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ABSTRACT
In this work, we focus on improving the generalization performance
of a reinforcement learning (RL) agent in diverse environments.
We observe that in environments created under the Contextual
Markov Decision Process (CMDP), where an environment’s dynam-
ics and attribute distribution change across contexts, the gener-
ated episodes are highly stochastic and unpredictable. To improve
generalization in such scenarios, we present Horizon Regularized
Advantage (HRA) estimation that enables robustness to the un-
derlying uncertainty of episode duration. Using three challenging
RL generalization benchmarks Procgen, Crafter, and Minigrid we
demonstrate that our proposed approach outperforms the Proximal
Policy Optimization (PPO) baseline that uses classical single expo-
nential discounting-based advantage estimate. We also incorporate
HRA into another generalization-specific approach (APDAC), and
the results indicate further improvement in APDAC’s generaliza-
tion ability. This denotes the effectiveness of our approach as a
generic component that can be incorporated into any policy gradi-
ent method to aid generalization.
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1 INTRODUCTION
Deep neural networks have paved the way for the recent advances
in machine learning and enabled powerful RL agents that can mas-
ter games and real-world applications alike [5]. However, neural
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Figure 1: Distribution of episode lengths for a fully trained
PPO agent estimated based on 1000 episodes randomly sam-
pled from the test levels. Left: the agent is trained on 200
levels. Right: the agent is trained on 5000 levels; this denotes
the inherent uncertainty and variation in completion time
across levels (contexts) irrespective of the agent’s expertise.

networks are sensitive to the underlying training data distribution
and hence memorize the data on which they are trained (overfit-
ting), as their objective is to minimize the empirical prediction error
[50]. In RL, this manifests into agents learning training trajectories
and being unable to generalize well, not only to unseen states but
also across environments [16, 39]. Generalization in RL refers to
the capability of an agent to perform well in similar but unseen
environments and is currently seen as an active research challenge.
Training deep RL algorithms is known to be data-intensive and
given a sufficiently large set of samples, they can learn a specific
skill [19, 33, 34] but tend to overfit even with large training samples
[10, 13, 18, 27]. To facilitate research on this issue, newer bench-
marks have been developed under the Contextual Markov Decision
Process (CMDP) framework. In CMDP, different episodes corre-
spond to different variations of environments where the variation
can be identified by a context, however, the episodes share some
basic properties and high-level goals. Procedurally generated (PCG)
environments such as Procgen [10], Minigrid [9], etc, and set of
similar robotics tasks [53] are examples of such benchmarks. CMDP
enables the evaluation of generalization through held-out contexts
used only in testing or generating an infinite number of contexts.

In this work, we look at generalization in CMDP from a new per-
spective of reward discounting that aims to avoid overfitting of the
advantage estimate. RL algorithms generally specify a discount fac-
tor 𝛾 s.t. 0 ≤ 𝛾 < 1, that exponentially discounts the future reward
𝑟𝑡 at step 𝑡 as 𝛾𝑡𝑟𝑡 [49]. Such exponential discounting guarantees
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the theoretical convergence of the value function and stabilizes
optimization. The form and magnitude of the discount function
itself establish strong priors over the solutions learned, and the
magnitude of the discount factor sets a fixed effective horizon for
the agent such that all rewards beyond that point are considered
insignificant [28]. Exponential discounting of future rewards is
consistent with the prior belief that there exists a known, fixed
risk or hazard rate for the agent in the environment (hazard rate is
defined as the per-time-step risk the agent incurs as it acts in the
environment) [48][17]. We argue that this assumption of a fixed
hazard rate (consequently, fixed episode length) in an environment
does not hold in a CMDP setting.

