
Graph Drawing Heuristics for Path Finding in Large Dimensionless
Graphs

Tim Weninger, Rodney R. Howell, William H. Hsu
Department of Computing and Information Sciences

234 Nichols Hall
Kansas State University
Manhattan, KS, 66506

{weninger, rhowell, bhsu}@ksu.edu

Abstract— This paper presents a heuristic for guiding A*-
search for approximating the shortest path between two
vertices in arbitrarily-sized dimensionless graphs. First we
discuss methods by which these dimensionless graphs are
laid out into Euclidean drawings. Next, two heuristics are
computed based on drawings of the graphs. We compare
the performance of an A*-search using these heuristics
with breadth-first search on graphs with various topological
properties. The results show a large savings in the number
of vertices expanded for large graphs.

Keywords: search, heuristics, large graphs, graph drawing

1. Introduction
The structure of interconnections among a set of entities

is an increasingly interesting topic because of the important
information that can be used to infer latent information
about the entities themselves, relationships among entities or
the network as a whole. Examples of such graph structures
include the World-Wide Web, the Internet, social networks,
traffic systems, etc. Recently, advances in this area have led
to the identification of web sites that form a knowledge base
on a common subject [1], [2], [3]. The famous PageRank
[4] and HITS [5] algorithms similarly use network structure
to determine the relative importance of graph entities (web
pages).

We address the problem of finding relationships between
two vertices in an explicitly presented arbitrary graph with
unweighted edges. Given such a graph G with a start vertex
s and a goal vertex γ the shortest path problem is to find the
path from s to γ where the number of edges is minimized.

The time complexity of the uninformed general search
strategy (e.g. breadth-first search) is in O(|E|+ |V |) where
|E| is the number of edges and |V | is the number of vertices
in G, whereas the space complexity is in O(|V |). Since |V |
is potentially much larger than the diameter of the graph,
breadth-first search is often impractical for large graphs.

To solve this problem, latent information can be leveraged
in order to reduce the search frontier and therefore reduce the
search time. These informed search strategies use heuristic
information to appraise the merit of every candidate search

avenue that is encountered during the search. The informed
search then continues along the path of highest merit.
This strategy exists within many combinatorial problems
arising in network analysis, scheduling, packet routing, game
playing, etc.

By far, the most studied adaptation of informed search
is the A* algorithm, which defines the cost of a path as
the sum of the costs of its arcs. Formally, A* considers the
function f(n) = g(n) + h(n), where g(n) is the cost of the
current path from s to n and h(n) is the heuristic estimate
of the cost of the path from n to a γ. In addition, because
A* requires h(n) to be admissible (i.e. a lower bound to the
actual cost of any path from n to γ), f(n) is an optimistic
estimate of all possible solutions stemming from the current
path. Therefore an optimal path can be found by terminating
the search immediately upon reaching a goal node.

Common heuristics (e.g. straight-line distance, manhattan
distance) can only be computed in graphs where its vertices
correspond to points in a Euclidean space. The novel contri-
bution of our work is the application of these heuristics in
dimensionless graphs.

Definition 1. A graph is dimensionless if its vertices do not
correspond to points in a Euclidean space.

We will show that our heuristics that the admissibility of
a heuristic depends on a graph’s topology, and therefore,
technically, our algorithm should be called simply A if the
heuristic is not an underestimate of the actual cost. However,
we will continue to call it A* because the implementation is
the same and similar papers do not distinguish A from A*.

