
Parallel Backfill: Improving HPC System Performance by
Scheduling Jobs in Parallel

Donald Riffel
dhriffel@ksu.edu

Kansas State University
Manhattan, Kansas, USA

Daniel Andresen
dan@ksu.edu

Kansas State University
Manhattan, Kansas, USA

Scott Hutchison
scotthutch@ksu.edu

Kansas State University
Manhattan, Kansas, USA

William Hsu
bhsu@ksu.edu

Kansas State University
Manhattan, Kansas, USA

ABSTRACT
High-performance computing (HPC) clusters are widely used as a
platform for scientific and engineering research as well as a broad
range of data analysis tasks. Demand for HPC resources contin-
ues to grow, necessitating more scalable systems and improved
management of cluster resources. Job scheduling algorithms are
key components of managing the allocation of cluster resources.
A common algorithm that is used in many production systems is
backfilling, which provides an efficient and feasible approach to
scheduling. Many variations of backfilling have been created and
studied which aim to improve its performance, but there are still
opportunities in this field. In this paper, we propose a new approach
named Parallel backfilling which improves scheduling throughput
without increasing execution time in production environments. Our
concept is to allow for multiple backfill "workers" to process the
waiting job queue in parallel, increasing the rate of scheduled jobs
and thus improving system turnaround time for users. We present
simulated results based on job traces from the Beocat HPC cluster
at Kansas State University that show significant improvement in
average job wait times and scheduler throughput. We conclude
that Parallel backfill provides better performance than traditional
backfill and some of its variants, and compare our results with a
selection of scheduling optimizations.

CCS CONCEPTS
•Hardware→ Testing with distributed and parallel systems; • Soft-
ware and its engineering→ Scheduling; • Theory of compu-
tation→ Parallel algorithms;

KEYWORDS
High-Performance Computing, Scheduling, Performance, Slurm
ACM Reference Format:
Donald Riffel, Daniel Andresen, Scott Hutchison, and William Hsu. 2024.
Parallel Backfill: Improving HPC System Performance by Scheduling Jobs in

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC ’24, July 21–25, 2024, Providence, RI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0419-2/24/07
https://doi.org/10.1145/3626203.3670610

Parallel. In Practice and Experience in Advanced Research Computing (PEARC
’24), July 21–25, 2024, Providence, RI, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3626203.3670610

1 INTRODUCTION
High-performance computing (HPC) clusters are widely used as
a platform for scientific and engineering research. Resource man-
agement (RM) systems are a critical component of these clusters as
they are responsible for scheduling workloads that users submit as
jobs. These jobs request resources such as processor cores, memory,
graphics processors, and estimated amounts of runtime. RM systems
schedule these resources initially with a primary scheduler that is
quick to place incoming submissions into the active schedule. This
is effective at creating a dense schedule upfront but as jobs complete
earlier than expected gaps will appear. These gaps lead to a sparse
schedule that is inefficient at utilizing resources and pushes new job
start times further in the future. To address this another scheduler
is used which performs backfilling [9]. Backfill scheduling has been
shown to decrease the wait time for job execution and increase
the density of cluster schedules by 20% [7][5]. Several RM systems
including Slurm [10], Maui [5], and Sun Grid Engine [2] incorporate
backfilling as a scheduler. These systems often provide adminis-
trators with configuration options to fine-tune backfill parameters,
facilitating customization based on the specific characteristics and
requirements of the HPC environment. The main disadvantage of
this scheduler is that it is computationally expensive to perform
per job in the queue, making it less effective in larger-scale clusters.
Our paper focuses on enhancing the performance of an existing
backfill scheduler in the widely used open-source Slurm RM sys-
tem. We aim to improve backfill efficiency by creating a parallel
implementation that makes use of readily available processor cores
on HPC controller nodes. Experimental results and benchmarks
are presented to showcase the effectiveness of our enhancements,
with our experimental setup described in appendix section A. We
also discuss encountered challenges, their resolutions, and potential
future improvements.

