box regres-
sion. Mask R-CNN generates a mask in pixel level of the object to segment it
from the generated proposals [12]. Faster-RCNN uses a dedicated CNN-based
Region Proposal Network (RPN) that drastically reduces the proposal genera-
tion time [32].

Injury Detection: Injury detection or prediction is a well-studied area in
sports analytics. However, most research, especially for American football, are
based on either physical and psychological statistics of the player [7] [20] or data
collected from micro-sensor [19] [42] and manual investigation of incident videos
[28] [39] [19]. Very recently, [31] successfully applied 3D convolution to early
detection of injury in baseball pitchers using only videos. There is hardly any
video-based work for American football that attempts to identify risky tackles
that may result in serious head injury.
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Table 1: Data distribution in the data set

Class Name No. of Samples Avg No. of Frames

Safe 123 216

Risky 55 203

Total 178 212

3 Data Set Preparation

Lack of a data set relevant to our task motivates us to construct a new data
set. We attempt to solve the problem from a supervised learning point of view;
therefore, we need labeled training data. We build our data set in two steps. First,
we collect videos from practice fields, and then we label each video manually.

3.1 Video Collection

Our data set consists of 178 tackle videos. Originally, we collected other videos as
well, but we had to discard some because of poor resolution and older encoding
format. All the videos are collected from seven different practice fields in the
United States. They are recorded in different formats: MOV, MOD, MKV, and
MP4. All files are then converted to MP4. The frame rate for all videos is 30. A
standard guideline was used to set up cameras, however, the guideline was not
strictly maintained. In all videos, the player starts running from the left, and
the dummy is placed on the right. Some unnecessarily long videos are trimmed
to some extent.

3.2 Data Annotation

We consider the task of risky tackle identification as a binary classification prob-
lem. Therefore, we annotate each video as either ‘safe’ or ‘risky’. The annotation
is done by a certified athletic trainer who first rates every tackle on a scale of
3. Tackles scored 0 or 1 are considered risky while tackles scored 2 and 3 are
considered safe. The annotator judged every video based on the head position,
body posture, and contact point around the strike zone: where the player hits
the dummy. Although many factors from consecutive frames are involved, loosely
speaking, if the head or helmet of the player initiates the contact, the tackle is
risky, but if the player uses his chest or shoulder for initial contact keeping his
head away, that is considered a safe tackle. Table 1 shows the data distribution
that we have after the preprocessing and annotation.

4 Approach

The main motivation behind our approach is to first extract the spatiotemporal
regions that are more relevant to the task with minimum effort and then use
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Fig. 2: Overall pipeline. In the first stage of the pipeline, tackle related frames
are extracted. The second stage localizes the tackle spatially using a pre-trained
Mask-RCNN model. In the final stage, spatiotemporally segmented frames pass
through a 3D convolutional network and subsequent fully connected layers.

these informative segments to identify risky tackles. Figure 2 depicts the overall
pipeline of our proposed approach.

4.1 Temporal Tackle Localization

Manual investigation reveals that only a few frames around the strike zone con-
tain key information rather than frames that are more distant from the actual
tackle event. More specifically, it turns out that only 10-20 frames are impor-
tant where the tackle is happening compared to the huge number of frames in
each video. The task of extracting action-related frames, in other words, the
task of removing redundant frames, is similar to action localization. However,
the drawback of considering the problem as action localization is that we need
the temporal anchors or frame-level annotations defining the start and end of
the tackle action in the video. Therefore, general action localization approaches
require much effort for annotation. Moreover, such approaches are often multi-
stage, which in turn will increase the complexity of our task.