In support of our claim, we identify that in a procedurally gener-
ated environment (an example of CMDP), where an environment’s
dynamics and attribute distribution change across levels, the gen-
erated levels are highly diverse. Different environment context
indicates different degrees of uncertainty, yielding high variance
in the observed episode length. To illustrate this uncertainty in
the environments, in Figure 1 we plot the distribution of episode
length measured over 1000 episodes sampled randomly from the
test levels for 8 Procgen environments. The episodes were gener-
ated using a learned PPO [47] policy trained on 25M time steps.
Even for a reasonably trained agent, we see that the episode length
varies significantly for each environment. Raileanu and Fergus [42]
show that even starting from semantically identical states, episode
lengths can vary a lot due to variations in the level generation
(contexts). The value estimate of a state highly depends on the
length of the episode. For say, if the agent receives a reward of 10
at the end of the episode, then the short episode will have a higher
expected value than the long episode due to the variable 𝛾 . Thus, a
fixed effective horizon used as in the single exponential discount-
ing may fail to better assess expected future rewards. Mandal et al.
[31] also describes the role of an optimal effective horizon in the
presence of episode length uncertainty. Additionally, we identify
that the auxiliary task of learning over multiple horizons as pre-
sented in [17] collapses in the case of the actor-critic algorithm.
This is due to the fact that in value-based algorithms the Q func-
tion directly defines the policy (argmax), while in actor-critic there
are distinct value functions and policy functions. To address the
uncertainty in the unseen environment context and achieve better
generalization using an actor-critic algorithm, we propose to use
a horizon-regularized advantage estimate that considers multiple
discount factors (horizons). In summary, our contributions include:

• We show that CMDP indeed implies a high degree of uncer-
tainty in the episode length or task completion time.

• We argue that a single discount factor introduces a very re-
stricted inductive bias. To address this, we propose to mix ad-
vantage estimates from different discount factors to smooth
the estimate so that it can better approximate the advantage
in unseen scenarios with unknown episode lengths.

• Weevaluate our approach on 3 different generalization bench-
marks - Procgen, Crafter, and Minigrid; and our approach
significantly outperforms PPO [46] and other baselines that
use single exponential discounting.

2 RELATEDWORK
Generalization in Deep RL. Recent studies have highlighted the
inability of RL agents to generalize to new scenarios [11, 16, 40]
which has led to an increasing effort on developing intelligent
agents that avoid overfitting and generalize well to unseen data
[18, 27, 30, 44]. Methods that have been used with some success in-
clude regularization techniques like dropout [23], batch normaliza-
tion [11, 22, 23], and data augmentation [12, 43, 51, 52, 55]. Raileanu
and Fergus [42] use decoupled policy and value networks to im-
prove generalization while Nafi et al. [36, 37] present the potential
of partial decoupling to improve generalization. Cobbe et al. [13]
introduce phase-wise training of decoupled actor-critic architecture
that ensures better sample efficiency and generalization. Paischer
et al. [41] show that storing compact abstraction of the observation
history using language model allows generalization. Zhang et al.
[54] and Agarwal et al. [1] use bisimulation metrics to measure
similarity between states with the aim of learning task-relevant rep-
resentations. Mazoure et al. [32] propose to predict the future states
by maximizing the mutual information between its internal repre-
sentation of successive time steps. Bengio et al. [7] investigate the
link between interference and generalization in temporal difference
(TD) learning and suggest that TD causes low interference that leads
to under-generalizing parameters. A feature-swapping regulariza-
tion technique to avoid observational overfitting is proposed in
[8]. Generalist-specialist training framework, as introduced in [25],
alternates between two model training phases - one that encour-
ages the development of general skills and another that promotes
specialization in specific tasks or sub-domains. Igl et al. [24] and
Lyle et al. [30] leverage policy distillation to improve generaliza-
tion. Recently, the importance of balanced exploration to find a
generalizable policy has been demonstrated [26].