1.1 Related Work
Previous efforts have focused on improving scheduling by creating
better run time estimates, estimating job completion time through
code analysis, or even replacing the backfill algorithm entirely.
Some work has focused on modifying the strategies used in original

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626203.3670610
https://doi.org/10.1145/3626203.3670610
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626203.3670610&domain=pdf&date_stamp=2024-07-17

PEARC ’24, July 21–25, 2024, Providence, RI, USA Riffel and Andresen, et al.

backfilling. One such work is Fattened backfilling which is a slight
modification [3]. In Fattened backfill, short jobs are allowed to
move forward in the schedule if they do not delay the first job in
the queue by more than the average waiting time of already finished
jobs. A similar work is Deviation backfilling, where short jobs are
moved up if they do not delay the first job in the queue more than
the deviation between the user estimate and system prediction for the
first job [6].

Other works have taken more advanced approaches to improve
backfilling ability. Several have targeted improving user runtime
estimates as the optimization, with a recent focus on utilizing ma-
chine learning methods [8] [1] [12]. Some look at alternative pri-
ority schemes for considering jobs, such as Shortest Area First [4]
which orders potential jobs based on their cumulative resource
"area" requested. Most of these attempts have shown performance
improvements, but many are targeted at specific workload types
or require preferred circumstances. Our approach takes advantage
of the fact that cluster systems are inherently designed to supply
resources for parallel computation, and avoids reliance on special
cases.

2 PARALLEL BACKFILL ALGORITHM
To implement our proposed solution, we began by examining the
fundamental loop of the backfill scheduler in Slurm. The pseu-
docode of Slurm backfill is shown in Algorithm 2. This backfill is
similar to the original method and begins by collecting the queued
jobs and sorting them based on arrival time, as well as the running
jobs and orders them based on expected termination. It also collects
free and in-use resource information. It then iterates through the
sorted job queue until either all jobs have been checked or a timeout
occurs. For each iteration, initial viability checks are performed
before proceeding to a schedule attempt section. If enough free
resources are available that the job may start immediately, it does
so and continues to the next job in the queue. Otherwise, if there
are resources available at a future point in the schedule and those
resources are available for at least the expected runtime of the job,
a reservation for the job is placed at that period. This is the general
algorithm and many other operations take place such as assess-
ing the impact of preempting other jobs, user or partition usage
limit checks, and Quality of Service (QOS) factor calculation. From
this, we identified two avenues for introducing parallel computing
threads to improve scheduling performance.

2.1 Parallel Backfill Workers
2.1.1 Core Backfill Loop. We first focused on parallelizing the core
loop of the algorithm. The original algorithm first allocates any
local variables and then checks if any limits on backfill scheduling
are in effect. It then performs the preliminary work of collecting
and sorting the job queue, running job list, and free node resources.
Next, it proceeds into the backfill loop. State information is held
and updated as the backfill loop through the job queue is done
sequentially. This loop pops a pending job from the queue and
checks that it is still a viable job to be scheduled, then proceeds
to search for a potential reservation slot for it. If potential spots
are found, a schedule attempt is made on those resources. Once it
has either scheduled the job or failed to find appropriate resources

Algorithm 1 Parallel Backfilling Algorithm
ParallelBackfill(N):
𝑄𝑢𝑒𝑢𝑒𝑑 𝐽 𝑜𝑏𝑠 ← Job Queue with requested resources
𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐽 𝑜𝑏𝑠 ← Running Jobs with resources used and expected run-
time
𝐹𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠 ← Currently free node resources
{Setup}:
for all r RunningJobs R do

𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐽 𝑜𝑏𝑠 ← Order r by expected termination time;
for all o OrderedRunningJobs O do

𝑈𝑠𝑎𝑔𝑒𝑃𝑟𝑜 𝑓 𝑖𝑙𝑒 ← Divide o into future periods based on terminations;
for all q QueuedJobs Q do

𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑄𝑢𝑒𝑢𝑒𝑑 𝐽 𝑜𝑏𝑠 ← Order q by arrival time, shared variable;
{Parallel Region - To be executed by N number of workers}
𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐽 𝑜𝑏𝑠 ← Thread-private copy of𝑈𝑠𝑎𝑔𝑒𝑃𝑟𝑜 𝑓 𝑖𝑙𝑒

𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐹𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠 ← Thread-private copy of 𝐹𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠

{Schedule}:
while𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑄𝑢𝑒𝑢𝑒𝑑 𝐽 𝑜𝑏𝑠 do

