
Analyzing the Sensitivity to Policy-Value
Decoupling in Deep Reinforcement Learning

Generalization
Nasik Muhammad Nafi

Department of Computer Science
Kansas State University
Manhattan, KS, USA

nnafi@ksu.edu

Raja Farrukh Ali
Department of Computer Science

Kansas State University
Manhattan, KS, USA

rfali@ksu.edu

William Hsu
Department of Computer Science

Kansas State University
Manhattan, KS, USA

bhsu@ksu.edu

Abstract—The existence of policy-value representation asym-
metry negatively affects the generalization capability of tradi-
tional actor-critic architectures that use a shared representation
of policy and value. To address this representation asymmetry,
fully decoupled/separated networks for policy and value have
been proposed, though they come with increased computational
overhead. Recent research has suggested that partial separation
of networks results in similar generalization performance with
reduced computational costs. Thus, the questions arise: Do we
really need two separate networks? Is there any particular scenario
where only full separation works? Does increasing the degree of
separation in a partially separated network improve generalization?
To answer these questions, we present the first comprehensive
study of the generalization performance of four different extents
of decoupling of the policy and value networks, namely: fully
shared, early separation, late separation, and full separation
on the challenging RL generalization benchmark Procgen, a
suite of 16 procedurally-generated environments, and the Crafter
benchmark. Interestingly, we observe that early separation does
not produce the expected generalization. Our findings suggest
that, unless there is a distinct or explicit predetermined source of
value estimation, partial late separation is an effective strategy
for capturing necessary policy-value representation asymmetry
and obtaining competitive generalization in unseen scenarios.

Index Terms—reinforcement learning, generalization, actor-
critic, policy-value decoupling, representation learning

I. INTRODUCTION

Deep reinforcement learning algorithms often suffer from
poor generalization performance when applying the learned
policy to an unseen scenario. Raileanu and Fergus [27] show
that policy-value representation asymmetry is an underlying
cause for poor generalization performance in shared actor-
critic architectures. Value estimation in a particular state
depends on instance-specific features; however, learning the
policy only depends on task-specific features [27]. Ignoring
this asymmetry while learning a joint representation for both
policy and value through a shared network limits the agent’s
capacity to learn a generalizable policy. Combining the two
representations through a shared network makes the policy
to be unnecessarily biased toward the value features. Thus
the learned policy overfits the training instances and performs
poorly in terms of generalization.

Previously proposed solutions to this asymmetry use two
different networks for policy and value that capture distinct
features [8], [27]. However, the use of two separate networks
creates a significant bottleneck regarding computation time.
Also, the dependency of policy function on the value gradients
requires extra precaution in designing the network. Nafi et
al. [22] propose a workaround that acts as a compromise
through partial separation of the policy and value networks,
and attains competitive performance compared to the fully
separated counterpart while requiring less computational time.
This also eliminates the need for an additional value head in
the policy network as required in full separation.

We observe that while all these approaches offer a solu-
tion to the specific problem they identified, no solution is
perfect across all environments considering both aspects -
generalization performance and required computation time.
Full separation of policy and value introduces very high com-
putational overhead. In our experiments on a single GPU, for
most of the environments, we observed 4 times higher running
time for the fully separated approach, IDAAC [27], compared
to the fully shared baseline PPO [6] or partially separated
approach APDAC [22], as shown in Table I. On the other
hand, partial separation achieves competitive performance in
most environments but fails in some cases.

Thus, the question remains open as to what extent of
decoupling should be used if a new environment is encoun-
tered. Unfortunately, there is no guideline for deciding how
much decoupling is enough for policy and value networks
in order to achieve a reasonable performance while keeping
the computational burden low. In most cases, substantial
compromise in generalization performance is not acceptable to
reduce the computational overhead. This leads to the question
”Does separating the network early (having most of the layers
separated) in partial separation improve generalization while
avoiding the drawbacks of full separation?”. In this work, we
investigate the effect of different degrees of decoupling of the
actor and critic network on the agent’s generalization perfor-
mance and systematically answer such research questions. Our
contributions can be summarized as follows:

20
24

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

79
-8

-3
50

3-
59

31
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IJ
C

N
N

60
89

9.
20

24
.1

06
51

43
5

Authorized licensed use limited to: Kansas State University. Downloaded on October 09,2024 at 00:39:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Different network architectures highlighting the extent of decoupling between policy and value networks.

