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Abstract—This paper addresses the problem of relevant re-
gion segmentation, as a pretext task for a defined multi-object
scene classification task, with a specialized application to risky
tackle detection from American football practice videos. The
downstream task of classifying each frame from such a video
as depicting a risky tackle or not depends on the interaction
between the tackle-performing player and the target dummy. In
both automated and manual approaches, if these two objects
can not be differentiated from other objects as part of the
analysis, false positive and false negative scene misclassification
errors may result, to the detriment of both precision and recall.
While player detection appears to be a simple human detection
task, specific poses and occlusion due to the dummy make the
instance segmentation task particularly challenging in the case
of American football practice videos. In this paper, we present a
new annotated dataset of tackle practice images and for the first
time demonstrate instance segmentation in American football
practice images leveraging the new dataset. Further, we show
that the Cascade Mask R-CNN based segmentation approach is
more suitable for the problem than another popular segmentation
model, simple Mask R-CNNs, by characterizing the inherent
difficulty of the task and comparing experimental results.

Index Terms—american football, sports safety, risky tackle,
player detection, mask segmentation, cascade r-cnn

I. INTRODUCTION

Among American football players, concussion is one of the
most frequent injuries. According to the Centers for Disease
Control (CDC) data, American football has the highest share
of sports-related concussions (SRC) [1] [2]. Further, other
types of head injuries such as hemorrhage and edema are
highly prevalent in American football. Research also shows
that frequent incidents of head impacts can result in long-term
neuropsychiatric and cognitive disorders, especially when a
young player is involved in American football [3]. Therefore,
coaches and athletic trainers emphasize learning proper tackle
technique as a concussion management protocol from an early
age [1] [4].

To minimize player-to-player head impact, during practice
sessions, a football practice dummy, commonly known as a
blocking dummy, is used to simulate a real player. Coaches
may give real-time feedback on risky and safe tackles to

Fig. 1: Sample images from our newly created dataset. Images
are extracted from collected tackle practice videos.

players. However, more comprehensive feedback is provided
based on the recorded session of players tackling blocking
dummies. Athletic trainers or coaches generally analyze the
videos offline and come up with their judgments and sugges-
tions to the players [5] [6] [7]. The manual categorization of
risky and safe tackles from practice session videos requires a
significant amount of time and effort. Both manual and auto-
mated analysis of the player and the blocking dummy can be
tedious, difficult, and demanding due to the background noise
present in the forms of other players, varying backgrounds,
service carts, etc.

Figure 1 presents some representative frame samples from
a few tackle practice videos. The issue of background noise
is clearly evident from the sample frames. Existing work
that deals with American football practice videos [8] also
suggests removing the unnecessary spatial regions to improve
the detection accuracy of risky tackles from American football.
However, such methods directly leverage a pre-trained object
detection model that already consists of a human class to
detect the player bounding box, and enlarge the bounding box
to include the dummy. Further, [8] uses a simple rule-based
approach to identify the player in case of multiple persons
present in the image. However, our analysis reveals that direct
use of such a pre-trained human detection model along with
rule-based pruning of bounding boxes can easily be fooled in
the case of a more cluttered environment and may select a



Fig. 2: Prior work uses spatial segmentation of the region of interest. The middle figure shows that such segmentation while
removes the unnecessary elements far from the player, but retains unnecessary elements such as other players. This complicates
the problem of scene understanding. Our proposed mask segmentation, on the other hand, keeps only the player and the dummy
masks while removing the background.

wrong person as the tackle-performing player.
We also observe that extended spatial region selection

based on only player detection often discards parts of the
dummy. Also, simple spatial region extraction still retains
the background noise within that spatial region (See Figure
2). We argue that as instance-level segmentation generates
masks of the targeted objects (player and dummy in this
case), this can significantly enhance the removal of unwanted
elements while retaining the original shape of the object.
Instance segmentation in individual frames will facilitate the
pre-processing of the American football practice videos. Such
pre-processed masked videos will, in turn, make the risky
tackle detection task easier both for human judges and modern
neural network-based approaches.