Discounting. A lower discount rate has been shown to have
the effect of a regularizer that can improve generalization [4]. How-
ever, determining the appropriate exponential discount factor for
a particular environment remains challenging [31]. Nafi et al. [38]
presents a method that utilizes randomly generated discount factors
to simulate augmented value targets and use them to reduce value
function overfitting. Beyond the classical exponential discounting
scheme, hyperbolic discounting has been studied in the fields of
behavioral psychology, economics, neuroscience, and lately, to a
limited extent, in reinforcement learning. Sozou [48] proposed a
per-time-step death via the hazard rate, whereas Dasgupta and
Maskin [14] proposed that uncertainty over the timing of rewards
leads to preference reversals as exhibited in hyperbolic discounting.
Alexander and Brown [3] proposed a hyperbolic discounting-based
temporal difference (TD) learning method. Although TD learning
relies on exponential discounting in its calculation, naive modifica-
tion to discount hyperbolically has been shown to be inconsistent.
Kurth-Nelson and Redish [29] proposed the modeling of hyperbolic
discounting via distributed exponential discounting. Fedus et al.
[17] extended this formulation to deep reinforcement learning by
approximating hyperbolic discounting from exponential discount-
ing and evaluated their approach using a value-based method, Rain-
bow [21], on the Arcade Learning Environment (ALE) [6] bench-
mark. However, in this work, we propose a horizon-regularized
advantage estimate that leverages multiple discount factors.



3 BACKGROUNDS
3.1 Contextual Markov Decision Process
We consider a Contextual Markov Decision Process (CMDP) repre-
sented byM = (S,A, C,T , 𝑟 , 𝜇𝐶 , 𝜇𝑆 ) whereS is the state space,A
is the action space, C is the context space, T (𝑠′ |𝑠, 𝑎) is the transition
function, 𝑟 is the reward function, 𝜇𝐶 is the context distribution,
and 𝜇𝑆 is the initial state distribution that depends on the selected
context. The context for an episode is selected based on the dis-
tribution 𝑐 ∼ 𝜇𝐶 . Following 𝑠0 ∼ 𝜇 (·|𝑐), an initial state is sampled
for the selected context (episode). After that, the successive states
for that episode given the selected context are sampled according
to the distribution 𝑠𝑡+1 ∼ T (·|𝑠𝑡 , 𝑎𝑡 , 𝑐). Let 𝑑𝑐𝜋 represent the state
distribution when the agent acts according to the policy 𝜋 under
the context 𝑐 . The agent has access to a small subset of contexts
during training. However, the ultimate objective is to learn a pol-
icy 𝜋 that maximizes, G = E𝑐∼𝜇𝐶 ,𝑠∼𝑑𝑐𝜋 ,𝑎∼𝜋 (𝑠 ) [𝑟 (𝑠, 𝑎)], the expected
return over all possible contexts.

3.2 Proximal Policy Optimization
Proximal Policy Optimization (PPO) is the widely used policy gra-
dient method [47], and for this work, we use PPO as a baseline
and build our approach on top of PPO. While learning from high-
dimensional image observation, as the policy and value function
approximator, PPO generally leverages a shared neural network.
Given that the network is parameterized by 𝜃 , PPO optimizes the
following joint objective:

𝐽𝑃𝑃𝑂 (𝜃 ) = 𝐽𝜋 (𝜃 ) − 𝛼𝑣𝐿𝑉 (𝜃 ) + 𝛼𝑠𝑆𝜋 (𝜃 ) (1)

where 𝐽𝜋 (𝜃 ) is the policy gradient objective, 𝐿𝑉 (𝜃 ) is the value loss,
𝛼𝑣 is the coefficient for value loss, 𝑆𝜋 (𝜃 ) is the entropy bonus, and
𝛼𝑠 is the coefficient for entropy bonus. PPO is primarily based on
the Trust Region Policy Optimization (TRPO) [45] method. Both of
them maximize the following surrogate policy objective:

𝐽𝜋 (𝜃 ) = Ê𝑡 [𝑟𝑡 (𝜃 )𝐴𝑡 ] (2)

where 𝑟𝑡 (𝜃 ) =
𝜋 (𝜃 ) (𝑎𝑡 |𝑠𝑡 )

𝜋 (𝜃 )𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 ) is the probability ratio between the

new policy and the old policy, and 𝐴𝑡 is the advantage estimate
at timestep 𝑡 . Unlike TRPO, PPO prevents excessively large policy
updates by clipping the value of 𝑟𝑡 (𝜃 ) to the intervals of [1−𝜖, 1+𝜖].
The minimum between this clipped value and the original value of
𝑟𝑡 (𝜃 ) is then selected as 𝑟𝑡 (𝜃 ). Thus, PPO optimizes the following
clipped surrogate objective for policy optimization:

𝐽𝜋 (𝜃 ) = Ê𝑡
[
𝑚𝑖𝑛

(
𝑟𝑡 (𝜃 )𝐴𝑡 , 𝑐𝑙𝑖𝑝 (𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡

) ]
(3)

4 METHODOLOGY
In order to achieve a generalizable policy, we aim to learn a good
advantage estimate to guide policy optimization. We identify that
fixed exponential reward discounting results in an overfitted ad-
vantage estimate that restricts generalization. Thus, we propose to
optimize the policy using a horizon regularized advantage estimate
to achieve generalization.

Figure 2: Details of our proposed architecture. Each Shared
Block is identical to the IMPALA CNN architecture [15]. The
Critic Head predicts state-values𝑉𝛾𝑖

𝜋 for 𝑛𝛾 different discount
factors. These exponentially discounted state-value predic-
tions are then used to calculate the corresponding advantage
estimates and the horizon regularized advantage function.

4.1 Horizon Regularized Advantage
Generalized Advantage Estimate (GAE) [46] or simply advantage
denotes the additional expected return that can be achieved by
following a particular action compared to the state’s absolute value.
The advantage is more resistant to overfitting to environment id-
iosyncrasies than value estimates and less dependent on the number
of remaining steps in the episode Raileanu and Fergus [42]. Advan-
tage estimates guide the policy gradient in an actor-critic setup.
Thus, we focus on advantage instead of value function.

A single, fixed discount factor in the case of exponential discount-
ing imposes an effective horizon for the agent [28]. As a result, the
agent’s value function estimate relies on a prior belief about the
length of the episode. The episode length can significantly change
the value or advantage estimate of the earlier states in a trajec-
tory based on the later reward. For example, the final reward of
an episode will be highly discounted and perceived as small if the
episode length is too long. However, if the episode length is small,
then the same final reward will contribute much more to the ad-
vantage estimate. Thus, due to the fixed effective horizon, an agent
may fail to correctly anticipate the worth of future rewards in case
of highly-varied episode length (as depicted in Figure 1). As we can
not restrict the length of an episode, we propose to relax this fixed
effective horizon by considering an estimate that arises from multi-
ple horizons. Thus, we need a value estimate that considers multiple
discount factors 𝛾𝑛 while calculating the advantage estimate.

We introduce the notion of horizon regularized advantage (HRA)
which can be considered a smoothed version of the actual advan-
tage estimate. Formally, we define HRA as a function of multiple
advantage estimates over multiple horizons. HRA prevents large
policy changes corresponding to a single observed episode length
that might destabilize the learning process. As the most simple



Figure 3: Test performance of proposed average advantage-based horizon regularization (HRA-Avg) and hyperbolic discounting-
based horizon regularization (HRA-Hyp) against PPO on Procgen environments.

versions of such HRA, we propose the average of the advantages
estimated for different discount factors. If the advantage is a GAE,

𝐴𝐻𝑅𝐴 =
1
𝑛𝛾

𝑛𝛾∑︁
𝑖=0

𝐴𝐺𝐴𝐸 (𝛾𝑖 ,𝜆) (4)

where 𝐴𝐺𝐴𝐸 (𝛾𝑖 ,𝜆) =
∑∞
𝑙=0 (𝛾𝑖𝜆)

𝑙𝛿𝑉
𝑡+𝑙 and 𝛿𝑉𝑡 is the single step TD

error. We use this HRA in the policy gradient objective of PPO [47]
in Equation 3. Using a multi-head architecture (as shown in Figure
2), where each head corresponds to the value function for each 𝛾𝑖 ,
we minimize the average of the losses calculated for these multiple
𝛾𝑖 . The loss function corresponding to a 𝛾𝑖 is defined as:

𝐿
𝛾𝑖
𝑣 (𝜃 ) = Ê𝑡

[(
𝑉
𝛾𝑖
𝜃
(𝑠𝑡 ) −𝑉

𝛾𝑖
𝑡𝑎𝑟𝑔

)2]
(5)