• We instantiate four architectures with different degrees of
separation: fully shared (no separation), early separation,
late separation, and full separation (see 1); and evaluate
the performance aggregating across all 16 environments
from the Procgen benchmark and the Crafter.

• We independently analyze the results for 16 individual
environments of Procgen. Further, we delve into the
learned representation for policy and value networks in all
these settings to identify whether and how the separation
helps and draw network design insights from this process.

• We demonstrate that while separation helps, separating
too early in a partially separated architecture negatively
impacts the generalization performance, in addition to
incurring higher computation costs.

• We find that full separation is a must when there is a
clear distinction between the source of value and policy
features. Otherwise, partial late separation suffices and
can be the best choice.

II. RELATED WORK

A lot of emphasis in deep reinforcement learning has
lately been placed on an agent’s ability to learn policies that
are robust and generalizable [7], [10], [25]. This led to the
development of intelligent agents that avoid overfitting and
can generalize well to unseen data [11], [17], [29]. Some of
the methods that have been proposed include regularization
techniques like dropout [14], batch normalization [7], [13],
network randomization [18], and data augmentation [7], [28],
[34], [35]. A feature-swapping regularization technique to
avoid observational overfitting is proposed in [5] whereas
[15] use policy distillation to improve generalization. [1],
[37] use bisimulation metrics to study similarity between
states to learn task-relevant representations. [16] introduces
a generalist-specialist training framework that alters between
discovering general skills and achieving specialization. [26]
proposes the use of language models to allow for generaliza-
tion. The role of the discounting mechanism in generalization
has been explored from different facets [3], [20], [21], [23].
One recent work identifies the value network as being much
more prone to overfitting and proposes a Delayed-Critic Policy

Gradient (DCPG) method which trains the value function less
frequently with more training data compared to the policy [19].

Another aspect of research focuses on the network archi-
tecture, such as the work of [27] that uses decoupled policy
and value networks to improve generalization and show that
sharing policy and value functions leads to overfitting. In this
context, [22] proposes the use of partially decoupled actor and
critic networks that reduce the overall computation time while
performing comparably to the fully decoupled architecture. [8]
introduces phase-wise training using two different networks
and optimizes the value function through an auxiliary phase.
Several other works use decoupled architecture, however, the
main objective of such works is to improve sample efficiency
[4] [36]. Recently, [24] show that recurrent neural networks
can be used with a decoupled architecture to perform better in
POMDP settings which includes performance gain in terms of
generalization. However, to the best of our knowledge, there is
no work that attempts to measure the variation in performance
due to different degrees of decoupling.

III. METHODOLOGY

To analyze the sensitivity to the decoupling of policy and
value, we create four different architectures (1) there is no
separation of the policy and value network other than the final
policy and value heads (fully connected layers) at the end, (2)
the network is separated early in the layers (3) the network
is separated in the more downstream layers (4) two sepa-
rate networks. Figure 1 depicts these four architectures. Our
specified degrees of separation are exhaustive: by category,
they are defined as a partition of value/policy networks that
exhibit decoupling; by exact separation point, each mutually
exclusive and exhaustive category is represented, rather than
combinatorially enumerating all k separation points for a deep
model with k layers (e.g., k = 15). We use the large IMPALA-
CNN architecture [9] as the base network, following the
previous state-of-the-art works [8], [27], as well as the original
results of Procgen benchmark [6]. This deeper IMPALA CNN
architecture has three blocks, each having a configuration of
Convolution Layer - Pooling Layer - Residual Block - Residual
Block, where each residual block has two convolution layers,

Authorized licensed use limited to: Kansas State University. Downloaded on October 09,2024 at 00:39:33 UTC from IEEE Xplore. Restrictions apply.

with a total of 15 convolutional layers. In the rest of this
section, we describe the details of these four architectures,
their loss functions, the optimization process, and their imple-
mentation through the IMPALA-CNN base network.

