Policy Optimization with Augmented Value Targets
for Generalization in Reinforcement Learning

Nasik Muhammad Nafi
Department of Computer Science
Kansas State University
Manhattan, KS, USA
nnafi @ksu.edu

Abstract—Our work aims to improve the generalization per-
formance of a reinforcement learning (RL) agent in unseen
environment variations. The value function used in RL agents is
frequently overfitted, leading to poor generalization performance.
In this work, we argue that the task completion time is highly
impacted by the varying environmental conditions, thus resulting
in variation in episode lengths, and consequently, the value
estimation. Therefore, learning from a limited variation of the
environments, the agent gets biased to the value estimates that
correspond to the observed episode lengths. To this end, we
introduce Augmented Value Targets (AVaTar), which generates
multiple value function targets considering the possibility of
episode length variation and optimizes the value function with
the average of these targets. We demonstrate that optimizing the
average of the augmented targets is computationally more feasible
than independently leveraging those pseudo-targets. Evaluations
on the Procgen and Crafter benchmark show that our proposed
approach is effective in generalizing the value estimates over
unseen contexts and significantly outperforms the standard policy
gradient algorithm Proximal Policy Optimization (PPO). Further-
more, comparison and integration with the recent generalization-
specific approach UCB-DrAC indicate that AVaTar outperforms
UCB-DrAC in most of the environments from Procgen.

Index Terms—reinforcement learning, generalization, value
estimation, overfitting, target augmentation, policy optimization

I. INTRODUCTION

Generalization to unseen variations of an environment is
an indispensable aspect of current reinforcement learning
research. Similar to any deep neural network-based function
approximator, deep RL agents are prone to overfitting. They
tend to memorize the training data distribution, particularly the
training episodes. Previously, the diversity between training
and testing scenarios was not well formulated due to the
limitation of the simulated environment design, hence the issue
of overfitting was somewhat overlooked. Recent benchmarks
that are designed based on the Contextual Markov Decision
Process (CMDP) framework are capable of generating dif-
ferent episodes corresponding to different variations of the
environment while keeping the task objective the same [31].
Leveraging these CMDP-based environments (often referred to
as multi-environment), several research has shown that even in
the case of minor changes or perturbations to the environment
RL agents fail to generalize [5], [23].

The poor generalization performance of an RL agent stems
from the overfitting of the value function. To minimize the

Giovanni Poggi-Corradini
Department of Computer Science
Kansas State University
Manhattan, KS, USA
giovannipc @ksu.edu

William Hsu
Department of Computer Science
Kansas State University
Manhattan, KS, USA
bhsu@ksu.edu

prediction error, the value function often establishes some
spurious correlation with the observed state by prioritizing
features that are specific to some episode or trajectory. Thus,
regularization has been shown as an effective technique not
only for singleton environments but also for CMDP-based
multi-environment settings [3], [12]. However, regularization
suffers from premature convergence leading to suboptimal
solutions. [18] shows that learning a good estimate of the
value function for multi-environment is harder than for sin-
gleton environments. Due to the variation, the agent generally
observes fewer samples from a particular environment. Thus,
the agent relies more on memorization to better estimate the
value function and collapses in unseen states.

In this work, we take a closer look at the value function esti-
mation in CMDPs, where the episodes vary based on contexts
and the agent needs to learn a value function (consequently a
policy) that is optimal over all contexts including the unseen
ones beyond the training contexts. We first show that the
task completion times or episode lengths vary remarkably
when multiple contexts are considered compared to a single
one. Figure 1 shows the distribution of episode lengths for
four Procgen environments for a trained PPO agent. The
distribution is estimated based on 1000 episodes completed
by the agent which are sampled from the training contexts or
levels 1 to 200. We contrast that distribution with the ones
obtained using a single level such as the level with seeds 1,
100, and 1000. Because of the variability of the episode length,
the value estimates of a semantically similar state will differ
in different episodes. This variability significantly impacts the
accurate value estimation for those similar states.

To address the issue of value estimation in unseen episodes
or contexts of the environment, we propose a new approach,
Augmented Value Targets (AVaTar), which augments multiple
value function targets based on the observed reward. Our
novel contribution is that these targets generated using distinct
discount factors ~; account for episode length variation and the
value function is optimized based on the average augmented
value targets. We demonstrate that this average is bounded
above by the value loss as if those value targets were used as
an independent sample during batch optimization. Thus, using
the average of the augmented value targets acts as an efficient
approximation. We evaluate our proposed target augmentation