𝑗 ← 𝑝𝑜𝑝 (𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑄𝑢𝑒𝑢𝑒𝑑 𝐽 𝑜𝑏𝑠)
if 𝑗𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 ≤ 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐹𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠 then

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑈𝑝𝑑𝑎𝑡𝑒 (𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐹𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠) ;
𝑆𝑡𝑎𝑟𝑡𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑙𝑦 (𝑗, 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐹𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠) ;
𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒 (𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐹𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠) ;
Continue;

for all p PrivateRunningJobs P do
if (𝑗𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 ≤ 𝑝𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑁𝑜𝑑𝑒𝑠) & (𝑗𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑅𝑢𝑛𝑡𝑖𝑚𝑒 ≤
𝑝𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑖𝑚𝑒) then

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑈𝑝𝑑𝑎𝑡𝑒 (𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐽 𝑜𝑏𝑠) ;
𝐶𝑟𝑒𝑎𝑡𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 (𝑗, 𝑝) ;
𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒 (𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐽 𝑜𝑏𝑠) ;
Break;

Continue;

for it, it moves to the next pending job in the queue. The loop
continues to iterate until certain termination conditions are met,
such as time limits or the queue of jobs to check has been exhausted.
Our modification to this portion is to restructure the loop to be
executed in parallel. Variables that previously maintained state
across iterations are split into shared and thread-private variables.
Instead of sequentially iterating through the job queue, several
backfill "worker" threads are created to perform the scheduling.
Each worker pops a job off the queue and executes the loop, with
this cycle continuing until all jobs have been checked or timeouts
are reached. The pseudocode of the main Parallel backfill loop
is shown in Algorithm 1. A majority of the heavy computation
is done within the schedule attempt section, leading to our next
modifications.

2.1.2 Schedule-Attempt Section. Parallel execution of this section is
more complex as it is prone to race conditions. A scheduling attempt
goes through several steps with the current job. First, it attempts
to schedule the job on any currently available nodes that match its
requested resources. If the job is still pending after this attempt, it
then simulates the termination of jobs one at a time to determine
when and where the job could start. It also tracks preemptable
jobs and considers those during the search. If it finds a suitable
slot in the schedule, it applies a reservation to the shared schedule.
These steps requiremany iterations stepping through several shared
lists: nodes, node resources, job lists, and cluster partitions. Slurm

Parallel Backfill PEARC ’24, July 21–25, 2024, Providence, RI, USA

Algorithm 2 Slurm Backfilling Algorithm
SlurmBackfill:
𝑄𝑢𝑒𝑢𝑒𝑑 𝐽 𝑜𝑏𝑠 ← Job Queue with requested resources
𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐽 𝑜𝑏𝑠 ← Running Jobs with resources used and expected run-
time
𝐹𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠 ← Currently free node resources
{Setup}:
for all r RunningJobs R do

𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐽 𝑜𝑏𝑠 ← Order r by expected termination time;
for all o OrderedRunningJobs O do

𝑈𝑠𝑎𝑔𝑒𝑃𝑟𝑜 𝑓 𝑖𝑙𝑒 ← Divide o into future periods based on terminations;
for all q QueuedJobs Q do

𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑄𝑢𝑒𝑢𝑒𝑑 𝐽 𝑜𝑏𝑠 ← Order q by arrival time;
{Schedule}:
for all j OrderedQueuedJobs J do

if 𝑗𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 ≤ 𝐹𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠 then
𝑆𝑡𝑎𝑟𝑡𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑙𝑦 (𝑗, 𝐹𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠) ;
Continue;

for all p UsageProfile P do
if (𝑗𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 ≤ 𝑝𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑁𝑜𝑑𝑒𝑠) & (𝑗𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑅𝑢𝑛𝑡𝑖𝑚𝑒 ≤
𝑝𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑖𝑚𝑒) then

𝐶𝑟𝑒𝑎𝑡𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 (𝑗, 𝑝) ;
Break;

Continue;

includes access locks on many of its data structures, which limits
concerns of any race conditions from our perspective but negatively
impacts parallel performance. Our solution is to relax the access
locks on some of the shared lists. Specifically, the currently running
and scheduled job resource lists, and allow for concurrent reads
but maintain write locks. This is effective as a majority of the lock
claims involve shared data reads within the section, and shared data
writes mostly occur when the final scheduling of a job is applied.