A. Fully Shared

By fully shared, we denote the traditional architecture that
shares the network for the actor (policy) and the critic (value).
Specifically, we share the IMPALA-CNN base network (in-
cluding all convolution layers) between policy and value,
however, we only separate the final fully connected layers
that represent the policy and value heads (see the left one
from Figure 1). This is similar to traditional Proximal Policy
Optimization (PPO) [32] implementations e.g. [6], [27]. Given
the network parameter θ, we optimize the standard objective
function used in policy gradient approaches:

JNS(θ) = Jπ(θ)− αvLV (θ) + αsSπ(θ) (1)

where Jπ(θ) is the policy gradient objective, LV (θ) is the
value loss, Sπ(θ) is the entropy bonus for exploration, and αv

and αs are the corresponding coefficients. PPO builds upon the
Trust Region Policy Optimization (TRPO) [30] method, which
maximizes a surrogate objective function defined as: Jπ(θ) =
Êt

[
rt(θ)Ât

]
where rt(θ) =

π(θ)(at|st)
π(θ)old

(at|st) is the probability

ratio between the new policy and the old policy, and Ât refers
to the advantage estimate at timestep t. To avoid excessively
large policy updates, PPO clips the value of rt(θ) between the
intervals of [1− ϵ, 1+ ϵ] and takes the minimum between the
original value of rt(θ) and the clipped one. Thus, the final
clipped surrogate objective function is as follows:

Jπ(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(2)

For the fully shared architecture, we optimize the same
clipped surrogate objective as part of Equation 1.

B. Early Separation

To implement early separation, we share the first block
of the IMPALA-CNN architecture and separate the next two
for policy and value. Thus, only 5 convolutional layers are
shared. Consider that the part of the network shared between
policy and value is parameterized by θ, the separated policy
subnetwork is parameterized by ϕπ , and the separated value
subnetwork is parameterized by ϕv . Then, we optimize the
objective jointly for all parameters, similar to the PPO loss
(Equation 1):

JES(θ, ϕπ, ϕv) = Jπ(θ, ϕπ)− αvLV (θ, ϕv) + αsSπ(θ, ϕπ)
(3)

where Jπ(θ, ϕπ) is the policy gradient objective, LV (θ, ϕv) is
the value loss and Sπ(θ, ϕπ) is the entropy bonus.

C. Late Separation

In this variant, we share the first two blocks of the IMPALA-
CNN architecture and separate the third block for each of the
policy and value network components. As a result, the first 10
convolutional layers are shared while there are two different

sets of 5 convolutional layers for each of the policy and
value subnetworks. If the shared network part is parameterized
by θ, the separated policy network and value network are
parameterized by ϕπ and ϕv respectively, then we optimize
the objective jointly, similar to the PPO loss (Equation 1):

JLS(θ, ϕπ, ϕv) = Jπ(θ, ϕπ)− αvLV (θ, ϕv) + αsSπ(θ, ϕπ)
(4)

where Jπ(θ, ϕπ) is the policy gradient objective, LV (θ, ϕv)
is the value loss and Sπ(θ, ϕπ) is the entropy bonus. This is
similar to the partial separation proposed by Nafi et al. [22].
The difference between early separation and late separation
is that the number of shared parameters represented by θ is
higher in late separation.