Bigfish Dodgeball
- L 1-200

L100 0.0010
- L1000

0.0008

0.0006

y
Probability Density

0.0004

0.0002

0.0000

200 400 600 800 1000 1200
Episode Length

-250 0 250 500 750 1000 1250 1500 1750

Episode Length

-200 0

Climber

Starpilot

0.0030 L1200 L1200

0.0025 L1g0 0.0007
L1000

ity

20,0006

0.0020

lity Densi

£ 0.0015

Probability Densi

Probabi

0.0010

0.0005

0.0000 0.0000
-200 o 200 400 600 800 1000 1200 o 200 400 600
Episode Length Episode Length

Fig. 1: Distribution of task completion time or episode lengths of four Procgen environments for a fully trained PPO agent
estimated based on 1000 episodes randomly sampled from the 1 to 200 training levels vs. only level 1, level 100, and level
1000. The difference in the distribution over multiple levels vs. a single level is clearly visible.

scheme on all sixteen environments in the Procgen benchmark
and the challenging Crafter benchmark. Experimental results
show that AVaTar significantly outperforms the standard policy
gradient approach Proximal Policy Optimization (PPO) [27].
Moreover, we show that our proposed approach achieves better
performance compared to the recent generalization-specific
method UCB-DrAC [24] on Procgen, and when integrated with
the same method it further improves the performance.

II. PRELIMINARIES

A. Contextual Markov Decision Process

Contextual Markov Decision Process (CMDP) extends the
general MDP formulation by introducing the dependence on
the context. CMDP allows a set of contexts and every context
induces a slight variation in the base MDP thus resulting
in a number of MDPs that shares similar characteristic but
vary in terms of initial state distribution and the transition
function. Here, we assume a CMDP is defined by M =
(S8, A,C,T,r,uc,us) where S is the state space, A is the
action space, C is the context space, T (s'|s, a) is the transition
function, r is the reward function, pc is the context distribu-
tion, and pg is the context-dependent initial state distribution.
Each episode corresponds to a context sampled according to
¢ ~ pe. An initial state is sampled according to sg ~ p(-|c)
and the subsequent states within that episode are sampled
based on s;41 ~ T (st as,c). Consider dS as the state
distribution that is generated through the execution of the
acting policy 7 in context c. During training, the agent has
access to a limited number of contexts. The objective is to
learn a generalizable policy 7 such that the expected return
over all possible contexts G = E.w,c smde anr(s)[7(5,a)] is
maximized.

In this work, we experiment with the Procgen benchmark
that offers sixteen procedurally generated environments. Each
environment refers to a CMDP and each level or episode that
is being generated using a random seed refers to a context.
Thus, we can consider each level of the game as a sampled
context c. We train the agent on 200 contexts or levels and test
on the full distribution of contexts where full distribution refers
to a nearly infinite set of procedurally generated levels. Thus,
the size of the training set is smaller than the test set enabling

the evaluation of the model’s generalization capability beyond
those 200 training contexts. The aim is to perform better in
unseen contexts beyond the training ones, where the contexts
define the variation in backgrounds, entities, and dynamics.

B. Proximal Policy Optimization

Proximal Policy Optimization (PPO) is the current standard
baseline for policy gradient approaches [27]. PPO uses a
shared network for policy and value function approximation.
If the network is parameterized by 6, then PPO optimizes the
following objective function :

Tppo(0) = Ju(0) — auLy (6) + s Sy (6) (1)

where J(6) is the policy gradient objective, Ly (6) is the
value loss, Sy (6, ¢) is the entropy bonus for exploration, and
a, and o are the corresponding coefficients. PPO utilizes the
Trust Region Policy Optimization (TRPO) [26] method, which
is designed to maximize the following surrogate objective

function: J, (§) = K, {Tt(é)flt} where 74(0) = %

the probability ratio between the new policy and the’old policy,
and A, is the advantage estimate at timestep ¢. PPO shows
the benefit of restricting excessively large policy updates.
PPO proposes to clip the value of 7;(f) to the intervals of
[1 —€,1+ €] and selects the minimum between the clipped
value and the original value of r;(6). The clipped surrogate
objective function that is optimized by the PPO is as follows:

J.(0) = &, [min(m(Q)Ah clip(re(6),1 — e, 1+ e)At)})
III. METHODOLOGY

In this section, we describe Augmented Value Targets
(AVaTar), our approach to achieving better generalization in
contextual CMDP. It is designed to address the limitations of
accurate value estimation. Particularly, the motivation comes
from the necessity of a value estimator that can accurately
estimate the value of a similar state encountered in a test
(unseen) context or episode. As the value estimate may vary
between the episodes or contexts, we need a flexible estimator
that does not overfit just to the observed value target during
training. Thus we would like to have a value estimator that will
respect the variability in the value estimate and learn value
representation such that it can make a balance between the
context-specific and context-agnostic features.