The specific motivation for this research is for the analysis
of social networks wherein links between users denote
friendship [6], [7], [8]. Such networks are easily represented
as dimensionless graphs because social networks have no
need to assign (x, y) coordinates to each user. Because of
the large number of social network users, breadth-first search
is impractical. As an illustration, the relatively small social
network LiveJournal contains 18.8 million users with an
average of 76.69 directed links (mutual friendship counts

as 2 links) per user (cf. [7]) resulting in 1.4 billion links. To
find the shortest path between users in a candidate pair 〈u, γ〉
breadth-first search would therefore potentially examine 1.4
billion edges and use about 150 MB of memory per query.
Alternatively, to calculate all pairs shortest paths (APSP)
with the Floyd-Warshall algorithm would use O(|V |2) space
and O(|V |3) time, or over a petabyte of memory and 6.6×
1021 computations, not to mention the disk space needed to
store the results. We can see from these simple estimations
that traditional graph-search approaches are impractical even
on the most advanced computing platforms.

To solve the impracticality of traditional search tech-
niques, we will first generate a two-dimensional Euclidian
drawing of the graph. From that drawing, (x, y) coordinates
can be found and potential search heuristics emerge. This
work studies two such graph drawing algorithms: the Spring
Embedder (SE) method, and the High Dimensional Embed-
ding (HDE) method. Using these two graph drawing meth-
ods, we then consider two heuristics: straight-line distance,
and angle deviation (described in later sections). Next, we
describe the experiments used to evaluate the different graph
drawing methods in concert with the two heuristics. We
then present the results and compare them with traditional
methods where applicable. Finally, we offer conclusions and
recommendations for future work.

2. Related Work
General search, including pathfinding, is arguably the

most basic concept in field of artificial intelligence [9].
Uninformed search techniques (e.g. Dijkstra’s algorithm, the
Bellman-Ford algorithm, Floyd-Warshall algorithm, breadth-
first, depth-first, depth-limited) have been rigorously stud-
ied, and their implementations appear in a wide-range of
domains. [10]

Unfortunately, most uninformed search strategies are in-
efficient. A more practical search strategy uses problem-
specific knowledge beyond the graph itself in order to find
solutions. The key component to these informed strategies
is the heuristic function. In some domains an admissible
(or otherwise descriptive) heuristic is readily obtained. For
example, when finding paths on street or railway networks
the distance from the current point to the destination can be
used as a heuristic [11].

There are several approaches offered by researchers in
path finding and related fields that attempt to shorten the
time to compute paths within their specific domains. Wagner
and Willhalm [12] were able to reduce the search space
to nearly 10% of the original. Hershberger and Suri [13]
found an optimal O(n log n) algorithm for finding Euclidean
shortest paths in the presence of obstacles, where n is the
number of vertices in all of the obstacle-polygons, using the
shortest path map approach [14] and the continuous Dijkstra
method [15], [16].

More closely related is the work by Sedgewick and
Vitter [17] on shortest paths in Euclidean graphs, which
starts with a Euclidean graph in 2 dimensions and extends it
to d dimensions (where each vertex corresponds to a point
in d-dimensional Euclidean space Rd). They set the weight
of each edge u → v to be proportional to the straight-line
distance between u and v. As a result they show an improve-
ment over Dijkstra’s running time of O(|E|+ |V | lg |V |) to
O(|V |).

The overarching goal of the related research has been
to use latent information within graphs to reason about the
paths within it in order to make informed decisions. In all
cases the heuristics providing the information were based on
a Euclidean drawing of the graph. Most often the straight-
line distance heuristic (distance from current vertex n to
the goal vertex γ) was considered. However, this distance
heuristic was gathered from a reliable source (e.g. map data,
latitute/longitude). Our goal is to operate with a similar
efficiency in lieu of this data (i.e. in dimensionless graphs).
To accomplish this, we must generate the heuristic data by
creating 2-D Euclidean drawings from the dimensionless
graphs. The following section on graph drawing describes
the two approaches used in this work.

3. Graph Drawing
A graph G(V,E) is an abstract structure used to model

relationships among entities; the entities are represented by
a set of vertices V and the relationships are represented
by the edges E ⊆ V × V . Most graphs are intended to
be comprehended by humans; therefore, the usefulness of a
graph can be determined by the clarity of its layout.

