
AMPRO-HPCC: A Machine-Learning Tool for
Predicting Resources on Slurm HPC Clusters

Mohammed Tanash
Computer Science Department

Kansas State University
Manhattan, United States
e-mail: tanash@ksu.edu

Daniel Andresen
Computer Science Department

Kansas State University
Manhattan, United States

e-mail: dan@ksu.edu

William Hsu
Computer Science Department

Kansas State University
Manhattan, United States

e-mail: bhsu@ksu.edu

Abstract—Determining resource allocations (memory and
time) for submitted jobs in High Performance Computing (HPC)
systems is a challenging process even for computer scientists.
HPC users are highly encouraged to overestimate resource
allocation for their submitted jobs, so their jobs will not be killed
due to insufficient resources. Overestimating resource allocations
occurs because of the wide variety of HPC applications and
environment configuration options, and the lack of knowledge
of the complex structure of HPC systems. This causes a waste
of HPC resources, a decreased utilization of HPC systems, and
increased waiting and turnaround time for submitted jobs. In
this paper, we introduce our first ever implemented fully-offline,
fully-automated, stand-alone, and open-source Machine Learning
(ML) tool to help users predict memory and time requirements
for their submitted jobs on the cluster. Our tool involves imple-
menting six ML discriminative models from the scikit-learn and
Microsoft LightGBM applied on the historical data (sacct data)
from Simple Linux Utility for Resource Management (Slurm).
We have tested our tool using historical data (saact data) using
HPC resources of Kansas State University (Beocat), which covers
the years from January 2019 - March 2021, and contains around
17.6 million jobs. Our results show that our tool achieves high
predictive accuracy R2 (0.72 using LightGBM for predicting
the memory and 0.74 using Random Forest for predicting the
time), helps dramatically reduce computational average waiting-
time and turnaround time for the submitted jobs, and increases
utilization of the HPC resources. Hence, our tool decreases the
power consumption of the HPC resources.

Keywords—HPC; Scheduling; Supervised Machine Learning;
Slurm; Performance.

I. INTRODUCTION

High Performance Computing (HPC) resources have be-
come more available to users to run their extensive compu-
tations and simulations. One of the most important parts of
the HPC system is the batch scheduler. The batch scheduler
manages resources and queues of all submitted jobs in the
cluster. Hence, it is the part that decides where and when jobs
will run in the cluster. On the other hand, batch scheduler
performance depends on the resource requirements from the
user such as the amount of memory, requested time, and
the number of cores [1]. While these resource requirements
are the responsibility of HPC users to determine, it is a
fact that users may determine resource needs inaccurately
[2]. Also, users are highly encouraged to overestimate these
resources in order to satisfy job requirements, so their jobs

will not be killed during the run time due to insufficient
resources [3]. Overestimating job resource requirements nega-
tively impacts the performance and the utilization of the HPC
system. Moreover, over-estimating job resource process will
increase average turn-around time and average waiting time
for submitted jobs.

In this paper, we introduce the first-ever open-source,
stand-alone, highly-accurate, fully-offline, and fully-automated
tool called AMPRO-HPCC, which stands for ”A Machine-
Learning-Tool for Predicting Resources On Slurm HPC Clus-
ters”. AMPRO-HPCC aims to help HPC users predict and
estimate the required job resource allocations (memory and
time) for their submitted jobs. Our tool uses Simple Linux
Utility for Resource Management (Slurm) historical logs-data
(sacct) and involves implementation of six Machine Learning
(ML) discriminative models from the scikit-learn [4] and
Microsoft LightGBM (LGBM) [5]. Our ML tool is invoked
through Command Line Interface (CLI), and it consists of two
parts: i) System administrator part, which is responsible for
preparing data and all the required models for building the final
models and tool; ii) HPC user side, which will automatically
read the submission job script provided from the HPC user and
recommend the required job allocation resources (memory and
time) for the associated submitted job.