A. Intuition

The key idea behind our approach is to generate some
pseudo-value target that will mimic the value of a state in an
unseen context. We observe that CMDP-based environments
allow the generation of diverse episodes or levels (contexts).
The diversity comes in the form of background color, level
formation (e.g. varying number of obstacles), enemy distri-
bution, etc. These contextual variations inherently induce a
variation in the possible episode length (See Figure 1). For
say, an agent may need to cross five waterbodies at an unseen
level as opposed to two or three frequently encountered in the
training scenarios. Crossing five instead of two or three will
incur lengthy episodes even if the agent follows an optimal
policy. For some environments, the variation in the episode
length can be due to the variation in spawned enemies in
the environment. Depending on the number of enemies that
the agent needs to tackle, it may require different amounts of
timestep to finish the episodes.

Starting from the same state, if the lengths of episodes vary
significantly then it will contribute to changing values for ear-
lier states in a trajectory [23]. As such, the same final reward
may be heavily discounted, leading to a much smaller value
estimate, if the episode is too long. On the other hand, a shorter
episode would impart a higher value estimate to the same
reward. Thus, an agent fails to accurately predict the value of
future rewards in unseen episodes or contexts, particularly in
regard to widely varying episode lengths. Therefore, variation
in episode lengths implies variation in the value target.

To avoid the possibility of overfitting to a value estimate that
corresponds to a particular length of the episodes, we propose
to generate some value targets that would have resulted from
the variation in episode length. However, there is no way to
anticipate a possible unseen episode length. In this work, we
identify the connection between episode length and discount
factor. In the next section, we discuss how discount factors
can be leveraged to augment value targets corresponding to
different episode lengths.

B. Augmented Value Targets (AVaTar)

Consider a particular state s appears n times (in a semanti-
cally similar way but may be in different visual appearances
due to the context) in the full set of context or trajectory
(level) Dy, and takes n different values corresponding to each
episode length. According to the problem setup, the set of the
training context Dg will be a smaller subset of the full set
of contexts. Thus, |Dg| < |Dy|. So, it may happen that only
a few contexts say m where s is present will appear in the
training context and m < n. Because of this, in an actor-
critic architecture, the critic network will be optimized using
the discrepancy in the prediction of the return observed only
in m observation and will try to generalize to the rest of the
unseen m — n scenarios.

It is obvious that if we would have all n observations of
state s in the training set, then the model would learn based
on more contexts and achieve better performance across all
contexts. However, that is not possible in the limited training

context setting. But if we can somehow augment the training
set |Dg| with additional such targets, then the model will not
overfit to the m observation but rather learn to predict the
value across all contexts.

We identify that by changing the discount factor v we can
effectively create many pseudo-targets for imaginary episodes
with varying lengths based on the current episode or context.

Proposition 1. For any two episodes with length L1 and Ly =
a x Ly, where a is a real number s.t. a > 0 and a # 1, there
exist two distinct discount factors 7y and 7y respectively such
that they yield the same value of discounting for the initial
state.

Proof. A = 4" = 2 =7/
Since a # 1, 1 and -y, are distinct.

For example, if we have an episode with a length of 100 and
the discount factor in a fixed discount setting is 0.9, then the
value estimate of the initial state will be 0.91%° = 0.000026
given that there is a reward +1 at the end. Similarly, if the
episode length is 50, then the value estimation will be 0.9°0 =
0.005154. Thus, based on our proposition there exists another
gamma such that the discounted value estimate for length 50
will correspond to an estimate with length 100,

0.9° = 0.005154 = 0.9487109, (3)

This shows that we can mimic a value estimate for a state
within an episode with a length 50 just from the episode with
a length 100. Without loss of generality, this can be extended to
rewards other than 1. In such cases, this will denote the value
of effective discounting corresponding to that reward. Further,
this can be extended to any intermediate state other than the
initial state by considering the variation in the rest of the
episodes starting from the current state. The final concern is
the unknown reward distribution in imaginary episodes. Thus,
we restrict our episodes to reward-preserving episodes. This
means we consider the amount of reward and the sequence
they appear will be the same as we observed. This helps
to avoid any overestimation or underestimation of the value
function and at the same time only focuses on the variance
that evolved from the variation in episode length.

Now, based on the explanation just presented, we propose
to perturb the fixed discount factor by sampling a set of
discount factors from a distribution to generate value estimates
corresponding to some imaginary episode length. In our im-
plementation, we sample 7., distinct discount factors from a
truncated Gaussian distribution with a mean equal to 0.99, the
most commonly used discount factor, and a small standard
deviation of 0.009. The rationale behind using a small standard
deviation is the fact that we do not have any prior knowledge
about how much the episode length can vary. Thus, introducing
small variations is a suitable design choice.