We propose to cast the temporal tackle localization task as anomaly local-
ization where we consider the tackle or collision with the dummy (both safe
and risky) as an anomalous event. To avoid the necessity of temporal or frame-
level annotations, we leverage a state-of-the-art approach [37] that uses only
video-level annotation. They consider each video as a bag and video segments
as instances in a deep multiple instance learning framework. To utilize such an
approach, we create an auxiliary data set. From one video of the original data
set, we create two videos, one before the tackle occurs and another after the
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Fig. 3: Visualization of auxiliary data set creation. Our approach does not con-
sider the highly specific start or end point of the tackle event. Any point in the
gradient space avoiding the solid blue zone can be considered as the temporal
anchor for the normal video.

tackle is finished, unless the tackle event is at the very start or end of the video.
However, this has been done without considering the precise temporal location of
the tackle, as shown in Figure 3. It just requires that the normal videos will not
contain the core frames of the tackle event; thus, anyone with no domain knowl-
edge can perform the task of video clipping. We consider these newly created
videos as normal videos because they do not contain any tackle where the player
is hitting the dummy. On the other hand, we use the original untrimmed videos
as anomalous videos because they contain either safe or risky tackle events at
some point in the video. The rationale behind using the untrimmed videos as
anomalous videos instead of video of the clipped tackle event is twofold. First,
the frames that do not contain the tackle event reside in both normal and anoma-
lous videos. As [37] uses a ranking loss function that discriminates the highest
scored instances in the normal and anomalous videos, the presence of non-tackle
segments in both normal and anomalous videos inherently increase the score of
the tackle segment. Second, at the test time, we expect our approach to identify
the tackle related frames from the untrimmed videos. Thus, training the model
using the whole videos resonate better with the end goal.

We train the anomaly detection model with these normal and anomalous
videos, so the model learns to predict anomaly scores for each segment of a video.
We propose an anomaly score-based selection mechanism for frame extraction.
We run a temporal sliding window of 16 frames with 8 frame overlap and predict
the anomaly score for each window. First, we select the window i with the highest
anomaly score. Then the window which scores higher between the two window
i+1 and i− 1 is selected. Finally, we take an extra four frames before and after
the two selected consecutive windows. In this way, the 32-frame long window or
segment will contain the anomaly: the tackle event.
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4.2 Spatial Tackle Localization

The tackle event takes place only in a particular spatial region of a frame within
a large background. Figure 1 clearly shows a background containing unneces-
sary information such as other players, coaches, playground infrastructure, and
service cart. Thus, considering only the spatial region of interest can drastically
reduce the spatial dimension without the loss of any key information.

We propose to take the advantage of a pre-trained object recognition model
to spatially localize the tackle event. As the tackle is performed by a person,
we use the Mask R-CNN [12] object detection model to generate the bounding
boxes for all persons present in the frame. The player appears in a wide bounding
box because of the action performed and the camera set up in close proximity.
Thus, we exploit the relative width of the bounding boxes to select the player
performing the tackle when several persons are present within a frame. Finally,
the selected bounding box is extended to the top and right sides to include the
dummy.

4.3 Tackle Classification

We utilize a 3D convolutional network to learn the spatiotemporal features from
the video frames we retain after discarding the redundant frames. Specifically,
our architecture includes four 3D convolution layers each followed by a 3D max-
pooling layer. The number of filters for the four convolution layers are 16, 64,
256, and 1024, respectively. We use 3×3×3 convolution filters with stride 1×1×1
for all layers. According to [40], to preserve temporal features in the first stage,
we have a kernel size of 1×2×2 and stride 1×2×2 for the first pooling layer. All
other 3D pooling layers are 2×2×2 with stride 2×2×2. A global average pooling
layer connects the 3-layer fully connected (FC) block to the convolutional block.
The first FC layer has 512 units, the second layer has 32 units, and the final layer
has only 1 unit. ReLU activation is used for all the layers except the final one,
which has Sigmoid activation. We apply 50% dropout regularization after each
FC layer and use Adam optimizer with a learning rate of 0.0001. We perform
parameter sweep to empirically select the best set of hyperparameters for the
network. The model is trained to minimize the binary cross-entropy loss:

L =
∑
i

(yi log pi + (1− yi) log (1− pi)), (1)

where yi and pi denotes the label and the prediction, respectively, for sample i.

