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Abstract—Protein-protein interactions (PPI) refer to the 
associations between proteins and the study of these associations. 
Several approaches have been used to address the problem of 
predicting PPI. Some of them are based on biological features 
extracted from a protein sequence (such as, amino acid 
composition, GO terms, etc.); others use relational and structural 
features extracted from the PPI network, which can be 
represented as a graph. Our approach falls in the second 
category. We adapt a general approach to graph feature 
extraction that has previously been applied to collaborative 
recommendation of friends in social networks. Several structural 
features are identified based on the PPI graph and used to learn 
classifiers for predicting new interactions. Two datasets 
containing Saccharomyces cerevisiae PPI are used to test the 
proposed approach. Both these datasets were assembled from the 
Database of Interacting Proteins (DIP). We assembled the first 
data set directly from DIP in April 2006, while the second data 
set has been used in previous studies, thus making it easy to 
compare our approach with previous approaches. Several 
classifiers are trained using the structural features extracted 
from the interactions graph. The results show good performance 
(accuracy, sensitivity and specificity), proving that the structural 
features are highly predictive with respect to PPI. 
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I.  INTRODUCTION 
Protein-protein interactions (PPI) play an important role in 

the study of biological processes. Many PPI have been 
discovered over the years and several databases have been 
created to store the information about these interactions (e.g. 
BIND, DIP, MIPS, IntAct, MINT and MIPS). Mering et al.[8]  
state that about 80,000 interactions between yeast proteins are 
currently available from various high-throughput interaction-
detection methods. Determining PPI using high-throughput 
methods is not only expensive and time-consuming, but also 
generates a high number of false positives and false negatives. 
Therefore, there is a need for computational approaches that 
can help in the process of identifying real protein interactions. 
From a machine learning point of view, this problem can be 
seen as a binary classification problem, and can be addressed 
using supervised learning algorithms. In this paper, we use a 
graph mining approach to predict the existence of a PPI in a 
network of interacting proteins. 

II. PREVIOUS WORK 
Several methods have been designed to address the task of 

predicting protein-protein interactions. Most of them [1], [2], [10] 

and [12] use features extracted from protein sequences (e.g., 
amino acids composition) or associated with protein sequences 
directly (e.g., GO annotation). Others use relational and 
structural features extracted from the PPI network, along with 
the features related to the protein sequence. When using the 
PPI network to design features, several node and topological 
features can be extracted directly from the associated graph. 

Qi et al.[8] divide the protein interaction prediction task into 
three sub-tasks: (1) prediction of physical (or actual) 
interaction among proteins, (2) prediction of proteins belonging 
to the same complex and (3) prediction of proteins belonging to 
the same pathway. They apply several feature classifiers on the 
prediction tasks considered. Their results show that 
RandomForest is the one of the top two classifiers for all tasks; 
the other one is RandomForest similarity-based k-Nearest-
Neighbor. 

Licamele & Getoor[4] combine the link structure of the PPI 
graph with the information about proteins in order to predict 
the interactions in a yeast dataset, gathered from several 
databases. More specifically, they look at the shared 
neighborhood among proteins and calculate the clustering 
coefficient among the neighborhoods for the first-order and 
second-order protein relations. They obtained reasonably good 
accuracy of 81% when predicting new links from noisy high 
throughput data.  

The abovementioned approaches use relational data of the 
PPI network along with other biologically relevant information 
(such as, sequence, gene expression data, GO terms, etc.) to 
predict the protein interactions. However, as opposed to these 
approaches, we use only the relational features of the PPI 
network data in our study. 

III. OUR APPROACH 
In related work, but a completely different application 

domain, Hsu et al.[3] address the problem of collaboratively 
recommending friends for a person, based on structural 
features extracted from a given social network graph. Their 
approach to the collaborative recommendation of friends uses 
the link structure of the social network and also information 
about mutually declared interests. They use structural features 



(of individual vertices or of the links) to learn classifiers that 
can be used to predict possible but unknown links (u, v) in the 
LiveJournal social network. The experimental results show that 
their system differentiates friends from non-friends in a 
connected group of users with greater accuracy than the 
recommender system that is currently used by LiveJournal. 

Noticing the similarity between the friends 
recommendation problem and the protein-protein interaction 
prediction problem (i.e., proteins can be associated with users 
and interactions can be regarded as friendship relationships), in 
this paper, we explore the approach used in Hsu et al.[3] in the 
context of a protein “friends” recommendation, that was 
previously explored in both Qi et al.[8] and Licamele & 
Getoor[4]. 

Nine relational features (such as the indegree and  
outdegree of the proteins in the graph, mutual “friends” among 
proteins and backward distance between proteins in the graph) 
are extracted from the PPI network using graph mining 
techniques described by Hsu et al.[3]. As opposed to previous 
approaches, we don’t use any features based directly on 
sequence or GO information. Our results show that the 
structural features inferred from the graph can be highly 
predictive with respect to PPI prediction. They compare 
favorably with the results reported by Licamele & Getoor[4]  in 
terms of accuracy, and also with the results reported by Qi et 
al.[8] in terms of AUC scores.  We also explore the relative 
importance of the features used. The results confirm the 
previous findings reported in Hsu et al.[3] that graph features 
are useful in recommending friends to users in a network. 