In the next phase, the most important aspect is how to
leverage those generated value estimates. In the case of
data augmentation or domain randomization approaches, it is
customary to add the augmented or generated samples in the
experience replay buffer so that they can be sampled together

Algorithm 1 AVaTar: Augmented Value Targets

1: Hyperparameters: Total number of updates N, replay buffer size T, number of epochs per update E, number of discount
factors n.,, initial network parameters ¢, Gaussian mean y, std o, truncation range (r1,74)

2: forn=1,...,N do

3: Collect D = {(s¢, as, 74, S141)}1; using 7(6)

4: Sample 7, number of discount factors from a truncated Gaussian Normal with given parameters

5: Compute augmented value targets Vf * for all sampled discount factors +; where ¢ = 1,...,n., and for each state s,
6: Calculate the average of the value targets VY using all V" and the advantage estimation A%"Y

7: for:=1,...,F do ,

s Ly(6) =B | (Valsi a) =) }

9: Javarar(0) = Jr(0) + ay Ly () — ax S:(0)

10: 0 < arg maxy JavaTar

11: end for

12: end for

l Loss Calculation

for Policy & Value |

————————————————— ;
' ' s
||
| =T

i i

' ' ~
D) |

! | Max3x3,stride2 | T — et |

: : N -
' B i

|

.

Fig. 2: Details of the architecture used and the overall ap-
proach. Each block shown on the left side is almost identical
to the IMPALA CNN architecture [7]. Our calculation takes
place based on the value prediction.

with the original data collected directly through interaction
with the environment. Following the same approach, here the
newly created values can be added to the experience pool.
However, as the state representation here is the same, rather
we are just creating some pseudo-value target against the same
state, it would be unnecessarily complex to manipulate the
experience replay. Thus, in the next section, we provide an
efficient alternative based on the principle of the mini-batch
optimization process.

C. Efficient Computation using Average Augmented Target

Suppose we have computed n., different value targets (cu-
mulative discounted returns) for n. distinct discount factors,
V15725 -+ Vn,- If we would execute an optimization using
gradient descent considering all these augmented value targets
as an independent sample of a batch, then the value loss will

be calculated as the average of the squared loss as follows:
1 &
LY = — > (Vi = Vi)? €
"0
Here, Vs is common for all the samples because we are
updating against a fixed sample but with different value targets.
From 4, using basic algebra it follows that,

1\ 2o (Vi = V)2
LS wiovyrs (2nliZBhE)
ny = Ty
Further, we can rewrite the equation 5 as
1 & 20 Vi 2
Ly wivgrs (Zl_y) ©)
n'Y i=0 n’y

The right-hand side of the equation. 6 shows that if we take

the average of the generated value targets V,*"9 = %
and calculate the value loss with respect to that ave;age
then the loss will be upper bounded by the average value
loss considering the targets individually. From a practical
perspective, the right-hand side is easier to implement as we
just need to calculate the average of the targets based on the
reward observed with different ys. As any other component of
an existing policy optimization approach does not need to be
altered, integration of this approximation will be straightfor-
ward. Being a lower approximation of the equation 4, it also
reduces the risk of overestimation that may occur due to the
augmented value targets. Our approach can be considered as
a bootstrapped value target using randomly sampled discount
factors. Algorithm 1 shows the details of the final algorithm.
The overall process is almost identical to the generic PPO,
however, we compute the extra value targets by sampling
different discount factors and then the average of those each
time before entering the update loop (marked in blue).

D. Network Architecture

We implement our model using large IMPALA-CNN ar-
chitecture as our backbone motivated by the recent works on
Procgen [4], [6], [23]. This relatively large model maintains a

Bigfish Caveflyer

]
N

— PPO
—— AvaTar (Ours)

— PPO
—— AvaTar (Ours)

,_.
S
o

w

Average Return
o o

Average Return
a8 o

~N
~

0.0 0.5 1.0 15 20 25 0.0 0.5 1.0 15 20 25
Step 17 Step 1e7
Dodgeball Leaper
401 — PPO 7{ — PPO
—— AvaTar (Ours) —— AvaTar (Ours)
35 6
£30 €
z z5
g 25 g
%20 g4
e o
Y15 3
z BV |
10 2
0.5
1
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 20 25
Step 1e7 Step 1e7

Chaser Climber
6 — PPO 8{ — PPO
—— AvaTar (Ours) —— AVaTar (Ours)
7
5
£ £
3 56
2, 2
& g,
& &
g3 g4
$ g
<2 <3
N 2
} 1
0.0 0.5 1.0 15 20 25 0.0 0.5 1.0 15 2.0 25
Step 167 Step 167
Miner Starpilot
— PPO 35] — PPO
gl — AvaTar (Ours) —— AVaTar (Ours)
30
£ £
-4 -4
g g 20
s €15
$ $
< < 10
2
5
0 0
0.0 0.5 1.0 15 20 25 0.0 0.5 1.0 15 20 25
Step 167 Step 1e7

Fig. 3: Test performance our proposed Augmented Value Targets (AVaTar) and the standard PPO on Procgen environments.