We have extended our previous work [6]–[8], and designed
the AMPRO-HPCC tool to help HPC users determine the
allocation of HPC resource needs (memory and time) using
supervised ML over historical data (sacct). Our open-source
tool can be found on GitHub [9].

The rest of this paper is organized as follows: Section
2, discusses the related work. Section 3 describes our pre-
diction tool, AMPRO-HPCC, which includes the workflow
model, data preparation, evaluation and building of our Mixed
Account Regression Model (MARM), and the job resource
prediction. Section 4 shows our promising results. Finally,
Section 5 presents our conclusion.

II. RELATED WORK

Simple Linux Utility for Resource Management (Slurm) is
a resource manager, which enables HPC resources to execute
parallel jobs efficiently [10]. Slurm turns a set of hundreds or
tens of thousands of computers into a single unit that you can

run jobs on. So Slurm makes parallel computers easy to use.
Slurm allocates resources within a cluster, manages the nodes,
and keeps track of architecture within a node such as sockets,
NUMA boards, cores, hyper threads, memory, interconnect,
generic resources, and managing licenses. Slurm manages jobs
through varieties of scheduling algorithms (fair share, gang,
advanced reservation, etc.) [11].

While there are many kinds of resource management sched-
uler such as Sun Grid Engine (SGE) [12], Tera-scale Open-
source Resource and Queue manager (TORQUE) [13], [14],
and Portable Batch System (PBS) [15], [16], Slurm is the most
popular and most used among them. Hence, we implemented
our tool based on Slurm workload manager HPC systems.

There are many studies and research focusing on predicting
the running time and the time required for running application
on the HPC systems or the cloud [17]–[29], while there are
quite a lot of research that focuses on predicting the amount
of memory required for the submitted jobs [30], [31].

Our work differs by the methodology used and the ability
to predict both memory and time required for submitted jobs
on the HPC systems. We conclude ”there does not yet exist
software that can help to fully automate the allocation of HPC
resources or to anticipate resource needs reliably by gener-
alizing over historical data, such as determining the number
of processor cores and the amount of memory needed.” [6].
Hence, we are introducing the first-ever open-source ML tool
for predicting job resources (memory and time) for submitted
jobs on the HPC systems.

III. PREDICTION TOOL AMPRO-HPCC

Figure 1 illustrates the use-case diagram of our
ML tool. We have two types of users: i) system
administrators (referred to as admin henceforth) and
ii) HPC users (referred to as users henceforth).
Modules PreProcess, BuildPerAccountModels,
BuildMixedAccountModels and
TrainSelectedMARM are available to admins, while
the Ampro-hpcc module is available to both admins and
users. The main objective of our tool is to build Mixed
Account Regression Models (MARM), which are regression
models built on a subset of slurm Accounts with the best
overall predictive performance, containing a reasonable
percentage of jobs. Here, we provide descriptions of each
module along with its inputs and outputs.

A. AMPRO-HPCC Workflow Model

Figure 2 describes the workflow model of our work as
follows: i) The user prepares and creates a new job, which
includes the requested amount of memory, time limit, quality
of service (QoS), and partition name for the proposed job.
ii) The HPC user will submit their job and passes it through
our ML model in order to predict the amount of the required
memory and the amount of time needed for the job to run. iii)
Our ML model will process the submitted job by parsing all of
the parameters needed, then predicting required memory and
time for the specific job. iv) The HPC user will get feedback

Fig. 1. Use-Case Diagram for AMPRO-HPCC

from our model regarding the needed amount of memory
and time for their submitted jobs. v) The user will have the
option to confirm or deny to use the predicted values for the
required memory and time. vi) If the user confirms the use
of the predicted amounts for either the required memory or
the required time or both, then our ML model will update
the amounts of memory and time as needed for the submitted
job. If not, then the submitted job will remain the same. vii)
The user will be notified about the changes to their jobs.
viii) Finally, either an updated job or the original job will
be scheduled for running on the cluster.