4.2 Regularization through Hyperbolic
Approximation

Unseen levels in a procedurally generated environment imply an
unknown hazard rate. Consider an episode sampled from a new
level𝑚 has an associated hazard rate 𝜆𝑚 , where 𝛾𝑚 = 𝑒−𝜆𝑚 [17].
This hazard doesn’t necessarily mean only the chance of dying of
an agent, but the variance or uncertainty in the completion time,
which is analogous to survival time or how long the agent inter-
acts with the environment, can also be modeled through hazard
rate or the corresponding discount factor. Since an agent cannot
accurately estimate the hazard or put simply the value of the uncer-
tainty parameter 𝛾𝑚 for each new level in a model-free setup and
hyperbolic discounting is better able to capture the uncertainty [17],
thus to aid policy optimization we propose to regularize the advan-
tage estimate through hyperbolic-discounting which is a weighted
integral of the estimates obtained from multiple discount factors.
Advantage is defined as 𝐴(𝑠𝑡 , 𝑎𝑡 ) = 𝑄 (𝑠𝑡 , 𝑎𝑡 ) −𝑉 (𝑠𝑡 ). Leveraging
the hyperbolic function evaluation Γ𝑘 (𝑡) = 1

1+𝑘𝑡 =
∫ 1
0 𝛾𝑘𝑡𝑑𝛾 and

motivated by the Q function estimation of [17], we propose to
estimate hyperbolically-discounted advantage as follows:

𝐴
Γ𝑘
𝐻𝑅𝐴

(𝑠, 𝑎) =
∫ 1

0
𝐴
(𝛾𝑘 )
𝐺𝐴𝐸

(𝑠, 𝑎)𝑑𝛾 (6)

Based on the value function calculated over all the 𝛾𝑘 where
0 ≤ 𝛾 < 1, we estimate the hyperbolically-discounted advantage.
Note that the effective discount factor is 𝛾𝑘 , and not just original
𝛾 . From a practical perspective, following Fedus et al. [17], we
consider a finite set of 𝛾 (consequently 𝛾𝑘 ), say 𝑛𝛾 number of 𝛾s to
approximate the advantage through Riemann sum,

𝐴
Γ𝑘
𝐻𝑅𝐴

(𝑠, 𝑎) ≈
∑︁
𝛾𝑖

(𝛾𝑖+1 − 𝛾𝑖 ) 𝐴(𝛾𝑖 )𝑘
𝐺𝐴𝐸

(𝑠, 𝑎) (7)

5 EXPERIMENTS AND RESULTS
5.1 Network Architecture and Training
Following previous works, we use the IMPALA-CNN architecture
as the actor-critic model for the PPO baseline which employs gener-
alized advantage estimate [10]. Figure 2 shows our implemented ar-
chitecture. This CNN architecture has three identical blocks, shared
by the actor and the critic, and each block has 5 convolutional layers.
To implement our proposed approach HRA, we augment the same
architecture with five value heads corresponding to five different 𝛾
values. We then calculate the advantage value for each of the value
predictions. Finally, we take an average of all advantages for the
average advantage-based regularization or integrate the advantage
values to obtain the hyperbolic advantage. We use ADAM as the
optimizer with a learning rate of 0.0005. For PPO, we experiment
with two sets of discount factors 𝛾 = [0.85, 0.90, 0.95, 0.975, 0.999]
and 𝛾 = [0.90, 0.95, 0.97, 0.98, 0.99]. The latter demonstrates better
performance and we observe using too low values of 𝛾 negatively
impacts the performance. For APDAC, we use comparatively larger



Figure 4: Test performance of APDAC and its counterpart that uses horizon regularized advantage through hyperbolic dis-
counting. Means and standard deviations are calculated over 5 trials.