Chaser

—— AVaTaR+UCB-DrAC (Ours)
UCB-DrAC

Bigfish
—— AVaTaR+UCB-DrAC (Ours)
UCB-DrAC

,_.
5
®

®
o

Test Score
o
Test Score
N

IS

N
~

Step 167 Step 1e7

Miner Starpilot

—— AVaTaR+UCB-DrAC (Ours)
UCB-DrAC

-
5

40

@

30

o
N

0

Test Score
Test Score

IS

~

AVaTaR+UCB-DrAC (Ours)
UCB-DrAC

0.0 05 1.0 15 2.0 2.5 0.0 0.5 1.0 15 2.0 2.5
Step 1e7 Step 1e7

Fig. 4: Comparison of the generalization-specific SOTA approach UCB-DrAC [24] and proposed corresponding Augmented
Value Targets (AVaTar) version AVaTar + UCB-DrAC over four Procgen environments.

IQM
AVaTar + UCB-DrAC |
AVaTar + PPO il
UCB-DrAC |
PPO Immm
0.30 0.36 0.42 0.48

Min-Max Normalized Score

Fig. 5: Comparison of Interquartile Mean (IQM) of the Min-
Max normalized score across all 16 Procgen environments.
Both AVaTar versions outperform PPO [27] and UCB-DrAC
[24]. The colored region shows the 95% confidence interval.

good balance between the reward achieved by learned policies
in the highly diverse environment and required computational
power [4]. This deeper IMPALA CNN architecture incorpo-
rates 15 convolutional layers divided into three blocks [7]
containing multiple convolutional layers. Each block includes
a Conv - Pooling - Residual Block - Residual Block configu-
ration, as detailed in the bottom-middle part of Figure 2. Each
residual block has two Conv layers with a ReLU activation

layer. Finally, the policy head and the value head consist of
fully connected layers. Our code is publicly available.! We
conduct a hyperparameter search over the number of epochs
per rollout £ € [1,3,6] and found E = 1 works best on
Procgen and E = 5 on Crafter. The other hyperparameters
are listed in Table I. For the baselines, we use the optimal
hyperparameters from the corresponding literature.

IV. RESULTS AND DISCUSSIONS

We evaluate our approach using the two benchmarks Proc-
gen [4] and Crafter [10]. They offer an expansive variety of
procedurally generated levels, making it an ideal choice to
explore an agent’s generalization capabilities. Following the
guideline from [4], for Procgen, we trained the model for 25
million time steps using the easy difficulty setting. The agent
is trained on 200 levels and tested on the full distribution of
levels. Every environment in the Procgen benchmark generates
observations of size 64 x 64 x 3 and the action space is
comprised of 15 discrete actions. As an evaluation metric, we
report the average return achieved by the agent in the test
distribution of levels or episodes. For Crafter, following their

Thttps://github.com/nasiknafi/AVaTar

2 5 1
&
s 61
o
W
5 41 +
T
" om M N
0° S
& O @ & O &
o
& RO
& S S «® ©
O N
Q\‘b

Crafter Reward

10
8-
— AVaTar (Ours)
6 Rainbow
a4 iz —— PPO
—— Rand
5 ‘ ndom
0 T T T T
00 02 04 06 08 10

le6

Fig. 6: (Left) Crafter score of our AVaTar compared to standard PPO [27] and popular Rainbow [11] along with other approaches;
(right) Comparison of the reward achieved by each agent during 1M timestep. Proposed AVaTar outperforms other approaches
considering both metrics. We use 10 different seeds for our experiments.

Bigfish Caveflyer

141 — PPO-200
—— PPO-500 T

PPO-1000
—— PPO-2000
—— AvaTar-200

s

—— PPO-200
—— PPO-500
PPO-1000
—— PP0O-2000
—— AvaTar-200

Average Return
S

Average Return

o N & o

Dodgeball

404 — PPO-200 74 — PPO-200
—— PPO-500 —— PPO-500
6 PPO-1000
—— PPO-2000
—— AVaTar-200

Leaper

w
G«

PPO-1000
—— PPO-2000
—— AvaTar-200

o

NN W
s &

Average Return
w s

Average Return

°

20 25 0.0 05

10 15 10 15
Step s Step bl

Chaser Climber

—— PPO-200
—— PPO-500
PPO-1000
—— PPO-2000
—— AvaTar-200

6/ — PPO-200
—— PPO-500
5 PPO-1000
—— PPO-2000
41 — AvaTar-200

Average Return
Average Return
e N W oa 0 oo N w

~

Miner Starpilot

—— PPO-200
101 — PPO-500
PPO-1000
81 — PPO-2000
—— AvaTar-200

—— PPO-200
—— PPO-500
30 PPO-1000
—— PPO-2000
—— AvaTar-200

8

Average Return

Average Return

o
o

20 25 0.0 05

10 15 10 15 . .
Step 167 Step 1e7

Fig. 7: Test performance of standard PPO with the increasing number of training contexts (levels) and our proposed Augmented
Value Targets (AVaTar) with only 200 contexts over eight Procgen environments. It is evident that while training on 200 levels
AVaTar can achieve performance gain that is even better than the PPO with 2000 training levels.

evaluation protocol [10], we trained the agent for 1M timesteps
and report the Crafter score and the achieved reward.