B. Data Preparation

The data preparation or Preprocess module takes the
path (path_to_data) to logs of slurm jobs accounting
information (sacct) to extract Account, ReqMem, Timelimt, Re-
qNodes, ReqCPUS, QoS, Partition, MaxRSS, CPUTimeRAW,
and State from the dataset. A description of these features
can be found at [32]. The module also asks the admin
to provide default time-limit (def_time), default qual-
ity of service (def_qos), and default partition assignment
(def_partition) to deal with some of the missing values
in the data. Finally, the admin also has the ability to specify a
set of QoS (sel_qos) and partitions (sel_partition)
that they want to select over the entire data. In addition,
the Pre-processing module does its own filtration by
only selecting jobs with State equals to ’COMPLETED’,
and having non-zero MaxRSS and CPUTimeRAW. Next, this
module standardizes Timelimit to numeric hours, MaxRSS
and ReqMem to gigabytes (GB), and Account and QoS to
numeric factors. Finally, Account, ReqMem, ReqNodes, Time-
limit, QoS, MaxRSS, and CPUTimeRAW are normalized us-

Fig. 2. AMPRO-HPCC Work-Flow Diagram.

ing the StandardScaler transform in Scikit-learn Python
package [4].

C. Evaluating Individual Regression Models

Before building the Mixed Account Regression Models
(MARM), the admin can evaluate individual regression mod-
els to note what may be most suited to their dataset. Al-
though optional, the BuildPerAccModels module can
provide initial insights on the quality of data and can sig-
nificantly speed up MARM building time by nominating
promising regression models for MARM overall possibilities.
The BuildPerAccModels module requires the admin to
provide the path to processed data (path_to_data), inde-
pendent variables or features (indep_vars), and a depen-
dent variable (dep_var) to train and evaluate seven popular
regression models on all data-subsets containing individual
Account. At this point, the admin can specify the minimum
number of jobs an individual Account should have in order
to be considered (min_num_jobs). The seven regression
models include: i) Lasso Least Angle Regression (LL) [33],
[34], ii) Linear Regression (LR) [34], iii) Ridge Regression
(RG) [34], iv) Elastic Net Regression (EN) [34], v) Classifi-
cation and Regression Trees (DTR) [35], vi) Random Forest
Regression, (RFR) [36], and vii) LightGBM (LGBM) [5]. The
regression models are evaluated by means of the Coefficient
of determination (R2), and root mean squared error (RMSE)
[34]. We used scikit-learn’s [4] implementation for all models
and performance metrics.

D. Evaluating Mixed Account Regression Models

Once the individual regression models have been eval-
uated, the admin can select what models should be
considered for MARM. The admin can also decide to
select all seven regression models for MARM. Our
BuildMixedAccountModels module requires a path
to processed data (path_to_data), independent vari-
ables (indep_vars), dependent variable (dep_var), the
minimum number of jobs (min_num_jobs), and the
names of the regression models to be considered for

MARM (methodnames). A mixed account regression model
MARM(N,M,X, Y) is constructed by finding N accounts
with the best performance score for a given regression model
M in predicting a dependent variable Y using independent
variables X . MARM is constructed iteratively and can be
summarized as follows:

MARM(N,M,X, Y) =

{
N

′
N = 1

MARM(N − 1,M,X, Y) ∪N
′

otherwise

where N
′ ∈ N is the Account that results in the best overall

aggregate score in terms of R2 on training (R2tr) and testing
(R2te) datasets and number of jobs (SN ′), given by:

N
′
= argmaxn∈N (R2tr(M,XA[n], YA[n]), R2te(M,XA[n], YA[n]), SA[n])

where XA[n] and YA[n] correspond to independent and
dependent variables respectively for an unique Account A[n].
Thus, the MARM of N accounts depends upon the MARM
of N −1 accounts appended with the best overall Account N

′

that results in the best overall performance. R2 scores R2tr
and R2te are calculated by randomly splitting the data into
80% (training) / 20% (testing), five times (5-fold) modeling
using the regression model M , and averaging the R2 scores
on training and testing data subsets over the five runs. A
comprehensive explanation of the Mixed Account Regression
Model (MARM) can be found in our publication [7].