In this work, we introduce the new task of relevant instance
segmentation in American football practice images containing
a blocking dummy. The task is to segment the particular
single instance of the target objects - the actual player and
the dummy. We created a dataset of American football tackle
practice images and manually annotated the masks for the
player and dummy. We analyze the entity-specific aspects of
the tackle practice scenes and the attributes of the existing
state-of-the-art segmentation models to identify the effective
model for the task. We observe that generic models may
suffer from false positives because most of the scenes contain
negative objects very similar to the positive ones (player vs.
other human subject) often with a high degree of overlap.
We therefore propose to leverage Cascade Mask R-CNN [9],
an object detection mechanism consisting of multiple detec-
tors, to refine predictions. Finally, we conduct a comparative
analysis based on average precision at different thresholds
of intersection over union (IoU) and recommend models for
future segmentation tasks in the context of American football
practice.

II. RELATED WORK

Object or instance segmentation is considered a generic
problem of computer vision [10] [11]. Proposal-based ap-
proaches for instance segmentation have been widely used
in the last few years across many domains [12]. Most such
systems first identify a number of object proposals and then

attempt to classify the objects that reside within the proposals
[11] [13] [9]. The efficacy of these approaches often relies on
the number of good proposals predicted by the initial Region
Proposal Network. Recently, transformer-based approaches
have gained much popularity [14] [15] [16]; however, they
require many samples to train to a state-of-the-art (SOTA)-
competitive levels [10].

For sports-related segmentation tasks, domain-specific
knowledge about the particular sport has generally been lever-
aged to improve upon the standard state-of-the-art. [17] uses
a proposal-free approach for simultaneous ball segmentation
and multi-player pose estimation in team sports. Several ap-
proaches have been proposed for improved player detection
[18]. However, different sports require distinct treatment and
refinement to enable superior performance for that sports-
specific task.

III. INSTANCE SEGMENTATION: PLAYER AND DUMMY

In this work, our objective is to precisely extract the mask
segmentation of the player and the dummy, which are crucial
to the task of risky tackle detection. While human detection
and segmentation is a well-studied area, player segmentation in
different sports scenarios remains challenging due to the lack
of enough representative samples for each particular sports
activity and the presence of human subjects other than the
player. Therefore, we first present a new annotated dataset
for American football practice images. We then train the
Cascade Mask R-CNN object segmentation model to generate
segmentation masks for the two classes: player and dummy.

A. A New Dataset: Data Collection and Annotation

Our dataset consists of 700 images extracted from over 100
tackle practice videos. We collected tackle practice videos
from different practice fields in the United States. While
recording these videos, a standard guideline was used to set up
cameras. In all videos, one player performs the tackle and a
dummy is placed in the same direction in which the player
runs. The videos are recorded in different formats: MOV,
MOD, MKV, and MP4. The frame rate for all videos is 30
frames per second (fps). Finally, we randomly extract tackle
frames from the videos to ensure high diversity from a wide



Fig. 3: (Left) Overall pipeline of a generic region proposal-based segmentation model. In the first phase, the ConvNet extracts
a map of features, and then a Region Proposal Network (RPN) outputs potential object regions. Finally, the ROI pooling passes
the features corresponding to the proposals and predicts the object class, bounding box, and mask. (Right) Difference between
Cascade Mask R-CNN and standard Mask R-CNN models. The Cascade Mask R-CNN iteratively refines the prediction with
different detector H and uses the prediction from the previous stage.

variety of real-world backgrounds and multi-object contexts. In
some images, the tackle-performing player may not be present;
instead, another person holding the dummy, or the coach, may
be present. This makes the task harder as the model needs
to distinguish between the tackle-performing player from the
other persons. The extracted images are in the jpg format.