A. Generalization Performance on Test Distribution

We first compare our proposed AVaTar with the standard
and widely used policy optimization baseline PPO [27] for
all the 16 environments in Procgen. Figure 3 presents the
results on the test distribution of the levels for 8 out of the 16
environments from Procgen. The presented rolling average and
standard deviations are calculated over five trials. It is evident
from Figure 3 that the proposed AVaTar significantly outper-
forms PPO on the unseen test levels. We also compare and
combine AVaTar with one of the state-of-the-art approaches
Data-regularized Actor-Critic (UCB-DrAC) [24]. UCB-DrAC
dynamically determines the best form of data augmentation

that will benefit achieving generalization given an environ-
ment. We select UCB-DrAC as this approach uses regulariza-
tion for both policy (actor) and value (critic) functions through
data augmentation. Further, UCB-DrAC outperforms general
regularization techniques such as L2-regularization [5]. Figure
4 shows results for four of the Procgen environments and the
results indicate that incorporating proposed augmented value
targets with UCB-DrAC (AVaTar + UCB-DrAC) outperforms
the base UCB-DrAC. This shows that AVaTar can be integrated
with any existing RL algorithms. In addition, AvaTar does not
introduce any additional computing overhead.

We further show a comparison based on the Interquartile
Mean (IQM) of Min-Max normalized scores (average returns)
for all the approaches in Figure 5 as proposed by [1]. This
score has been calculated considering all the 16 Procgen

Bigfish
12 AVaTar 20 Gammas
—— AvaTar 10 Gammas
—— AvaTar 5 Gammas
—— Standard Single Gamma

Climber

Average Return
o
Average Return
F N W oA U oo N o®

AvaTar 20 Gammas
—— AvVaTar 10 Gammas
—— AVaTar 5 Gammas

—— standard Single Gamma

1.0 15 2.0 2.5 0.0 0.5 1.0 15 2.0 25
Step 167 Step 1e7

Leaper Starpilot

£
2
&a g
@ o 20
2 — 2
5 S1s
; AvaTar 20 Gammas ; 10 AvaTar 20 Gammas
—— AVaTar 10 Gammas —— AVaTar 10 Gammas
0 —— AvaTar 5 Gammas 5 —— AVaTar 5 Gammas
—— Standard Single Gamma o —— standard Single Gamma
0.0 0.5 1:0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Step e Step 17

Fig. 8: Test performance of our proposed Augmented Value Targets (AVaTar) with the varying number of gammas n, =
{5,10,20}. We observe that the performance differences with varying gamma are marginal compared to the performance gain

with respect to the fixed gamma (the standard PPO).

Bigfish
—— AvaTar (Ours)
—— Discount Regularization

Climber

Average Return
o
Average Return
F N W s oo N o®

—— AvaTar (Ours)
—— Discount Regularization

0.0 05 1.0 15 2.0 25 0.0 05 10 15 2.0 25
Step 1e7 Step il

Leaper Starpilot

71 —— AvaTar (Ours)
—— Discount Regularization

v o

Average Return
S

Average Return

N

—— AvaTar (Ours)
—— Discount Regularization

-

0.0 05 1.0 15 2.0 25 0.0 05 1.0 15 2.0 2.
Step 17 Step 27

Fig. 9: Comparison of proposed Augmented Value Targets (AVaTar) with discount regularization. Discount regularization uses

a fixed but slightly lower discount factor as a regularizer [2].

TABLE I: List of hyperparameters used for AVaTar trials

Hyperparameter Values

timesteps per rollout 256
epochs per rollout 1 (Procgen), 5 (Crafter)
minibatches per epoch 16

entropy bonus 0.01

clip range 0.2

A for GAE 0.95
optimizer ADAM
learning rate Se-4

total timesteps 25M
Gaussian Mean for v 0.99
Gaussian Std Dev for v 0.009
Truncation Range 0.5 - 0.9999

environments, thus showing the aggregate performance across
the whole Procgen benchmark. The results indicate that both
AVaTar versions achieve higher IQM than UCB-DrAC and
PPO. [1] shows that IQM is more reflective of overall perfor-
mance than the median, as it takes into account 50% of the
combined runs rather than just considering the performance
order. Also, IQM is known to be more robust to outliers than
the mean.