IV. EXPERIMENT DESIGN 

A. Dataset 
We used two different datasets to evaluate our approach 

experimentally. Both datasets contain yeast data. The yeast 
organism was chosen primarily because there is more 
information about yeast protein interactions than about any 
other organism. The first PPI dataset of budding yeast 
(Saccharomyces cerevisiae) was retrieved from the Database of 
Interacting Proteins (DIP) database in April 2006 (using a 
procedure similar to the one described in Salwinski et al.[11]). It 
consists of 2554 different proteins and 5952 interactions 
between protein pairs. The second dataset of yeast is similar to 
the one used by Qi et al.[8] and consists of the positive 
interactions retrieved from DIP during September-October 
2004. It contains 1536 different proteins and 2865 interacting 
pairs. The datasets were parsed in order to construct directed 
networks of interacting protein pairs. We adopt the approach in 
Maslov & Sneppen[5] and represent the PPI network as a 
directed graph with a directed edge from a “bait” protein to a 
“prey” protein. We draw a link between two proteins if and 
only if there exists an interaction between those two proteins. 
The absence of an interaction between two proteins results in 
not adding a link between those two proteins in the graph 
structure. 

B. Feature Analyzers 
We perform a depth-limited breadth-first search 

exhaustively at each node (protein) in the graph (within a depth 
of 2) and generate candidate edges between proteins. Each 
example in the PPI dataset defines a candidate edge (u, v) in the 
underlying directed graph of the protein-protein interaction 
network. The classification problem reduces to the problem of 
classifying proteins within a distance d(u, v) as either 1 
(interacting) or 2 (non-interacting). The following features are 
considered for each candidate edge in the network:  

1. Indegree of the start node: Denotes the popularity 
(importance) of the start node (i.e., of the protein associated 
with the start node). 

2. Indegree of the end node: Denotes the popularity 
(importance) of the end node (i.e., of the protein associated 
with the end node). 

3. Outdegree of the start node: Denotes the number of 
proteins interacting with the protein at the start node. 

4. Outdegree of the end node: Denotes the number of 
existing proteins interacting with the protein at the end node; 
correlates loosely with the likelihood of a reciprocal link. 

5. Number of mutual “friends” of a protein w, such that u 
→ w ^ w → v, for some proteins u and v.  

6. Number of mutual “friends” of a protein w, such that v 
→ w ^ w → u, for some proteins u and v. 

7. Number of mutual “friends” of a protein w, such that u 
→ w ^ v → w, for some proteins u and v. 

8. Number of mutual “friends” of a protein w, such that w 
→ u ^ w → v, for some proteins u and v. 

9. Backward distance from v to u in the graph: identifies 
how far the protein v is from protein u.  

The diagrammatic representations of the nine features 
considered are as shown in Figure 1 (a – i) below:  

 
 

 

 

 

 

 

Figure 1: Node and topological features. The 
objects in red denote the feature that we calculate. 
The dashed lines (in blue) above indicate that a link 
between two proteins u and v may be either present 
or absent, i.e. either u or v are directly connected or 
indirectly connected via another node w. 



Our technique consists of the following steps: 

1. Preprocess the data and construct a graph network 
from the PPI data. 

2. Generate candidate interacting proteins from the 
graph by performing BFS search. 

3. Extract the node and topological features for the 
candidate interacting proteins from the graph. 

4. Divide the candidate proteins into training and test 
data. 

5. Learn several classifiers using the training PPI dataset. 

6. Test the classifiers learned on the test dataset. 

7. Compare the results obtained with results reported 
using other approaches. 

V. RESULTS 
Based on the methodology described in the previous 

section, 20,496 protein-protein interaction candidate edges 
were discovered in the first dataset; 17,502 of the candidate 
edges resulted in negative examples (absence of a direct link 
between proteins), while 2,994 of them resulted in positive 
examples (presence of a direct link between proteins). In the 
second dataset, 7,242 candidate edges were discovered; 1,607 
of them resulted in positive examples, while 5,635 of them 
resulted in negative examples. Thus, most of the candidate 
edges discovered (~86% in the first dataset, ~78% in the 
second dataset) were negative examples. It is easy to see that a 
classifier that predicts all examples as negative examples can 
achieve an accuracy of 86% for the first dataset and an 
accuracy of 78% for the second dataset. To avoid this, we 
balanced the data by randomly sampling 2,994 negative 
examples without replacement from the total number of 
negative examples in the first dataset, to get a 50%-50% split 
of positive and negative samples.  Similarly, we sampled 1,607 
negative examples from the second dataset. We split both 
datasets into a training set containing 80% of the examples 
(50% positive and 50% negative) and a test set. The test set is 
obtained from the dataset containing 20% of the examples, by 
adding negative examples until the distribution matches the one 
of the original dataset. The classifiers used in this study are: 
Bagged RandomForest, RandomTree, J48, Bagged REPTree 
and ClassificationviaRegression, all available in WEKA. The 
classified (training) and non-classified (test) instances were 
provided to WEKA[13] in its native Attribute-Relation File 
Format (ARFF). The decision to use these classifiers was based 
on the results (with respect to the best classifiers) reported by 
Qi et al.[8] and Hsu et al.[3]. The classification results obtained 
for the first and second datasets are as shown as ROC curves in 
Figures 2 and 3 respectively. 