D. Full Separation

As the name suggests, we use two fully separate networks
for policy and value. This approach is similar to the one
proposed by Raileanu and Fergus [27] that fully disentangles
the policy and value representations. We also keep the extra
advantage head in the policy network, as without any sort
of value or advantage gradient the policy network remains
isolated, resulting in the failure of the policy optimization
process [8]. Since there are two different networks, the op-
timization takes place in two phases with the policy network
optimized first, followed by the value network. The policy
network parameterized by θπ is optimized for:

JFS(θπ) = Jπ(θπ)− αALAπ (θπ) + αsSπ(θπ) (5)

Here LAπ
(θπ) is the advantage loss coming from the addi-

tional advantage head used to support the policy network [27].
On the other hand, the value network, parameterized by θv ,
optimizes the value loss defined as follows:

Lv(θv) = Êt[(Vθv (St)− V̂t
targ

)2]

where V̂t
targ

is the target value function.

IV. RESULTS AND DISCUSSIONS

We conduct our experiments on all the 16 game environ-
ments available in the demanding Procgen benchmark [6] and
the single environment from Crafter benchmark [12]. These
highly diverse environments provide the opportunity to analyze
and draw conclusions regarding when to use a certain network
architecture. We use the standard protocol for training and
testing as introduced in [6] and [12] for Procgen and Crafter
respectively. Our code is publicly available. 1 For Procgen, we
employ the easy distribution mode and train all the agents on
only 200 levels of the games for 25M timesteps while testing
on the full distribution of levels. The term full distribution
refers to the configuration that each episode in the testing
phase can belong to any level selected from an infinite set of
procedurally generated levels. Thus, a learned policy needs to
perform well in the scenarios not encountered during training.

1https://github.com/nasiknafi/sensitivity-to-decoupling

Authorized licensed use limited to: Kansas State University. Downloaded on October 09,2024 at 00:39:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: PPO normalized scores for the four architecture variants across all the 16 environments in the Procgen benchmark.

Fig. 3: (Left) Crafter score for the four architectures with different degrees of separation for policy and value; (right) Comparison
of the reward achieved by each agent during 1M timestep. In terms of both metrics, late separation performs better.

Crafter offers environment variation and multiple achievement
targets that require a generalizable policy to perform better. For
Crafter, we train the agent for 1M timesteps.

A. Generalization Across Benchmarks

To analyze the overall performance, we first report the
results combined across all 16 Procgen environments. As a
performance measure, we use the average return achieved by
the agent in the test levels or episodes which is often referred
to as the test score or test reward. In addition to the traditional
mean and median, to address statistical uncertainty across all
trials, we consider more critical metrics such as Interquartile
Mean (IQM) and optimality gap (OG) as introduced by [2].

Figure 2 shows the evaluation metrics in terms of the
PPO-normalized scores across the benchmark. As described
previously in Section III-A, fully shared approach refers to
the PPO algorithm. Thus, Figure 2 can be considered as
a performance representation of other network architectures
relative to the fully shared version wherein the score of the
fully shared version is 1 in the scale. It is evident from Figure 2
that late separation outperforms all other approaches in terms
of the IQM value across all environments while sharing a
significant portion of the network. While the median value
of late separation is also higher than all other approaches, the
mean value is slightly less compared to the full separation but
still better than early separation. Further, the optimality gap of
late separation is the lowest among all other approaches. The
study by Agarwal et al. [2] demonstrates that the Interquartile
Mean (IQM) proves to be a more comprehensive indicator of

overall performance compared to the median. This is attributed
to IQM’s consideration of 50% of the combined runs, provid-
ing a nuanced perspective beyond a simple performance order.
Additionally, IQM exhibits greater resilience to outliers when
compared to the mean. The Optimality Gap (OG) signifies
the extent to which the algorithm falls short of achieving
a minimum score, beyond which further enhancements hold
diminishing importance. Thus it is important to consider IQM
and OG as the performance measure while analyzing the
outcome.