E. Building MARM for Prediction

The BuildMixedAccountModels module generates
R2 score distributions over 1, 2, · · · , N for each regression
model M specified by the admin in methodnames.
Thus, the admin can determine which regression model
performs the best along with the best number of accounts
n̂ ≤ N to use. Thus, our TrainSelectedMARM module
takes the selected regression model (sel_model), path to
processed data (path_to_data), path to the intermediate
results produced by BuildMixedAccountModels
module (path_to_marm_res) independent variables

(indep_vars), dependent variable (dep_var) and number
of accounts (num_acc) to build the final MARM for resource
prediction.

F. Job Resource Prediction

Finally, the users of the slurm system can use Ampro-hpcc
module by providing a path to their Slurm job sub-
mission script (path_to_script), a path to selected
MARM model (path_to_model), a path to system de-
fault (path_to_defaults), and a path to the nor-
malization transform (standard Scalar inverse transform)
(path_to_stdscale) to obtain the recommended values
of time and memory. To be conservative and prevent failure
due to time and memory requirements that may underestimate
of the actual memory and time utilization, our recommended
values are increased by 10%.

IV. RESULTS AND DISCUSSION

A. Preprocessing and PerAccount Models

We applied our ML tool using the HPC resources at Kansas
State University, called Beocat. The data side has 17.6 million
instances and covers the years 2018 - 2021 of the usage. Af-
ter using PreProcessing module only selecting ’normal’
QoS, the dataset contained 7.8 million jobs spread across 21
unique accounts. Employing BuildPerAccountModels,
we evaluated all seven regression models across 21 accounts,
resulting in Figure 3 for predicting time (CPUTimeRAW) and
memory (MaxRSS) that shows boxplots of R2 and negative
RMSE score distributions. We found LGBM, DTR, and RFR
to be clear winners. Thus, we decided to only utilize LGBM,
DTR, and RFR to build MARM.

B. MARM Models in Beocat

Utilizing BuildMixedAccountModels, we constructed
MARMs to predict memory and time in Beocat using 17
out of 21 accounts (80% of the total accounts) in Beocat.
Figure 4 shows the mean R2 score distribution of DTR,
RFR, and LGBM on training and testing datasets versus the
number of best account combinations in predicting time. It
can be seen that the R2 decreases as the number of accounts
(and jobs) increases. We found RFR was the best performer
in predicting time, while LGBM was the best performer
in predicting memory. Thus, we finalized the memory and
time MARM using TrainSelectedMARM to be i) best five
account combination (spanning across 1.8 million jobs) with
an average R2 of 0.74, for building an RFR based time model
and ii) best thirteen accounts combination (spanning across
1.4 million jobs) with average R2 of 0.72, for building an
LGBM based memory model as shown in Figure 4. Using
the finalized MARMs, we randomly sampled 5000 jobs from
Beocat and ran them on a Slurm simulator with requested,
actual, and predicted time and memory values.

C. Evaluating Our Model

We assessed our model using the Slurm simulator [37],
[38], which was developed by the Center for Computational
Research, SUNY Buffalo. The Slurm simulator was chosen
because it is implemented from a modification of the ac-
tual Slurm code while disabling some unnecessary functions,
which do not affect the functionality of the real Slurm [37].

Figure 5 shows submission and execution time, which
indicates the difference between the job submission time
(timestamp that represents when the job was submitted) and
the execution time (difference between the start and end
execution time) for five thousand jobs. Our results indicate
that we have achieved almost identical running time compared
to the actual running time.

Figure 6 measures and compares system utilization using
requested jobs resources versus actual job resources versus
predicted job resources using the AMPRO-HPCC tool. Our
results show that our tool reached almost similar utilization
compared to the utilization of the HPC system that used actual
job resources because of the high prediction accuracy of our
ML tool.