Figure 5: Performance comparison of proposedHRA-Avg and
HRA-Hyp with PPO across all 16 environments using IQM
and Mean of PPO normalized score.

values for the effective discount factors with 𝑘 = 0.025, while for
PPO we use 𝑘 = 0.1. Our code is publicly available.1

5.2 Evaluation Benchmarks
We evaluate our approach on three procedurally generated envi-
ronments including Procgen [10], Crafter [20], and Minigrid [9]. In
all the environments, the agent aims to learn the optimal action
probability based on the input image observation and obtained
reward. Procgen offers an infinite number of diverse procedurally
generated levels that make it suitable to investigate the general-
ization capability of a trained agent. We train the model for 25M
time steps with the difficulty mode set to easy. Unless mentioned
otherwise, we train the agent on 200 levels and test on the full dis-
tribution of the levels going beyond the training ones. Crafter offers
a highly diverse environment with multiple achievement targets.
Crafter is like an open-world survival game where each episode
gets configured with a different sequence of resources, terrain types,
and creatures, thus requiring generalization and long-term reason-
ing to perform better in any new episodes. For Minigrid, we train
the agent on Multiroom and Fourroom environments. The agent

1https://github.com/nasiknafi/horizon-regularized-advantage

needs to navigate to the randomly generated goal location from the
random initial positions. Thus, the chosen Minigrid environments
can create episodes with varied lengths. We train the agent for 1M
timesteps for Crafter and Minigrid.

5.3 Generalization Performance on Test
Distribution

Figure 3 shows the experimental results on the test distribution
of levels for 8 environments from Procgen and presents rolling
mean test scores and standard deviations calculated over 5 trials.
The results indicate that the proposed two horizon regularized ver-
sions of PPO, (i) that uses an average of multiple horizon advantage
(HRA-Avg) and (ii) that achieves horizon regularization through
hyperbolically discounted advantage (HRA-Hyp), significantly out-
perform the PPO baseline on the test levels. Since PPO was not
specifically designed for generalization, we further incorporated
our approach with APDAC [37], a recent generalization-specific
approach, to get an understanding of the benefit of our method
while integrating it with other existing solutions to generalization.
Figure 4 shows that our proposed hyperbolic advantage-based coun-
terpart, APDAC-HRA (Hyp), performs better than APDAC on the
test distribution of most environments from Procgen. Figure 6 and
7 show that HRA achieves significantly better performance than
PPO on Crafter and Minigrid benchmarks respectively.

6 ANALYSIS AND ABLATIONS
6.1 Analyzing the Computational Overhead
To implement HRA, we need to add 𝑛 number of different value
heads for different value functions corresponding to each𝛾 . We only
add one fully connected layer for each 𝛾 . Hence, there is an increase
in the number of parameters. However, we observe this introduces
a very minimal difference in computational cost compared to the



Figure 6: (Left) Crafter score of our HRA-Avg and HRA-Hyp compared to standard PPO and Rainbow along with other
approaches; (right) Comparison of the reward achieved by each agent during 1M timestep. In terms of both metrics, both
versions of our proposed approach perform significantly better.

Figure 7: Evaluation of PPO and proposed HRA on two Minigrid environments. HRA significantly outperforms standard PPO.

standard single-head version (PPO/APDAC with a single discount
factor). This is mainly because the convolutional layers are all
shared across different value heads. We notice an approximately
20%-25% increase in computing time for Procgen environments and
a 10% increase in the case of Crafter and Minigrid. Indeed, this is
marginal compared to the performance gain because generalization-
specific approaches such as [13, 35, 42] require 100%-200% increased
computation time compared to basic PPO.

6.2 Comparing Statistical Uncertainty
Figure 5 shows the experimental results on the full distribution of
levels in terms of the aggregate metrics considered across all 16

environments as proposed by [2]. Figure 5 indicates that both HRA-
Avg andHRA-Hyp achieve highermean PPO normalized scores. 95%
bootstrap confidence intervals do not overlap with each other. We
also present Interquartile Mean (IQM) which is a more robust metric
than the generic mean considering statistical uncertainty. For IQM,
while the confidence intervals for the proposed two regularization
methods overlap, they are far apart from the PPO.