We annotate all images in the dataset by creating the
segmentation masks for the dummy and the tackle-performing
player if either is present in the frame. We use the make-
sense.ai platform to annotate images [19]. This platform
enables the generation of XML or JSON files for image anno-
tations. We obtain the ground truth annotation by combining
markup by two individual annotators.

B. Cascade Mask R-CNN for Object Segmentation

We propose to use Cascade Mask R-CNN [20] for the
mask segmentation because this multi-stage variant of the R-
CNN is more robust against false positives and our task is
highly vulnerable to false positives. To understand the issue in
depth, let’s consider an image frame where there are multiple
additional human subjects along with the tackle-performing
player. Because of the similarity in features shared by all
human subjects (as the player is indeed a human), any model
is likely to predict other human subjects also as the player.
However, any such prediction is a false positive that we need
to avoid. The player is mainly characterized by posture. The
same thing may happen if additional dummies are present in
the frame (see the first image in Fig. 1 where there are a few
dummy-like stuff lying on the ground).

Figure 3 shows the basic architecture of the generic
proposal-based object segmentation pipeline used in Faster R-
CNN or Mask R-CNN. The images are first fed into a deep
Convolutional Neural Network (CNN) backbone for feature
extraction. The CNN backbone can be a pre-trained network
like VGG, ResNet, or any other architecture. Then, based
on those spatial features Region Proposal Network (RPN)
predicts multiple possible object regions with bounding box
coordinates. Finally, Region of Interest (ROI) pooling takes the

cropped feature maps corresponding to the proposed regions to
the next stage where every proposal is classified against each
class from the category list. Along with the class prediction,
the models predict the mask and the bounding boxes. Thus
the loss function is a combination of the three losses:

L = Lcls + Lbox + Lmask (1)

Cascade R-CNN uses a cascade of detectors as shown in
Figure 3 (right) with increasing levels of precision where de-
tectors deeper into the cascade are more selective against close
false positives. One can view the multiple stages of detectors as
multi-layer filtering with increasingly strict conditions. In each
stage, the model defines a specific false positive target rate.
While in the first stage, the model is trained with a reasonable
false positive rate, in the subsequent stages the target false
positive rate is reduced further. Only region proposals that
cross the current stage’s threshold are passed to the next
stage. This helps the model to focus on hard examples in the
downstream stages and discard easy negative proposals early.

Based on the discussion above, we argue that in a cascade
architecture, easy negative proposals like objects other than
the player and the dummy will be discarded in the early
stages. While other human subjects may be considered as
potential objects in the early layer they will be removed in
the subsequent stages especially when the player’s bounding
box overlaps with the other human subject. A similar argument
also holds for the dummy. Thus, a cascade architecture that
employs multiple stages of the detector will reduce the false
positives and improve performance for our task which is
inherently prone to false positives.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup and Implementation Details
We perform an image-level 70%-30% train-test split of the

dataset. Thus, we have 332 player instances and 616 dummy
instances in the train split while there are 156 player instances
and 286 dummy instances in the test split. We created separate
JSON files for train and test annotations.



Fig. 4: Examples of mask segmentation results. The first and third images from the left represent the original images while
the other two images are the output of the mask segmentation of the corresponding images.

TABLE I: Hyperparameters for model training and testing

hyperparameters values
batch size 4
optimizer SGD

learning rate 0.00025
anchor aspect ratio [0.5, 1.0, 2.0]

FPN used yes
anchor sizes [32, 64, 128, 256, 512]

environments per worker 64
total number of epochs 2000

ROI head batch size per image 128
ROI head score threshold 0.5

To show the validity of our hypothesis, we perform instance
segmentation using Cascade Mask R-CNN and compare the
experimental results with the popular state-of-the-art proposal-
based object segmentation model Mask R-CNN. In particular,
to learn American football-specific representation we fine-
tune the models with Resnet-50 backbone [11] [9] [21].
Additionally, to analyze the proposal or object detection per-
formance, along with the segmentation models we use Faster-
RCNN model [13] with Resnet-50 backbone to report only
bounding box prediction as Faster R-CNN does not have mask
prediction.