From the results, we observe that early separation while
having a large portion of the network separated for the policy
and value still performs worse than the late separation. A naive
assumption could have led one to believe that early separa-
tion might work best as this should capture the policy-value
representation asymmetry better through its larger separated
part. However, experimental studies show a deviation from
the general expectation. We argue that such deviation is due
to the combined adversarial effect of the higher isolation of
the policy network and the lack of separate policy and value
optimization. The rationale behind this argument refers to the
addition of an advantage head (or value head) to the policy
network and separate optimization of the policy and value
networks to alleviate performance degradation that occurs with
naive separation [8], [27]. We present more details related to
this issue in section IV-C through additional experiments.

On the other hand, the better performance of late separation
in terms of IQM and OG can be attributed to the fact that
models with late separation can still capture the necessary

Authorized licensed use limited to: Kansas State University. Downloaded on October 09,2024 at 00:39:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Test performance for fully shared, early separated, lately separated, and fully separated architecture across all 16
environments from the Procgen benchmark. Mean and standard deviation are calculated over 5 trials with different seeds.

TABLE I: Comparison of computational time and the number
of convolutional layers

Methods No. of Conv. GPU GPU
Layer Hours Memory

fully shared 15 3-4 2.5-3 GB
late separation 20 3-5 2.5-3 GB

early separation 25 3-5 2.5-3 GB
full separation 30 5-10 4-5 GB

policy-value representation asymmetry through partial decou-
pling. Due to the hierarchical representation of image features,
sharing the early layers that learn low-level features (e.g.,
edges and dots) or mid-level features (e.g., object parts) does
not restrict achieving policy-value representation asymmetry
(through high-level features). At the same time, late separation

does not suffer from the value gradient as the degree of separa-
tion is not high. Late separation has most of the layers shared,
hence the intermediate representation receives enough signal
from the value function that eliminates the instability due to
the dependency of the policy function on the value gradient.
Table I shows a comparison of the computational overhead for
all four variants used in our experiments. As partially separated
models require significantly less time than the fully separated
approach and late separation can achieve competitive or better
performance, we recommend using late separation in general,
especially when computational complexity is crucial.

Figure 3 shows the Crafter results and it is evident that late
separation performs better compared to the others with respect
to the Crafter score and achieved rewards. Crafter score is
defined as the geometric mean of success rates. Thus it carries
greater weight for unlocking new achievements [12].

Authorized licensed use limited to: Kansas State University. Downloaded on October 09,2024 at 00:39:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Interquartile Mean (IQM) with 95% confidence interval for PPO (fully shared) normalized test rewards for all the 16
environments from the Procgen benchmark.

Fig. 6: Learned representation of the policy and value using
lately separated and fully separated architectures for the Plun-
der environment (at two different timesteps). The red-marked
regions correspond to the higher value of gradients while
blue regions correspond to the lower value of gradients. The
learned policy representations using lately (partially) separated
approach get biased with the value function and primarily look
at the whole life bar as opposed to the end mark focused by the
policy representation learned by the fully separated approach.

B. Performance on Individual Procgen Environments

In addition to the overall performance, we look at the
empirical results for all individual environments to evaluate
how different degrees of separation affect them. Figure 4

presents results across the entire Procgen benchmark over
the training time of 25M timesteps. The solid line refers
to the running mean of rewards while the shaded regions
refer to the variance across trials. We observe that in all
the environments except Plunder, late separation achieves
competitive scores, even better in some cases, compared to
the full separation. Early separation performs competitively
with late separation in a few environments, however, this
performance is not consistent. The fully shared architecture
one only performs competitively in the caveflyer and miner
environments. A detailed analysis of each environment using
the IQM is provided in Figure 5.