5 Experimental Setup

5.1 Train-Test Split

Experiments were repeated three times with random splits of the data. In each
trial, we perform a 80%-20% train-test split over the samples in the data set. In
all splits, we maintain approximately the same distribution of classes as in the
original data set. To ensure a robust generalizable analysis, we hold out the test
set at all stages of the pipeline.
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5.2 Baseline

We compare our method with one state-of-the-art video classification and one
anomaly detection approach to evaluate the effectiveness of our proposed pipeline.

C3D Baseline [40]: We follow the same convention as mentioned in [40] to
extract the C3D descriptor from the whole video. We obtain the fully connected
(FC) layer FC6 activations of the C3D network for each 16 frame clip with an
eight frame overlap. Finally, to get the C3D video descriptor, we average these
clip level activations and then apply l2 normalization that results in a 4096-dim
vector. At first, we attempt to learn a Support Vector Machine (SVM) classifier
using the C3D video descriptor as originally used in [40]. However, such shallow
models fail to learn anything meaningful and always tend to predict the majority
class. This may be due to the class imbalance and lack of sufficient representative
samples from the minority class. The use of class weightage does not seem to
help. Thus, we use a Multi Layer Perceptron (MLP) similar to the one described
earlier in Section 4.3 as the classifier.

Anomaly Detection (AD) Baseline [37]: We compare our model with
this state-of-the-art approach because the task of risky tackle detection can
be considered as an anomaly detection task. We train their network assuming
the risky tackles as anomalous events and the safe tackles as normal events.
We use exactly the same settings for the hyperparameters as in the original
implementation.

5.3 Evaluation Metrics

We consider the set of risky tackles as the positive class while safe tackles are
the negative class. In the presence of class imbalance, which can be extreme for
practice tackles that are supervised by coaching staff, accuracy cannot serve as
an adequate figure of merit, because it does not consider the skewness in class
distribution. Therefore, we report balanced accuracy, which is defined as

True Positive Rate+ True Negative Rate

2
.

Following earlier works on learning with imbalanced data sets, we also report
precision, recall, and F1-score to compare the performance of risky tackle iden-
tification at the final stage. Further, we qualitatively evaluate the performance
of the intermediate stages.

6 Results and Discussions

Comparison with the Baseline: Table 2 shows the quantitative experimental
results for both the baselines and our proposed approach. Under the name Tem-
poral Localization (TL) only, we report the classification results using the frames
obtained just after the first stage of the pipeline. This also serve as an ablation
study for the temporal localization stage. When the Spatial Localization (SL) is
added on top of temporal localization, we use TL + SL to refer to it.
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Table 2: Evaluation metrics for different approaches (TL: Temporal Localization,
SP: Spatial Localization)

Methods Bal. Acc. Precision Recall F1-Score

C3D (untrimmed) 54.81 41.67 22.22 28.05

AD (untrimmed) 53.53 35.71 41.67 38.46

Ours (TL Only) 55.13 47.62 33.33 37.61

Ours (TL + SL) 66.88 54.25 55.56 54.29

Fig. 4: Confusion matrices of a particular trial for C3D baseline (left), state-of-
the-art anomaly detection model (middle), and our proposed approach (right).

Table 2 shows that our proposed 3-stage pipeline outperforms the C3D and
Anomaly Detection (AD) based approaches applied to the untrimmed videos in
terms of all metrics. Our approach achieves 12− 13% higher balanced accuracy
than the other approaches, which means it detects both classes better. In par-
ticular, our 2-stage (TL only) approach achieves 6% higher precision than the
C3D baseline and and 12% higher precision than the AD baseline. It further
improves by 6% when combined with spatial localization. In terms of recall,
our TL only approach does not do better than the AD baseline, however, the
3-stage (TL+SL) approach achieves significantly higher recall than C3D and
outperforms the AD baseline by a considerable margin. Moreover, our (TL+SL)
approach is able to achieve an F1-score of 54.29, which is 26% and 15% better
than the C3D and AD baselines, respectively. Therefore, our (TL+SL) approach
achieves higher recall and F1-score compared to the other approaches without
compromising precision. This denotes the effectiveness of our approach in de-
tecting the positive risky tackle class and maintaining a good balance between
positive and negative class detection. Figure 4 presents the confusion matrices
for the test set of a particular trial. Our model shows similar time complexity
compared to the AD baseline, however, slightly higher than the C3D baseline.
The main computational bottleneck stems from the temporal localization stage.
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Table 3: Ablation study for temporal and spatial localization