2.2 Managing Race Conditions
With these modifications, we are allowing each thread to read the
resource and job state simultaneously. This can lead to a scheduling
conflict, when one worker schedules its job, the other workers
could then be using incorrect state information. To solve this, we
maintain a record of the resources used for workers which have
completed a job schedule attempt. Once another thread reaches
the schedule attempt step with outdated resource state information
and is considering these resources for scheduling, it can be rectified
by comparison with the saved resource allocation data of the prior
workers. This rectification step is simplified as node and resource
state information is stored in bitmap data structures, which can
make use of bitwise comparison. For a worker which is attempting
to schedule a job using outdated state information, a bitwise AND
function can determine resource overlaps, and those are trimmed
from the worker’s stored resource state information. The worker
is then allowed to continue and break out of its attempt if the
resources it requires are no longer available.

3 RESULTS AND ANALYSIS
The experimental performance of our proposed solution showed
significant improvements to several aspects of the backfill sched-
uler in two tested scenarios: high-job and low-job queue traffic.

High-job traffic displayed improvements in the throughput of jobs
examined for backfill scheduling and scaled according to the num-
ber of worker threads used. Low-job queue traffic showed baseline
improvement in the execution speed of individual backfill scheduler
runs that also scaled accordingly. Particular improvements were
seen in the average wait time of jobs, distribution of cluster utiliza-
tion over time, and pending job queue length. To determine the
performance of our method we observe several common metrics:
Average Wait Time (AWT), Average Response Time (ART), and
Bounded Slowdown (BSLD). AWT shows the average time a job
waits from the time of submission until it begins execution. ART is
a user-focused metric that measures the average time between job
submission and completion, essentially being how long the user
waits for a result response from the HPC system after they request
a job run. BSLD is an extension of the Slowdown metric which is
the ratio of response times to run times. Slowdown can be distorted
by very short runtime requests, such that a lower-limit bound is
used to prevent this distortion in BSLD.

AWT =

∑𝑛
𝑖=1 𝑡

𝑤
𝑖

𝑛
(1)

ART =

∑𝑛
𝑖=1 𝑡

𝑟
𝑖

𝑛
(2)

BSLD =

∑𝑛
𝑖=1

𝑡𝑟
𝑖

𝑚𝑎𝑥 (𝐵,𝑡𝑒
𝑖
)

𝑛
(3)

where
• 𝑡𝑤

𝑖
is the wait time of the job (difference between start and

submission time)
• 𝑡𝑒

𝑖
is the execution time of the job

• 𝑡𝑟
𝑖
is the response time of the job (𝑡𝑤

𝑖
+ 𝑡𝑒

𝑖
)

• 𝐵 is the lower limit bound (10 minutes in our tests)
• 𝑛 is the total number of jobs accepted for scheduling

Our method showed the greatest improvement on the high-
job traffic dataset. This scenario stimulates heavy backfilling and
quickly saturates the original scheduler where the waiting job
queue grows faster than can be scheduled. Parallel backfill showed
increased capacity and allowed deeper searches into the job queue
while having a similar execution time as the original. This allowed
for a significantly lower maximum wait queue size during the sim-
ulation runs per backfill worker. The original algorithm showed a
maximum queue size of 50,000 jobs on average, while the 8-worker
showed around 35,000. This also corresponded with cluster utiliza-
tion being more concentrated to earlier in the simulation run. Both
algorithms achieved near 100% utilization but Parallel maintained
higher utilization earlier, showing more efficient use of available
cluster resources. Table 3 shows according to our metrics the im-
provements per worker count when compared to the baseline runs
on the high-job traffic dataset. On the top end, 8-worker backfilling
showed an over 55% improvement in ART and 60% in BSLD.

For the low-job traffic scenario, parallel backfill showed perfor-
mance improvements mainly in the individual backfill run times.
Smaller job queue sizes may not saturate either algorithm, which
would not cause them to break execution due to time limits. While
our metrics do not show much parallel improvement, each run of
the backfill loop was able to check the same amount of queued jobs

PEARC ’24, July 21–25, 2024, Providence, RI, USA Riffel and Andresen, et al.