6.3 Assessing the Generalization Gap
We compare the train-test performance gap of the baseline PPO
with the two horizon regularization methods. Figure 8 presents
the train and test performance of all three methods across four



Figure 8: Train and test performance of PPO, HRA-Hyp, and HRA-Avg for four Procgen environments. Means and standard
deviations are calculated over 5 trials, each with a different seed.

Figure 9: Test rewards of proposed HRA-Avg compared to traditional exponential discounting-based PPO trained on the
increased number of levels. HRA-Avg has been trained on only 200 levels.

Procgen games. HRA-Avg and HRA-Hyp outperform the PPO on
both train and test level performance. It also shows that our ap-
proaches perform competitively with the baseline to reduce the
train-test gap in many cases, however, there are few exceptions.
Figure 9 shows that, in most of the environments, our proposed
method HRA-Avg can achieve test rewards that are higher than the
rewards of the PPO trained on more levels (more training levels
inherently improve generalization). It is evident that training on
only 200 levels, horizon regularization can achieve performance
gain that is even higher than PPO trained on 5000 levels of Procgen.

6.4 Analyzing the Auxiliary Task of
Multi-horizon Learning

[17] shows the potential of learning over multiple horizons, which
serves as an auxiliary task. Figure 10 shows the test performance
of our hyperbolic advantage-based approach (HRA-Hyp) against a

PPO implementation that learns over multiple horizons e.g. for five
different discount factors using exponential reward discounting
and it calculates the advantage based on the value corresponding to
the largest gamma. From the experimental results, it is evident that
learning value functions over multiple horizons as an auxiliary task
and estimating the advantage according to only the max gamma
(largest gamma) value does not perform well. Even adding such
an auxiliary task may degrade the performance. Instead, an advan-
tage value estimated over multiple horizons (e.g. hyperbolically
discounted advantage) leads to a more generalizable policy.

6.5 Comparison with Different Gamma
To further analyze the benefit of our proposed horizon regularized
advantage estimation in the procedurally generated environments,
in Figure 11, we present a comprehensive comparison against mul-
tiple PPO models each having a distinct single 𝛾 value. We select



Figure 10: Test performance of the auxiliary task of learning over multiple horizons that calculates the advantage only with
the largest gamma vs. our hyperbolic advantage estimation that combines multiple advantage estimates.

Figure 11: Analysis of test scores for exponential discounting using different discount factors 𝛾 vs. horizon regularization.

the gamma values such that they correspond to the gamma values
that have been used collectively to approximate the advantage. It is
crucial to observe from the figure that there is no common single
gamma or discount factor across the environments that perform
better in general. This demonstrates that every environment has
its hazard distribution and that uncertainty about the hazard can-
not be modeled using a single discount factor. Our proposed HRA,
leveraging the average of multiple advantage estimates from multi-
ple discount factors, achieves consistently better rewards than any
single exponential discounting-based ones. Thus our results are con-
sistent with our claim that estimating the advantage by combining
multiple horizons helps the agents to address the uncertainty.

7 CONCLUSION
This work presents an actor-critic method that uses horizon regular-
ized advantagewith the specific aim of improving the generalization
ability of an agent; and evaluates it for the generalization tasks.
We argue that since the task completion time in a procedurally
generated environment is more uncertain, having an agent that
considers a regularized advantage over multiple discount factors or
effective horizon would perform better on unseen levels. Through-
out the training, the agent learns the value estimate simultaneously
over multiple horizons through the exponential discount factors
𝛾0, 𝛾1, ..., 𝛾𝑛 , then combines the advantages resulting from those
value functions. We present two schemes for horizon regularization-
based advantage estimates - simple arithmetic mean of multiple
GAE and hyperbolic approximation of GAE from multiple discount
factors. The introduction of horizon regularized advantage enables
the effective use of multiple discount factors with policy gradient
(actor-critic) methods. We evaluate our proposed method using PPO

and APDAC, and the results show that the modified agent performs
well on most of the tasks from the Procgen benchmark. Further, our
approach significantly outperforms the PPO baseline on the Crafter
andMinigrid tasks.We plan on extending this work by investigating
more complex discounting schemes for generalization.
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