Definition 2. A layout of a graph G(V,E) is a mapping of
the graph’s vertices to the two dimensional Euclidean space:
X : V → R2.

Typically, the clarity of a graph drawing is usually defined
by how many edge crossings there are. Of course, not
all graphs are planar graphs, so it is impractical to ask
for 0 edge crossings in all cases. However, most graph
drawing algorithms operate to minimize the number of edge
crossings, and maintain uniform edge lengths.

In this work we test two graph drawing algorithms. They
are described below.

3.1 Spring Embedder Method
The most common approach from drawing graphs is the

spring embedder (SE) method. Algorithms based on this
approach are made up of two parts: (1) the heuristic force
model, and (2) the optimization algorithm. The resulting
layout brings the system to equilibrium in which the total
force on each vertex is within ε of 0. SE methods always
draw straight line segments so the crux of the method is
reduced to positioning the vertices.

The most straightforward method is to assign forces as if
the edges were springs that act in accordance with Hooke’s
Law: every two vertices are connected by a spring, whose
rest length is proportional to the graph-theoretic distance
between its two endpoints. Furthermore the vertices are
assigned forces in accordance with Coulomb’s Law: the
force between two points is inversely proportional to the
square of the total distance between the two charges. With
the forces set, the graph is simulated with the forces pushing
and pulling on one another. This is repeated until the system
comes into an equilibrium state at which point location of the
vertices are recorded (i.e. the graph is drawn). An example
graph drawing via the Spring-embedder method is shown in
Figure 1. This graph, as well as all graphs presented in this
paper, was drawn with Tulip 3.1.1 [18].

Fig. 1: 2000-vertex subset of LJGraph drawn using spring
embedding (SE).

There are several disadvantages with the SE method.
Most important is the time complexity: in the general case,
force-directed algorithms are known to have a running time
of O(|V |3). The SE method is also susceptible to poor
local maxima because a state with very low energy does
not necessarily correspond to the the optimal energy state.
Moreover, the drawings are strongly influenced by the initial
layout, which is usually random. [19], [20], [21], [22]

3.2 High Dimensional Embedding
Drawing a graph so as to minimize the number of edge

crossings while maintaining other aesthetic goals cannot be
practically achieved in a low dimension, “due to the fact that
several aesthetic goals have to compete on a shared limited
space” [23]. Therefore, it is important to perform the initial
drawing work in many dimensions in order to conserve space
and make the entire task easier.

The high dimensional embedding (HDE) approach sug-
gested by Harel and Koren consists of two parts: (1) the
graph is embedded in a very high dimension (e.g. in 50 or
100 dimensions) and then (2) projected into a 2-D plane
using principle components analysis. An example graph
drawing via the HDE method is shown in Figure 2.

Fig. 2: 2000-vertex subset of LJGraph drawn using High
Dimensional Embedding (HDE).

The algorithm is very fast, and is able to compute on
very large graphs efficiently. For example, a social network
graph with 770,595 vertices and 2,992,607 directed edges
was rendered on a standard desktop in about 5 seconds. [23]

At this point, judging by the drawn examples shown in
Figures 1 and 2, we expect our heuristic search results to
be faster and more accurate with the SE method because
the graph drawing in Figure 1 better represents the graph
drawing principles outlined at the beginning of this section.

4. Methodology
In order to empirically test our path finding approach, we

executed several experimental searches with different heuris-
tics on three large real-world graphs and one synthetic graph.
This section describes the design of these experiments, while
the next section presents the results.

4.1 Datasets
Our experimental dataset contains four graphs. The first,

LJGraph, is a recent, partial snapshot of the online social
network service LiveJournal; LJGraph contains vertices
corresponding to LiveJournal users and directed edges cor-
responding to friendships among the crawled users. The
second graph, WikiGraph is a subset Wikipedia; WikiGraph
contains vertices corresponding to Wikipedia entries and di-
rected edges corresponding to the wiki-links between pages.
The third real-world graph, DBLPGraph is the full list of
authors and papers listed at the DBLP Computer Science
Bibliography; DBLPGraph contains vertices corresponding
to authors and undirected edges corresponding to scholarly
articles. GridGraph is the fourth graph; this synthetic graph
was auto-generated to represent a grid (i.e. checkerboard).
Table 1 lists the sizes of each graph.