We now examine the issue of complete failure of all
architectures except full separation in the Plunder environment
to assess the necessity of full separation. Our investigation
reveals that, unlike other environments, Plunder includes an
on-screen countdown timer (depicted by the green bars on
the top in each figure in Figure 6). When the timer runs
out, the episode ends at that instant. Thus, this on-screen
timer acts as a life bar for the agents. The policy needs to
learn to avoid hitting friendly ships and destroying enemy
pirate ships by firing cannonballs. A target in the bottom left
corner of the screen shows the color of the targeted enemy
ships. However, the life bar is an important source of value
estimation of the state. Figure 6 presents examples of the

Authorized licensed use limited to: Kansas State University. Downloaded on October 09,2024 at 00:39:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Test performance of the early separation architecture and its two variants on four environments from the Procgen
benchmark. Early separation joint, the baseline, uses the loss function as defined in eq. 3, early separation phasic uses
separate optimization phases for policy and value loss, early separation adv head incorporates an extra advantage head in
the policy subnetwork. Results show that neither of these two extensions alone can improve the performance of the early
separation architecture.

learned policy and value representation highlighted through
Grad-CAM [33] for both late separation and full separation.
It is evident that the value representation in the fully separated
one pays attention to the top-left corner where the life bar ends
while the value network in case of late (partial) separation
fails to do so. On the other hand, the policy representations
for a fully separate network keep track of the end of the life
bar while also paying attention to the enemy ships. However,
the policy representations in case of late (partial) separation
focus on the complete life bar. We hypothesize that this
happens due to the overarching effect of the value function. In
partial separation, while sharing some parts, the policy network
puts significant importance on the value source and fails to
distinguish between the policy and value representation. Thus,
we conclude that when explicit sources of value estimation are
present in the input observation, then consideration should be
given to learning representation for policy and value through
two fully separate networks, irrespective of the computational
time overhead to gain generalization improvements.

C. Extended Study for Early Separation

To investigate why early separation does not perform well
while separating the network at a considerable scale, we
conduct additional experiments where we integrate a few
mechanisms that have been proven helpful in the case of
full separation. Figure 7 presents the experimental results.
Early separation joint denotes the same implementation as
of early separation. The term ”joint” refers to the fact that the
optimization of the policy and value network has been done
together. As the model with full separation consists of two
different networks, two optimizers are used to update the two
different networks based on their corresponding loss functions.
This update generally happens in two phases: the policy phase
and the value phase. Each phase performs multiple gradient
updates defined by the hyperparameters: number of policy
epochs Eπ and number of value epochs Ev . The training
phase of the value network occurs after every Nπ policy
update. We incorporate the same training style with the early
separation model. We use two optimizers - one dedicated
to policy parameters and another to value parameters. Thus,

shared parameters are updated twice. We refer to this variant
as early separation phasic.

As the network size of the separated part increases in the
early separation, the downstream policy network may suffer
more from value gradient and as suggested by [8], the policy
network without enough value gradient may collapse. This
may be partially overcome by introducing an extra value
or advantage head. Thus we create another variant of early
separation that includes an extra advantage head in the policy
subnetwork. This additional advantage head can be trained
using the following advantage loss:

LA(θ, ϕπ) = Êt[(Aθ,ϕπ
(st, at)− Ât)

2]

where Ât is the generalized advantage estimate (GAE) [31] at
the time step t calculated from the value predicted by value
subnetwork. This extra advantage head provides supplemen-
tary value gradients to the policy subnetwork. We denote this
variant as early separation adv head.

Results in Figure 7 show that while none of the modified
variants performs better across all cases, in most cases, disjoint
phasic optimization aids the network. For some environments
like dodgeball and starpilot, the advantage head helps in
performance. However, disjoint optimization introduces a high
computational burden as two different optimizers need to oper-
ate. Also, it requires additional hyperparameter (Eπ , Ev , Nπ)
tuning. For many environments, the value update frequency
Ev is high, thus requiring more updates. We do not combine
both the extra advantage head and disjoint phasic optimization,
because by doing so the model will be very similar to the
full separation one. Therefore, this will again introduce all
the drawbacks of the full separation, reducing the benefits of
partial separation.