 

 
 

 

 

 

Figure 2 shows the ROC curves of the different classifiers 
used in our approach on the first dataset extracted from DIP in 
April 2006.  

 
 

 

 

 

Figure 3 shows the ROC curves of the different classifiers 
used in our approach on the second dataset obtained from Qi et 
al.[8]. We extracted the true positive rate and false positive rate 
values from the ROC curve for REPTree Bagging as given by 
Licamele & Getoor[4]. Similarly, we identified the true positive 
and false positive rate values for our Bagged REPTree and 
Bagged RandomForest results. The comparison of our results 
with the results of Licamele & Getoor[4] is shown below in 
Figure 4. 

 

Figure 3: ROC curves for Bagged Random Forest, 
Bagged REPTree, Random Tree, J48 and 
Classification via Regression learning algorithms 
using the second dataset. 

Figure 2: ROC curves for Bagged Random 
Forest, Bagged REPTree, Random Tree, J48 and 
Classification via Regression learning algorithms 
using the first dataset. 



 
 

 

 

 

Figure 4 shows that our approach compared well with the 
approach used by Licamele & Getoor[4]. We obtain a slightly 
higher accuracy (82.02%) and a slightly lower AUC score 
(0.845) using our best classifier (Bagged Random Forest) when 
compared with their results of Bagged REPTree (accuracy of 
81.7% and AUC score of 0.8967). We also extracted the AUC 
score for RandomForest on the DIP dataset as given by Qi et 
al.[8] with the same 1:600 ratio of positive and negative 
examples as they used in their paper (i.e., 1 positive example 
for every 600 negative examples). We calculated the AUC 
score for RandomForest on our two datasets and compared the 
results (Figure 5). 

 
 

 

 

Figure 5 shows that the AUC score generated by 
RandomForest using our approach was significantly higher 
than that observed by Qi et al.[8] at the same ratio of positive 
and negative examples. We study different ratios of positive 
and negative examples to identify the optimum ratio which will 
give the best AUC score. The results are shown in Figure 6.  

 

 
 

 

 

Figure 6 shows that the AUC scores vary without any 
pattern when the ratios of positive and negative examples are 
increased. This is because, the positive examples are randomly 
sampled and we infer that different samples might change the 
AUC score for that particular ratio. 

Based on the results, we conclude that our method of 
predicting protein-protein interactions performs slightly better 
than the existing methods for the same task. The comparisons 
have shown that our method compares well with the method by 
Licamele & Getoor[4] (our approach has a better accuracy but 
lower AUC score when compared with the approach of 
Licamele & Getoor[4]). The comparisons have also shown that 
we obtain a better AUC score using our approach on the same 
dataset used by Qi et al.[8]. The results are encouraging 
especially due to the fact that we do not use any features based 
on sequence or Gene Ontology information as used in the 
previous approaches to the PPI prediction problem. 

In a separate comparative experiment, we also applied a 
Support Vector Machines (SVM) inducer for learning the PPI 
prediction task on the second dataset. We used a linear kernel 
in the SVM inducer and obtained an accuracy of 67.81%, 
precision of 70.36% and a recall of 61.54%. These results are 
not as good as those of other learning algorithms described in 
this paper.  

VI. CONCLUSION & FUTURE WORK 
In this study, we have addressed the problem of predicting 

protein-protein interactions based on an interaction network 
graph. We have identified nine structural features for 
Saccharomyces cerevisiae protein interaction networks. Based 
on these features, we have learned several classifiers and 
evaluated them on separate test sets. We have compared our 
results with previous results obtained for the same problem 
using different approaches (which use relational features of the 
PPI network). The results look promising. Future work is 
aimed at exploring the possibility of including features 
extracted from protein sequences. We expect that the addition 
of features derived from sequence will result in better ROC 
curves. Finally, we aim to use more learning algorithms to 
determine if higher accuracy and AUC score can be obtained. 

Figure 4: ROC curve comparing our best classifier 
(Bagged Random Forest), our Bagged REPTree and 
Bagged REPTree results as reported by Licamele & 
Getoor on their dataset[4]. 

Figure 5: Comparison of AUC scores of 
RandomForest using our approach on the first and 
second dataset and the approach used by Qi et al.[8] 

Figure 6: Comparison of AUC scores for 
different ratios using RandomForest on the second 
dataset only 
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