We implement the Cascade-RCNN [9], Mask-RCNN [11],
and Faster-RCNN [13] models using Detectron2 library [22]
which is a PyTorch-based modular object detection and seg-
mentation library. We initialize the models with the corre-
sponding pre-trained weights obtained via training on the
ImageNet dataset. ImageNet has a wide variety of classes
totaling 1024. However, in our case, there are only two classes
- dummy and player. Thus, we restructure the final layer to
accommodate just two classes and train the models.

We train all the models for 3000 epochs, however, observe
that the models tend to overfit after 2000 epochs. Thus,
we report results for the models trained for 2000 epochs.
Stochastic Gradient Descent (SGD) with momentum is used
as the optimizer with a base learning rate of 0.00025. We do
not opt for any learning rate decay as the chosen learning
rate is already low. Table. I shows a comprehensive list of
hyperparameters used in our experiments.

B. Results and Discussion

Figure 4 presents the segmentation results obtained from
our trained model as opposed to the original frames. This
clearly shows the benefit of mask segmentation as the position

TABLE II: Comparison of the State-of-the-Art object segmen-
tation models on our annotated dataset

Approach mAP AP75 AP50 APl AR
Mask R-CNN 69.501 83.883 93.981 72.414 75.5

Cascade Mask R-CNN 70.835 85.607 93.250 73.584 75.6

TABLE III: Comparison of per category/class average preci-
sion for the segmentation task

Classes Mask R-CNN Cascade Mask R-CNN
Dummy 76.540 77.740
Player 62.463 63.931

and interaction between the player and the dummy is more
pronounced compared to the raw frames.

We report evaluation results of Cascade Mask R-CNN
and Mask R-CNN object segmentation model based on the
COCO evaluation protocol. Table II presents the mean Average
Precision (mAP) at 50% to 95% IoU, AP at 75% IoU (AP75),
AP at 50% IoU (AP50), AP for large objects (APl), and
Average Recall (AR) for the two segmentation method. Our
reported scores are an average of three independent trials.
Cascade R-CNN achieves higher mAP, AP75, APl, and AR,
and Mask R-CNN performs better at lower IoU as evidenced
by the value of AP50. Comparatively low performance at lower
IoU while achieving high mAP denotes that Cascade Mask
R-CNN performs better at higher IoUs. That means Cascade
Mask R-CNN produces high-quality masks that attain higher
overlap with the ground truth. Table III shows that Cascade
Mask R-CNN improves the mAP of each category or class.

Further, we present bounding box detection results for
three different models in Table IV. Cascade Mask R-CNN
outperforms all other models in terms of both classes. This
represents the validity of our proposed notion. As this variant
of Cascade R-CNN uses ResNet-50 as the backbone which is
computationally efficient and achieves better performance, we
suggest Cascade Mask R-CNN for practical use.

TABLE IV: Comparison of per category/class average preci-
sion for the object detection task

Classes Faster R-CNN Mask R-CNN Cascade Mask R-CNN
Dummy 74.222 75.040 77.451
Player 74.062 74.970 79.689



V. CONCLUSION

In this paper, we present an annotated dataset for instance
segmentation of players and dummies in American football
practice video frames. We leverage state-of-the-art object
detection and segmentation models to extract masks of the
instances. We demonstrate Cascade Mask R-CNN performs
better than the other approaches. Limitations of our current
work include comparatively lower performance on the player
class. The use of an automated instance segmentation approach
deployed in real-time video frames can greatly facilitate the
coaches’ ability to decide faster. Further, extracted masks can
also be used in different downstream tasks such as classifying
risky tackles from the videos using deep learning models.
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