V. CONCLUSION

This work instantiates and empirically studies the possible
four general categories of policy-value networks for reinforce-
ment learning, seeking to infer meaningful insights regarding
the impact of partial and full decoupling on generalization
through systematic comparison. We present a comparative

Authorized licensed use limited to: Kansas State University. Downloaded on October 09,2024 at 00:39:33 UTC from IEEE Xplore. Restrictions apply.

analysis of the models that use different levels of decou-
pling/separation for the policy and value function in proce-
durally generated environments. Our work clearly identifies
when to leverage two fully separate networks even though it
might entail increased computational complexity. We identify
the counterintuitive phenomenon that early separation fails
even though it separates a large portion of the network. Thus,
late separation acts as an efficient trade-off. Our contribution
thus focuses on evaluations that will help deep reinforcement
learning practitioners in deciding the type of network and the
extent of decoupling to deploy to achieve better generalization
when dealing with a new environment.

REFERENCES

[1] R. Agarwal, M. C. Machado, P. S. Castro, and M. G. Bellemare,
“Contrastive behavioral similarity embeddings for generalization in
reinforcement learning,” arXiv preprint arXiv:2101.05265, 2021.

[2] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Belle-
mare, “Deep reinforcement learning at the edge of the statistical
precipice,” Advances in neural information processing systems, vol. 34,
pp. 29 304–29 320, 2021.

[3] R. F. Ali, K. Duong, N. M. Nafi, and W. Hsu, “Multi-horizon learning
in procedurally-generated environments for off-policy reinforcement
learning (student abstract),” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 37, no. 13, 2023, pp. 16 150–16 151.

[4] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin,
R. Marinier, L. Hussenot, M. Geist, O. Pietquin, M. Michalski,
S. Gelly, and O. Bachem, “What matters for on-policy
deep actor-critic methods? a large-scale study,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=nIAxjsniDzg

[5] D. Bertoin and E. Rachelson, “Local feature swapping for generalization
in reinforcement learning,” in International Conference on Learning
Representations, 2022.

[6] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging procedu-
ral generation to benchmark reinforcement learning,” in International
conference on machine learning. PMLR, 2020, pp. 2048–2056.

[7] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying
generalization in reinforcement learning,” in International Conference
on Machine Learning. PMLR, 2019, pp. 1282–1289.

[8] K. W. Cobbe, J. Hilton, O. Klimov, and J. Schulman, “Phasic policy
gradient,” in International Conference on Machine Learning. PMLR,
2021, pp. 2020–2027.

[9] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning et al., “Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner architectures,”
in International Conference on Machine Learning. PMLR, 2018, pp.
1407–1416.

[10] J. Farebrother, M. C. Machado, and M. Bowling, “Generalization and
regularization in dqn,” arXiv preprint arXiv:1810.00123, 2018.

[11] J. Grigsby and Y. Qi, “Measuring visual generalization in continuous
control from pixels,” CoRR, vol. abs/2010.06740, 2020. [Online].
Available: https://arxiv.org/abs/2010.06740

[12] D. Hafner, “Benchmarking the spectrum of agent capabilities,” in
International Conference on Learning Representations, 2021.

[13] T. Hu, W. Wang, C. Lin, and G. Cheng, “Regularization matters: A
nonparametric perspective on overparametrized neural network,” in In-
ternational Conference on Artificial Intelligence and Statistics. PMLR,
2021, pp. 829–837.

[14] M. Igl, K. Ciosek, Y. Li, S. Tschiatschek, C. Zhang, S. Devlin,
and K. Hofmann, “Generalization in reinforcement learning with se-
lective noise injection and information bottleneck,” arXiv preprint
arXiv:1910.12911, 2019.

[15] M. Igl, G. Farquhar, J. Luketina, W. Boehmer, and S. Whiteson,
“The impact of non-stationarity on generalisation in deep reinforcement
learning,” arXiv preprint arXiv:2006.05826, 2020.

[16] Z. Jia, X. Li, Z. Ling, S. Liu, Y. Wu, and H. Su, “Improving policy
optimization with generalist-specialist learning,” in International Con-
ference on Machine Learning. PMLR, 2022, pp. 10 104–10 119.