Table 1: Parallel Performance on high-job traffic dataset

Worker AWT ART BSLD
Count (Hours) (Hours) (Hours)

Original 45.89 50.61 143.71
2 34.35 39.05 108.40
4 22.94 27.63 71.65
8 17.12 21.80 52.82

Table 2: Parallel Performance on low-job traffic dataset

Worker AWT ART BSLD
Count (Hours) (Hours) (Hours)

Original 1.68 6.36 4.84
2 1.39 6.06 3.77
4 1.37 6.04 3.79
8 1.38 6.05 3.76

as the original algorithm in less time with multiple workers. This
improvement is minimal on a per-backfill run basis yet would lead
to greater cumulative time savings as the schedule matures. Table 2
shows the performance per worker count when compared to the
baseline runs on the low-job traffic dataset.

4 CONCLUSIONS AND FUTUREWORK
In this work, we have presented a new variation of the backfill
algorithm we call Parallel Backfill. Our purpose was to make use of
the readily available parallel resources present in HPC systems to
improve the scheduling of submitted workloads. We discussed the
theory and implementation of our model and analyzed its improve-
ments based on common metrics such as AWT and BSLD. Through
simulation of a production system environment and workload, our
method shows improvement in HPC system utilization, average
wait times, and responsiveness.

Next steps involve implementing this backfill scheduler in a
production environment to assess real-world performance. Along
with this is applying the modifications to more recent versions of
Slurm. Further optimizations can be made to the Parallel backfill
algorithm, such as applying parallel processing to more of the
scheduling calculations or creating a more robust race condition
management system.

REFERENCES
[1] Eric Gaussier, David Glesser, Valentin Reis, and Denis Trystram. 2015. Improving

Backfilling by using Machine Learning to predict Running Times. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’15). Association for Computing Machinery, New York,
NY, USA, 1–10. https://doi.org/10.1145/2807591.2807646

[2] Wolfgang Gentzsch. 2001. Sun Grid Engine: Towards Creating a Compute
Power Grid. In Proceedings First IEEE/ACM International Symposium on Clus-
ter Computing and the Grid. IEEE, Brisbane, QLD, Australia, 35–36. https:
//doi.org/10.1109/CCGRID.2001.923173

[3] César Gómez-Martín, Miguel A. Vega-Rodríguez, and José-Luis González-Sánchez.
2016. Fattened backfilling: An improved strategy for job scheduling in parallel
systems. J. Parallel and Distrib. Comput. 97 (Nov. 2016), 69–77. https://doi.org/
10.1016/j.jpdc.2016.06.013

[4] Syed Munir Hussain Shah, Kalim Qureshi, and Haroon Rasheed. 2010. Optimal
job packing, a backfill scheduling optimization for a cluster of workstations. The

Journal of Supercomputing 54, 3 (Dec. 2010), 381–399. https://doi.org/10.1007/
s11227-009-0332-3

[5] David Jackson, Quinn Snell, and Mark Clement. 2001. Core Algorithms of the
Maui Scheduler. In Job Scheduling Strategies for Parallel Processing (Lecture Notes
in Computer Science), Dror G. Feitelson and Larry Rudolph (Eds.). Springer, Berlin,
Heidelberg, 87–102. https://doi.org/10.1007/3-540-45540-X_6

[6] Thanh Hoang Le Hai, Khang Nguyen Duy, Thin Nguyen Manh, Danh Mai
Hoang, and Nam Thoai. 2023. Deviation Backfilling: A Robust Backfilling
Scheme for Improving the Efficiency of Job Scheduling on High Performance
Computing Systems. In 2023 International Conference on Advanced Comput-
ing and Analytics (ACOMPA). IEEE, Da Nang City, Vietnam, 32–37. https:
//doi.org/10.1109/ACOMPA61072.2023.00015

[7] Sergei Leonenkov and Sergey Zhumatiy. 2015. Introducing New Backfill-based
Scheduler for SLURM Resource Manager. Procedia Computer Science 66 (Jan.
2015), 661–669. https://doi.org/10.1016/j.procs.2015.11.075

[8] Kevin Menear, Ambarish Nag, Jordan Perr-Sauer, Monte Lunacek, Kristi Potter,
and Dmitry Duplyakin. 2023. Mastering HPC Runtime Prediction: From Observ-
ing Patterns to aMethodological Approach. In Practice and Experience in Advanced
Research Computing (PEARC ’23). Association for Computing Machinery, New
York, NY, USA, 75–85. https://doi.org/10.1145/3569951.3593598

[9] A.W. Mu’alem and D.G. Feitelson. 2001. Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE
Transactions on Parallel and Distributed Systems 12, 6 (June 2001), 529–543. https:
//doi.org/10.1109/71.932708 Conference Name: IEEE Transactions on Parallel
and Distributed Systems.