Table 1: Sizes for all graphs in the experimental dataset, and
the clustering coefficient (C)

Graph Vertices Edges C
LJ 770,595 2,992,607 0.11

Grid 1,000,000 1,998,000 0.00
DBLP 654,628 3,573,312 0.48
Wiki 400,000 3,241,997 0.18

4.2 Layout and Heuristics
Given a graph G, with a set of coordinates (xi, yi) ∈

C (e.g. latitute/longitute, Cartesian points) corresponding to
all points vi ∈ V , we define two heuristics: (1) straight-
line distance, and (2) angle deviation. These heuristics are
described in the following subsections.

4.2.1 Straight-line distance h(d)
With the straight-line distance heuristic h(d), the open list

of the search agent is sorted by the distance from the current
vertex n to the goal vertex γ. Calculation of this heuristic
is performed by the Euclidean distance formula, shown in
Equation 1.

d =
√

(xγ − xn)2 + (yγ − yn)2 (1)

4.2.2 Angle deviation h(Θ)
An alternative to the straight-line distance is the the angle

deviation h(Θ). The calculation of this heuristic requires
three vertices to be known: (1) the current vertex n, (2) the
goal vertex γ, and (3) a vertex which is a candidate for
relaxation m. From these three vertices two vectors 〈m,n〉,
〈n, γ〉 are represented as A and B respectively. The angle
in question, ∠mnγ, is computed by Equation 2.

tan (θ) =
‖A×B‖
A ·B

(2)

From Equation 2, we see that the angle deviation is equal
to the arc tangent of the cross product length divided by the
dot product.

The θ closest to 0 is the best candidate for relaxation.
These two heuristics are only two among many possible

heuristics (cf. [24]). These, and many other, heuristics are
admissible in grid-style graphs while they are not necessarily
admissible in non-grid-style graphs.

4.3 Experiment Setup
Two sets of tests were executed to determine the perfor-

mance of our approach.
The first set of tests used only LJGraph. The purpose of

this set of tests is to demonstrate how the search performance
changes as graphs become larger. To that end, we clipped
LJGraph into 11 subsets with sizes 100, 200, 400 ... 102,400.
Three graph sizes were explicitly singled out for further
investigation: A ⊆ G with 100 vertices and 277 edges;

B ⊆ G with 1,600 vertices and 10,168 edges; C ⊆ G with
102,400 vertices and 1,325,668 edges.

Each subgraph was embedded into a 2-dimensional draw-
ing with the spring embedder (SE) and high dimensional
embedding (HDE) methods creating A → ASE , A →
AHDE , B → BSE , etc. Note: Subgraph C could not be
drawn with the SE method because of space/time complexity
limitations.

From each subgraph drawing a random u and γ were
chosen and three searches were executed: (1) Breadth-First
Search, (2) A*-search on graphs drawn with the SE method,
(3) A*-search on graphs drawn with the HDE method. Only
the straight-line distance heuristic is used in the first set of
experiments. This test was repeated 1,000 times each with
random u and γ. This setup makes sure to keep the randomly
generated u and γ consistent across the three search methods
in order to compare results.

The second set of tests used the full size of all graphs.
The purpose of this set of tests is to demonstrate how the
search performance changes with different large graphs.

Because the full-size graphs are large the SE method could
not be used to draw the graphs; therefore, only the HDE
method was used to create drawings of the full-sized graphs.