Methods Precision Recall F1-Score

C3D (untrimmed) 41.67 22.22 28.05

C3D (TL Only) 42.86 25.00 30.90

C3D (TL + SL) 52.22 16.67 25.07

Ours (MT Only) 60.32 27.22 36.96

Ours (MT + SL) 49.02 30.56 31.49

Ours (TL Only) 47.62 33.33 37.61

Ours (TL + SL) 54.25 55.56 54.29

Ablation Study: We perform an ablation study to analyze the necessity
and efficacy of the intermediate stages. We also manually localize the tackle for
robust comparison and report the results using the notation Manually Trimmed
(MT). We answer the following research questions to interpret the experimental
results:

– Is there any improvement in performance due to the temporal localization?

As we can see from Table 3, the TL and MT only approaches always outper-
form the C3D baseline for untrimmed video in all aspects. We have extracted
32 frames while the average number of frames in untrimmed videos is 212.
Thus, removing a significant portion of the frames does not affect the per-
formance negatively rather improves it and saves computation power. Also,
this reduction in the number of frames opens up the possibility of learning
spatiotemporal features directly from all frames instead of averaging the fea-
tures obtained from chunked video clips.

– Does the use of the spatial localization improve the classification perfor-
mance?

Table 3 shows that the addition of the spatial localization stage always in-
creases the recall for our proposed model compared to the TL or MT only
counterparts. That means removing unnecessary spatial information con-
tributes largely to improve the detection of risky tackles. However, the C3D
model performs poorly when combined with spatial localization, possibly
because of the biases of the pre-trained C3D features towards unsegmented
frames.

Accuracy of Temporal Localization: We manually evaluate whether
tackles are present in the 32-frame long clips extracted from all the test videos. It
turns out that the localization model trained in stage one achieves 97% accuracy
in the test set for the temporal localization task. Therefore, we conclude sub-
sequent stages will require more attention to improve the overall classification
performance.
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Fig. 5: Example of spatial localization. The top row shows the original frames
and the bottom row presents the corresponding spatially segmented ones.

Accuracy of Spatial Localization: We leveraged the Mask-RCNN model
from the Detectron2 [43] library in such a way that the detection of the player is
guaranteed in most cases. Figure 5 presents some examples of spatial localization.
However, when the player has not entered the camera’s field of view and there
is another person in the frame, our method occasionally selects that person as
a player. Also, just after the tackle when the player trends downward with the
dummy, the player is often occluded by the dummy. This may cause the spatial
localization model to fail. However, such failures may not affect the detection
task significantly, because these scenarios arise either before the tackle event has
started or after hitting the dummy.

7 Conclusions

In this paper, we propose a 3-stage pipeline to detect risky tackles from Amer-
ican football practice videos. The experimental results show that our proposed
method performs significantly better than the existing 3D ConvNet-based meth-
ods for video classification. There are limitations due to the size of our presented
data set, however, the inherent skewness poses a substantial challenge for im-
proving the model performance even beyond the random guess. In the future,
we would like to use multi-modal approaches to take the benefit of optical flow
features and pose estimation. The use of this automatic risky tackle identifi-
cation framework can provide faster feedback to the player, and such feedback
and supervision during the tackle practice can significantly minimize the risks
of head impact and head injuries among young American football players.
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