Figure 6 shows that AvaTar outperforms both PPO [27]
and Rainbow [11] algorithms in terms of crafter scores and
achieved rewards. Crafter defines 22 achievements for the
agent covering a wide range of difficulties. The crafter score
represents the agent’s ability to accomplish multiple achieve-
ments in the environment instead of repetitively unlocking the
same achievements.

B. Assessing the Generalization Performance

To better assess the generalization performance, we compare
AVaTar with different PPO models that leverage an increased
number of training levels. A model generally performs better
in terms of generalization if it encounters a large number of
contexts during training. Thus, we train different PPO models
with 200, 500, 1000, and 2000 contexts or levels from the
training set. As expected the performance increased in almost
all cases with the increase in training contexts. On the other
hand, we train the proposed AVaTar on only 200 contexts
from the environment. Figure 7 shows that AVaTar (green
line) while learning from only 200 contexts, can still achieve
generalization better than a PPO agent that is trained on 2000
contexts.

C. Additional Analysis

Figure 8 presents the results of varying numbers of discount
factors. We experiment with three different values for the
number of s (n, = {5,10,20}). The experimental results
show that the performance does not differ that much due to
the number of discount factors. However, the performance
gain compared to the standard fixed discount factor is clearly
evident.

Figure 9 shows the results of comparison with a discount
regularization-based approach [2]. Proposed AVaTar outper-
forms such fixed lower discount factor (0.995 instead of
standard 0.999) based regularization [2].

V. RELATED WORKS

Recent work has suggested that lack of generalization is
an endemic issue in deep reinforcement learning, with state-
of-the-art algorithms tending to overfit to the environment,
thus leading to models that simply memorize surface-level
aspects of the environment [5], [8], [21]. However, the ideal
and intelligent RL agents should strive to avoid overfitting and
be able to generalize effectively to previously unseen data [9],
[16], [17], [25].

Regularization techniques such as dropout [13], batch nor-
malization [5], [12], [13], data augmentation [5], [24], [29]-
[31], feature-swapping regularization [3], and policy distilla-
tion [14], [17] are the most intuitive approaches to improve
generalization. By utilizing bisimulation metrics to investigate
similarities between states, researchers have been able to learn
task-relevant representations [15]. Additionally, the generalist-
specialist training framework [15] and the use of language
models with history compression [22] have been proposed to
enable the memory to store abstractions of the observations
and to facilitate generalization.

The Delayed-Critic Policy Gradient (DCPG) method was
proposed to tackle the problem of the value network being
more vulnerable to overfitting. This approach involves training
the value function less often, but with a larger set of training
data [18]. As discussed in [23], sharing features between
the policy and value functions can lead to overfitting, thus
impairing the model’s capacity to generalize. To address this
issue, [23] make use of fully disconnected policy and value
functions, resulting in improved generalization and sample
efficiency. Recent works further show that partial separation
of the policy and value network can achieve competitive
generalization performance while incurring less computational
overhead on the majority of Procgen tasks [20], [28]. [2] shows
that a lower discount factor can act as a regularizer while [19]
shows that hyperbolically discounted advantage can help to
improve generalization. In this work, we leverage discounting,
however, to generate pseudo value targets.

VI. CONCLUSION

In conclusion, our proposed approach AVaTar effectively
generalizes the value estimation of the RL agent over unseen
contexts. By utilizing augmented value function targets to
incorporate the possibility of episode length variations, the
AVaTar outperformed the existing policy gradient-based algo-
rithm and the state-of-the-art generalization-specific algorithm.
AVaTar also has the advantage of being relatively simple
and efficient, requiring no additional computing resources
compared to the standard PPO. This makes AVaTar an excel-
lent choice for real-world applications where generalization
performance is critical.

REFERENCES

[1] R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G.
Bellemare, “Deep reinforcement learning at the edge of the statistical
precipice,” Advances in Neural Information Processing Systems, 2021.

[2]

[3]

[4]

[5

=

[6]

[7

—

[8

[t}

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

R. Amit, R. Meir, and K. Ciosek, “Discount factor as a regularizer
in reinforcement learning,” in International conference on machine
learning. PMLR, 2020, pp. 269-278.

D. Bertoin and E. Rachelson, “Local feature swapping for generalization
in reinforcement learning,” in International Conference on Learning
Representations, 2022.

K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging procedu-
ral generation to benchmark reinforcement learning,” in International
conference on machine learning. PMLR, 2020, pp. 2048-2056.

K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying
generalization in reinforcement learning,” in International Conference
on Machine Learning. PMLR, 2019, pp. 1282-1289.