[10] SchedMD. 2024. Slurm Workload Manager - Documentation. https://slurm.
schedmd.com/

[11] Nikolay A. Simakov, Martins D. Innus, Matthew D. Jones, Robert L. DeLeon,
Joseph P. White, Steven M. Gallo, Abani K. Patra, and Thomas R. Furlani. 2018. A
Slurm Simulator: Implementation and Parametric Analysis. In High Performance
Computing Systems. PerformanceModeling, Benchmarking, and Simulation (Lecture
Notes in Computer Science), Stephen Jarvis, Steven Wright, and Simon Hammond
(Eds.). Springer International Publishing, Cham, 197–217. https://doi.org/10.
1007/978-3-319-72971-8_10

[12] Mohammed Tanash, Brandon Dunn, Daniel Andresen, William Hsu, Huichen
Yang, and Adedolapo Okanlawon. 2019. Improving HPC System Performance by
Predicting Job Resources via Supervised Machine Learning. In Proceedings of the
Practice and Experience in Advanced Research Computing on Rise of the Machines
(learning) (PEARC ’19). Association for Computing Machinery, New York, NY,
USA, 1–8. https://doi.org/10.1145/3332186.3333041

A RESEARCH METHODS
We used Slurm Simulator [11] to develop and evaluate our method.
It is capable of simulating backfill performance by running the
algorithm on a given trace of job submissions and for a particular
cluster topology. The current official release of the simulator uses
version 17.11 of Slurm, which is much older than the currently
available 23.11 Slurm release. There has been many changes to
Slurm in general between these versions, but after comparing the
backfill algorithms of both we determined there to be minimal
changes and as such our modifications should apply well to current
Slurm versions. The simulator was deployed on a Centos7 instance
and our target cluster to simulate is the Beocat HPC cluster at
Kansas State University. The job trace used for testing is a set
of 100,000 real jobs selected from a distribution that represents
a variety of resource requests. This data was used to create two
sample datasets that showcase different scheduling scenarios. One
dataset had all jobs set to be submitted to the cluster within a
one-week time frame to stimulate a heavy job queue load. Dataset
two had its time frame set to be two weeks in submission times,
which led to a low job queue load. To compare the scalability of the
algorithm, simulations were run on each dataset with the original
backfill algorithm and then with 2, 4, and 8 Parallel worker threads.
For each of these individual simulation runs, 10 simulations were
done and final performance metrics were sampled as the average
across the batch.

https://doi.org/10.1145/2807591.2807646
https://doi.org/10.1109/CCGRID.2001.923173
https://doi.org/10.1109/CCGRID.2001.923173
https://doi.org/10.1016/j.jpdc.2016.06.013
https://doi.org/10.1016/j.jpdc.2016.06.013
https://doi.org/10.1007/s11227-009-0332-3
https://doi.org/10.1007/s11227-009-0332-3
https://doi.org/10.1007/3-540-45540-X_6
https://doi.org/10.1109/ACOMPA61072.2023.00015
https://doi.org/10.1109/ACOMPA61072.2023.00015
https://doi.org/10.1016/j.procs.2015.11.075
https://doi.org/10.1145/3569951.3593598
https://doi.org/10.1109/71.932708
https://doi.org/10.1109/71.932708
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://doi.org/10.1007/978-3-319-72971-8_10
https://doi.org/10.1007/978-3-319-72971-8_10
https://doi.org/10.1145/3332186.3333041

	Abstract
	1 Introduction
	1.1 Related Work

	2 Parallel Backfill Algorithm
	2.1 Parallel Backfill Workers
	2.2 Managing Race Conditions

	3 Results and Analysis
	4 Conclusions and Future Work
	References
	A Research Methods