[17] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius, and
S. Risi, “Illuminating generalization in deep reinforcement learning
through procedural level generation,” arXiv preprint arXiv:1806.10729,
2018.

[18] K. Lee, K. Lee, J. Shin, and H. Lee, “Network randomization: A
simple technique for generalization in deep reinforcement learning,” in
International Conference on Learning Representations, 2019.

[19] S. Moon, J. Lee, and H. O. Song, “Rethinking value function learn-
ing for generalization in reinforcement learning,” Advances in Neural
Information Processing Systems, 2022.

[20] N. M. Nafi, R. F. Ali, and W. Hsu, “Hyperbolically discounted advantage
estimation for generalization in reinforcement learning,” in Decision
Awareness in Reinforcement Learning Workshop at ICML 2022, 2022.

[21] N. M. Nafi, R. F. Ali, W. Hsu, K. Duong, and M. Vick, “Policy optimiza-
tion using horizon regularized advantage to improve generalization in
reinforcement learning,” in Proceedings of the 23rd International Con-
ference on Autonomous Agents and Multiagent Systems, ser. AAMAS
’24. Richland, SC: International Foundation for Autonomous Agents
and Multiagent Systems, 2024, p. 1427–1435.

[22] N. M. Nafi, C. Glasscock, and W. Hsu, “Attention-based partial decou-
pling of policy and value for generalization in reinforcement learning,”
in 2022 21st IEEE International Conference on Machine Learning and
Applications (ICMLA). IEEE, 2022, pp. 15–22.

[23] N. M. Nafi, G. Poggi-Corradini, and W. Hsu, “Policy optimization with
augmented value targets for generalization in reinforcement learning,”
in 2023 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2023, pp. 1–8.

[24] T. Ni, B. Eysenbach, and R. Salakhutdinov, “Recurrent model-free rl can
be a strong baseline for many pomdps,” in International Conference on
Machine Learning. PMLR, 2022, pp. 16 691–16 723.

[25] C. Packer, K. Gao, J. Kos, P. Krähenbühl, V. Koltun, and D. Song, “As-
sessing generalization in deep reinforcement learning,” arXiv preprint
arXiv:1810.12282, 2018.

[26] F. Paischer, T. Adler, V. Patil, A. Bitto-Nemling, M. Holzleitner,
S. Lehner, H. Eghbal-Zadeh, and S. Hochreiter, “History compression
via language models in reinforcement learning,” in Proceedings of the
39th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, vol. 162. PMLR, 17–23 Jul 2022, pp.
17 156–17 185.

[27] R. Raileanu and R. Fergus, “Decoupling value and policy for generaliza-
tion in reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2021, pp. 8787–8798.

[28] R. Raileanu, M. Goldstein, D. Yarats, I. Kostrikov, and R. Fergus,
“Automatic data augmentation for generalization in deep reinforcement
learning,” arXiv preprint arXiv:2006.12862, 2020.

[29] A. Rajeswaran, K. Lowrey, E. Todorov, and S. Kakade, “Towards
generalization and simplicity in continuous control,” arXiv preprint
arXiv:1703.02660, 2017.

[30] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889–1897.

[31] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[33] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[34] K. Wang, B. Kang, J. Shao, and J. Feng, “Improving generalization in
reinforcement learning with mixture regularization,” Advances in Neural
Information Processing Systems, vol. 33, pp. 7968–7978, 2020.

[35] D. Yarats, I. Kostrikov, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,” in
International Conference on Learning Representations, 2020.

[36] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus,
“Improving sample efficiency in model-free reinforcement learning
from images,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, 2021, pp. 10 674–10 681.

[37] A. Zhang, R. McAllister, R. Calandra, Y. Gal, and S. Levine, “Learning
invariant representations for reinforcement learning without reconstruc-
tion,” arXiv preprint arXiv:2006.10742, 2020.

Authorized licensed use limited to: Kansas State University. Downloaded on October 09,2024 at 00:39:33 UTC from IEEE Xplore. Restrictions apply.