Figure 7 compares and assesses the backfill-sched algo-
rithm’s performance. The graph shows more efficient perfor-
mance on the backfill-sched algorithm on the Beocat testbeds
that used our ML module than the ones that did not. The
graph shows fewer density results when using predicted values
since using our AMPRO-HPCC model decreases the number
of resources required by the user for the submitted jobs in most
cases. This situation results in helping Slurm fit more jobs on
the cluster. It also reduces the need to use the backfill-sched
algorithm and resulting in more overall system efficiency by
using these available resources.

Table 1 provides the calculated average waiting time, and
average turn-around time for Beocat jobs for requested, actual,
and predicted job resources allocation. Our results show that
our tool was able to reduce the average waiting time for
submitted jobs from 680 hours to 8.0 hours and the average
turnaround time from 692 hours to 16.4 hours.

V. CONCLUSION

Determining the allocation of HPC resources for submitted
jobs is a difficult process for HPC users. It is still an open
question how many resources the user should specify (memory
and time) for their submitted jobs on the cluster. HPC users are
encouraged to overestimate job resources for their submitted
jobs. In this paper, we have developed a novel and the
first-ever open-source, stand-alone, fully-automated, highly-
accurate, and fully-offline ML tool to help HPC users to
determine the amount of required resources (memory and
time) for their submitted jobs on the HPC clusters. Our tool
was built using supervised ML algorithms. Our tool consists
of two parts: i) the system admin part, which is responsible
for preparing and building the ML model based on Slurm
historical data and providing it to the users; ii) the user part,
which uses the ML model provided from the system admin
part, reads the submitted job script, and predicts the required

LR LassoLARS Ridge ElasticNet LightGBM CART RandomForest
Methods

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
R2

Beocat_2018_2021 MaxRSS 10 Fold CV Report on R2

LR LassoLARS Ridge ElasticNet LightGBM CART RandomForest
Methods

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

Ne
ga

tiv
e

RM
SE

Beocat_2018_2021 MaxRSS 10 Fold CV Report on Negative RMSE

LR LassoLARS Ridge ElasticNet LightGBM CART RandomForest
Methods

0.26

0.28

0.30

0.32

0.34

0.36

0.38

R2

Beocat_2018_2021 CPUTimeRAW 10 Fold CV Report on R2

LR LassoLARS Ridge ElasticNet LightGBM CART RandomForest
Methods

0.86

0.84

0.82

0.80

0.78

0.76

Ne
ga

tiv
e

RM
SE

Beocat_2018_2021 CPUTimeRAW 10 Fold CV Report on Negative RMSE

Fig. 3. R2 and Negative RMSE of Seven Methods Across 21 Accounts in Beocat.

1
(5

48
4K

)

2
(5

69
7K

)

3
(6

60
0K

)

4
(6

65
2K

)

5
(6

65
4K

)

6
(6

65
5K

)

7
(6

65
9K

)

8
(6

79
9K

)

9
(6

81
0K

)

10
 (6

91
4K

)

11
 (6

99
3K

)

12
 (6

99
5K

)

13
 (7

00
0K

)

14
 (7

00
9K

)

15
 (7

01
7K

)

16
 (7

03
1K

)

17
 (7

04
2K

)

of users (# of jobs)

0.56

0.58

0.60

0.62

0.64

R2

Beocat_2018_2021 MaxRSS MARM based on
CART

TrainR2
TestR2

1
(5

2K
)

2
(9

55
K)

3
(9

60
K)

4
(9

61
K)

5
(9

68
K)

6
(9

79
K)

7
(1

19
2K

)

8
(1

19
4K

)

9
(1

19
5K

)

10
 (1

27
4K

)

11
 (1

37
9K

)

12
 (1

38
7K

)

13
 (1

40
1K

)