K. W. Cobbe, J. Hilton, O. Klimov, and J. Schulman, “Phasic policy
gradient,” in International Conference on Machine Learning. PMLR,
2021, pp. 2020-2027.

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning et al., “Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner architectures,”
in International Conference on Machine Learning. PMLR, 2018, pp.
1407-1416.

J. Farebrother, M. C. Machado, and M. Bowling, “Generalization and
regularization in dqn,” arXiv preprint arXiv:1810.00123, 2018.

J. Grigsby and Y. Qi, “Measuring visual generalization in continuous
control from pixels,” CoRR, vol. abs/2010.06740, 2020. [Online].
Available: https://arxiv.org/abs/2010.06740

D. Hafner, “Benchmarking the spectrum of agent capabilities,” arXiv
preprint arXiv:2109.06780, 2021.

M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining
improvements in deep reinforcement learning,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

T. Hu, W. Wang, C. Lin, and G. Cheng, “Regularization matters: A
nonparametric perspective on overparametrized neural network,” in In-
ternational Conference on Artificial Intelligence and Statistics. PMLR,
2021, pp. 829-837.

M. Igl, K. Ciosek, Y. Li, S. Tschiatschek, C. Zhang, S. Devlin, and
K. Hofmann, “Generalization in reinforcement learning with selective
noise injection and information bottleneck,” Advances in neural infor-
mation processing systems, vol. 32, 2019.

M. Igl, G. Farquhar, J. Luketina, W. Boehmer, and S. Whiteson,
“The impact of non-stationarity on generalisation in deep reinforcement
learning,” arXiv preprint arXiv:2006.05826, 2020.

Z. Jia, X. Li, Z. Ling, S. Liu, Y. Wu, and H. Su, “Improving policy
optimization with generalist-specialist learning,” in International Con-
ference on Machine Learning. PMLR, 2022, pp. 10104-10119.

N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius, and
S. Risi, “Illuminating generalization in deep reinforcement learning
through procedural level generation,” arXiv preprint arXiv:1806.10729,
2018.

C. Lyle, M. Rowland, W. Dabney, M. Kwiatkowska, and Y. Gal,
“Learning dynamics and generalization in deep reinforcement learning,”
in International Conference on Machine Learning. PMLR, 2022, pp.
14560-14 581.

S. Moon, J. Lee, and H. O. Song, “Rethinking value function
learning for generalization in reinforcement learning,” arXiv preprint
arXiv:2210.09960, 2022.

N. M. Nafi, R. F. Ali, and W. Hsu, “Hyperbolically discounted advantage
estimation for generalization in reinforcement learning,” in Decision
Awareness in Reinforcement Learning Workshop at ICML 2022, 2022.
N. M. Nafi, C. Glasscock, and W. Hsu, “Attention-based partial decou-
pling of policy and value for generalization in reinforcement learning,”
in 2022 21st IEEE International Conference on Machine Learning and
Applications (ICMLA), 2022, pp. 15-22.

C. Packer, K. Gao, J. Kos, P. Krihenbiihl, V. Koltun, and D. Song, “As-
sessing generalization in deep reinforcement learning,” arXiv preprint
arXiv:1810.12282, 2018.

F. Paischer, T. Adler, V. Patil, A. Bitto-Nemling, M. Holzleitner,
S. Lehner, H. Eghbal-Zadeh, and S. Hochreiter, “History compression
via language models in reinforcement learning,” in International Con-
ference on Machine Learning. PMLR, 2022, pp. 17 156-17 185.

R. Raileanu and R. Fergus, “Decoupling value and policy for generaliza-
tion in reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2021, pp. 8787-8798.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

R. Raileanu, M. Goldstein, D. Yarats, I. Kostrikov, and R. Fergus,
“Automatic data augmentation for generalization in deep reinforcement
learning,” arXiv preprint arXiv:2006.12862, 2020.

A. Rajeswaran, K. Lowrey, E. Todorov, and S. Kakade, “Towards
generalization and simplicity in continuous control,” arXiv preprint
arXiv:1703.02660, 2017.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889-1897.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

N. M. Nafi, R. F. Ali, and W. Hsu, “Analyzing the sensitivity to policy-
value decoupling in deep reinforcement learning generalization,” in Deep
Reinforcement Learning Workshop NeurIPS 2022, 2022.

K. Wang, B. Kang, J. Shao, and J. Feng, “Improving generalization in
reinforcement learning with mixture regularization,” Advances in Neural
Information Processing Systems, vol. 33, pp. 7968-7978, 2020.

D. Yarats, I. Kostrikov, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,” in
International Conference on Learning Representations, 2020.

H. Zhang and Y. Guo, “Generalization of reinforcement learning
with policy-aware adversarial data augmentation,” arXiv preprint
arXiv:2106.15587, 2021.