14
 (1

40
7K

)

15
 (1

54
7K

)

16
 (1

55
8K

)

17
 (7

04
2K

)

of users (# of jobs)

0.2

0.3

0.4

0.5

0.6

0.7

R2

Beocat_2018_2021 MaxRSS MARM based on
LightGBM

TrainR2
TestR2

1
(5

48
4K

)

2
(6

38
7K

)

3
(6

52
7K

)

4
(6

57
9K

)

5
(6

58
7K

)

6
(6

80
0K

)

7
(6

80
5K

)

8
(6

80
6K

)

9
(6

80
7K

)

10
 (6

91
1K

)

11
 (6

92
2K

)

12
 (6

93
6K

)

13
 (6

94
4K

)

14
 (6

95
0K

)

15
 (7

02
9K

)

16
 (7

03
1K

)

17
 (7

04
2K

)

of users (# of jobs)

0.50

0.55

0.60

0.65

0.70

0.75

R2

Beocat_2018_2021 MaxRSS MARM based on
RandomForest

TrainR2
TestR2

1
(2

13
K)

2
(2

24
K)

3
(8

72
K)

4
(8

76
K)

5
(8

78
K)

6
(1

78
0K

)

7
(1

78
9K

)

8
(1

79
4K

)

9
(1

80
2K

)

10
 (7

28
6K

)

11
 (7

39
0K

)

12
 (7

47
0K

)

13
 (7

61
0K

)

14
 (7

61
1K

)

15
 (7

68
0K

)

16
 (7

73
3K

)

17
 (7

74
7K

)

of users (# of jobs)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R2

Beocat_2018_2021 CPUTimeRAW MARM based on
CART

TrainR2
TestR2

1
(1

1K
)

2
(9

14
K)

3
(9

21
K)

4
(9

30
K)

5
(9

31
K)

6
(1

14
5K

)

7
(1

79
2K

)

8
(1

79
7K

)

9
(1

80
2K

)

10
 (1

87
1K

)

11
 (1

87
3K

)

12
 (2

01
3K

)

13
 (7

49
7K

)

14
 (7

60
1K

)

15
 (7

68
0K

)

16
 (7

69
4K

)

17
 (7

74
7K

)

of users (# of jobs)

0.1

0.2

0.3

0.4

0.5

0.6

R2

Beocat_2018_2021 CPUTimeRAW MARM based on
LightGBM

TrainR2
TestR2

1
(2

13
K)

2
(2

18
K)

3
(2

19
K)

4
(8

67
K)

5
(1

76
9K

)

6
(1

77
8K

)

7
(1

78
9K

)

8
(1

79
4K

)

9
(1

79
6K

)

10
 (1

80
4K

)

11
 (1

87
3K

)

12
 (2

01
3K

)

13
 (2

06
5K

)

14
 (7

54
9K

)

15
 (7

65
4K

)

16
 (7

73
3K

)

17
 (7

74
3K

)

of users (# of jobs)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R2

Beocat_2018_2021 CPUTimeRAW MARM based on
RandomForest

TrainR2
TestR2

Fig. 4. R2 Versus Number of Accounts in Predicting Memory and Time Using MARM Across Beocat

Fig. 5. Jobs Submission and Running Time. (Note Dramatic Improvement of Y Axis Range.)

Fig. 6. Utilization (Requested vs Actual vs Predicted) for Beocat Jobs.

Fig. 7. Backfill-Sched Algorithm Performance (Requested vs Actual vs Predicted) for Beocat Jobs.

TABLE I
AVERAGE WAITING AND TURNAROUND TIME (REQUESTED VS ACTUAL VS PREDICTED) FOR BEOCAT

Avg Wait Time (Hour) Avg TA Time (Hour) Median Wait Time (Hour) Median TA Time (Hour)
Requested 680 ±128 692.8 ±130 713.6 715.6

Actual 0.4 ±0.08 3.62 ±1.8 0 3.09
Predicted 8.0±1.1 6.36 ±1.9 1.4 5.9

amount of the resources (memory and time). Our tool achieves
high accuracy and can significantly increase the performance
and utilization of the HPC systems. Moreover, our ML tool can
dramatically decrease the average turnaround and waiting time
for the submitted jobs. Hence, our tool increases the efficiency
and decreases the power consumption of the Slurm-based HPC
resources.

ACKNOWLEDGMENT

We thank the HPC staff at KSU, including Adam Tygart
and Kyle Hutson, for their help and technical support. We
also thank the authors of the Slurm simulator at SUNY
Buffalo for releasing their work. This research was supported
by NSF awards CHE-1726332, ACI-1440548, CNS-1429316,
NIH award P20GM113109, and KSU.

REFERENCES

[1] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using
the parallel workloads archive,” Journal of Parallel and Distributed
Computing, vol. 74, no. 10, pp. 2967–2982, 2014.

[2] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user run-
time estimates inherently inaccurate?” in Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, 2004, pp. 253–263.

[3] M. Hovestadt, O. Kao, A. Keller, and A. Streit, “Scheduling in hpc
resource management systems: Queuing vs. planning,” in Workshop on
Job Scheduling Strategies for Parallel Processing. Springer, 2003, pp.
1–20.

[4] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[5] G. Ke et al., “Lightgbm: A highly efficient gradient boosting decision
tree,” Advances in neural information processing systems, vol. 30, pp.
3146–3154, 2017.

[6] D. Andresen, W. Hsu, H. Yang, and A. Okanlawon, “Machine learn-
ing for predictive analytics of compute cluster jobs,” arXiv preprint
arXiv:1806.01116, 2018.

[7] M. Tanash, H. Yang, D. Andresen, and W. Hsu, “Ensemble prediction
of job resources to improve system performance for slurm-based hpc
systems,” in Practice and Experience in Advanced Research Computing,
2021, pp. 1–8.

[8] M. Tanash et al., “Improving hpc system performance by predicting
job resources via supervised machine learning,” in Proceedings of the
Practice and Experience in Advanced Research Computing on Rise of
the Machines (learning), 2019, pp. 1–8.

[9] tanash1983, “Tanash1983/ampro-hpcc: A machine-learning-tool for
predicting job resources on hpc clusters.” [Online]. Available:
https://github.com/tanash1983/AMPRO-HPCC

[10] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Workshop on job scheduling strategies for
parallel processing. Springer, 2003, pp. 44–60.

[11] “Slurm workload manager - documentation,”
https://slurm.schedmd.com/, retrieved: 06, 2021.

[12] W. Gentzsch, “Sun grid engine: towards creating a compute power
grid,” in Proceedings First IEEE/ACM International Symposium on
Cluster Computing and the Grid. IEEE Comput. Soc. [Online].
Available: https://doi.org/10.1109/ccgrid.2001.923173

[13] G. Staples, “Torque resource manager,” in Proceedings of the 2006
ACM/IEEE conference on Supercomputing, 2006, pp. 8–es.

[14] “Torque resource manager,” http://www.adaptivecomputing.com/products
/torque/, retrieved: 06, 2021.

[15] B. Nitzberg, J. M. Schopf, and J. P. Jones, “Pbs pro: Grid computing
and scheduling attributes,” in Grid resource management. Springer,
2004, pp. 183–190.

[16] “Pbs professional open source project,” https://www.pbspro.org/, re-
trieved: 05, 2021.

[17] J.-W. Park and E. Kim, “Runtime prediction of parallel applications with
workload-aware clustering,” The Journal of Supercomputing, vol. 73,
no. 11, pp. 4635–4651, 2017.

[18] T.-P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow
task execution time in the cloud using a two-stage machine learning
approach,” IEEE Transactions on Cloud Computing, vol. 8, no. 1, pp.
256–268, 2017.

[19] S. Kim, Y.-K. Suh, and J. Kim, “Extes: An execution-time estimation
scheme for efficient computational science and engineering simulation
via machine learning,” IEEE Access, vol. 7, pp. 98 993–99 002, 2019.

[20] A. Matsunaga and J. A. Fortes, “On the use of machine learning
to predict the time and resources consumed by applications,”
in 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing. IEEE, 2010. [Online]. Available:
https://doi.org/10.1109/ccgrid.2010.98

[21] A. Tyryshkina, N. Coraor, and A. Nekrutenko, “Predicting runtimes of
bioinformatics tools based on historical data: five years of galaxy usage,”
Bioinformatics, vol. 35, no. 18, pp. 3453–3460, 2019.

[22] M. Naghshnejad and M. Singhal, “Adaptive online runtime prediction
to improve hpc applications latency in cloud,” in 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD). IEEE, 2018,
pp. 762–769.

[23] Q. Wang, J. Li, S. Wang, and G. Wu, “A novel two-step job runtime
estimation method based on input parameters in hpc system,” in 2019
IEEE 4th International Conference on Cloud Computing and Big Data
Analysis (ICCCBDA). IEEE, 2019, pp. 311–316.

[24] F. Nadeem, D. Alghazzawi, A. Mashat, K. Faqeeh, and A. Almalaise,
“Using machine learning ensemble methods to predict execution time
of e-science workflows in heterogeneous distributed systems,” IEEE
Access, vol. 7, pp. 25 138–25 149, 2019.

[25] M. H. Hilman, M. A. Rodriguez, and R. Buyya, “Task runtime prediction
in scientific workflows using an online incremental learning approach,”
in 2018 IEEE/ACM 11th International Conference on Utility and Cloud
Computing (UCC). IEEE, 2018, pp. 93–102.

[26] D. Ardagna et al., “Predicting the performance of big data applications
on the cloud,” The Journal of Supercomputing, pp. 1–33, 2020.

[27] Y.-K. Suh, S. Kim, and J. Kim, “Clutch: A clustering-driven runtime
estimation scheme for scientific simulations,” IEEE Access, vol. 8, pp.
220 710–220 722, 2020.

[28] O. Aaziz, J. Cook, and M. Tanash, “Modeling expected application
runtime for characterizing and assessing job performance,” in 2018 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
2018, pp. 543–551.

[29] T. Saillant, J.-C. Weill, and M. Mougeot, “Predicting job power con-
sumption based on rjms submission data in hpc systems,” in Interna-
tional Conference on High Performance Computing. Springer, 2020,
pp. 63–82.

[30] T. Taghavi, M. Lupetini, and Y. Kretchmer, “Compute job memory
recommender system using machine learning,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016, pp. 609–616.

[31] E. R. Rodrigues, R. L. Cunha, M. A. Netto, and M. Spriggs, “Helping
hpc users specify job memory requirements via machine learning,” in
2016 Third International Workshop on HPC User Support Tools (HUST).
IEEE, 2016, pp. 6–13.

[32] “Slurm workload manager,” retrieved: 04, 2021. [Online]. Available:
https://slurm.schedmd.com/sacct.html

[33] B. Efron et al., “Least angle regression,” Annals of statistics, vol. 32,
no. 2, pp. 407–499, 2004.

[34] G. Bonaccorso, Machine learning algorithms. Packt Publishing Ltd,
2017.

[35] W.-Y. Loh, “Classification and regression trees,” Wiley interdisciplinary
reviews: data mining and knowledge discovery, vol. 1, no. 1, pp. 14–23,
2011.

[36] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[37] N. A. Simakov et al., “A slurm simulator: Implementation and para-
metric analysis,” in International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems.
Springer, 2017, pp. 197–217.

[38] “Github - ubccr-slurm-simulator/slurm simulator: Slurm simulator:
Slurm modification to enable its simulation,” https://github.com/ubccr-
slurm-simulator/slurmsimulator, retrieved : 05, 2021.