From each drawing a random u and γ were chosen and 3
searches were executed: (1) Breadth-First Search, (2) A*-
Search with distance heuristic, (3) A*-Search with angle
deviation heuristic. This test was repeated 1,000 times each
with random u and γ. This set up made sure to keep the
randomly generated u and γ consistent across the three
search methods in order to compare results.

Outcomes of these experiments are described by the
metrics described in the next subsection and are presented
in the results section.

4.4 Metrics
There are several metrics used to determine the per-

formance of each search method: (1) Mean Number of
Relaxations, (2) Percent Correct, (3) Mean Shortest Path
Length (SPL), (4) Mean Path Length Error (MPL-ε).

The mean number of relaxations is the number of re-
laxations performed during the search. This metric is used
instead of CPU-time because this the number of relax-
ations could more appropriately be applied to disk-seeks or
database lookups in graphs too large to fit into main memory.

The percent correct is the number of times the heuristic
approach returns the actual shortest path over the total
number of executions.

The mean SPL is the mean path length returned by BFS.
This is the correct/acutal SPL.

Finally, the MPL-ε is the mean difference between the
path length returned by the heuristic approaches and the
BFS-SPL (metric #3).

5. Results
This section presents the results obtained by executing the

experiments from subsection 4.3 using the metrics described
in subsection 4.4. Two sets of experiments were performed.
The first tested the scalability of this approach by comparing
results of various subsets of the LJGraph. The second set of
experiments examined the accuracy and savings ratios of the
4 full-sized graphs.

5.1 Scalability
Table 2 contains the results of breadth-first searches on 3

subsets of LJGraph. These results are considered the control
results for the first set of experiments. The Mean Shortest
Path Length (SPL) in Table 2 is the actual shortest path
length. The SPL increases as the size of the graph increases
because the u and γ are chosen randomly, and the distance
between random vertices typically increases as |V | increases.

Table 2: Results from breadth-first searches performed on
subgraphs of LJGraph.

Size SPL Relaxations
100 1.92 98.66

1600 3.41 818.701
102400 4.31 9886.14

Figure 3 illustrates the relationship between the size of the
graph and the mean and median number of relaxations taken
to find a path when using the A*-search with the straight-
line distance heuristic. Some results for searching on spring
embeddeder (SE) method could not be calculated due to
time/space constraints. We see that our approach consistently
requires less than half the number of relaxations, on average.

Fig. 3: Comparison of graph size to the number of relax-
ations in BFS and A*-search with the straight-line distance
heuristic.

Table 3 contains the results of the A*-search for subgraphs
drawn with both layout methods. As expected, the heuristic

search performed reasonably well compared to the control
in terms of accuracy. There are significant savings in the
number of relaxations. As the graph size increases the
savings increase and the accuracy decreases dramatically. As
expected, the searches with a spring embedder (SE) method
perform better than searches with the high dimensional
embedding (HDE) method.

Table 3: Results from searches performed on subgraphs of
LJGraph using straight-line and angle deviation heuristics.

Size SPL Relax MPL-ε Correct

SE

h
(d

) 100 1.94 4.75 .02 98.6%
1600 4.62 70.85 1.21 40.4%

102400 - - - -

h
(Θ

) 100 1.93 4.08 .01 99.1%
1600 4.08 39.93 .67 58.1%

102400 - - - -

H
D

E h
(d

) 100 1.99 5.35 .07 97.1%
1600 6.18 453.13 2.767 26.5%

102400 9.698 34429 5.62 3.3%

h
(Θ

) 200 2.00 7.09 .09 93.4%
1600 6.38 388.51 2.97 27.6%

102400 11.34 33979 7.23 5.6%

5.2 Graph Comparisons

The second set of experiments focuses on the differences
between the 4 full size graphs. Table 4 contains the results
of a breadth-first search on the full graphs. These results are
considered the control results.

Table 4: Results from breadth-first searches performed on
full graphs

SPL Relaxations
LJ 5.27 20026.13

Grid 661.28 500459.94
DBLP 9.55 172107.69
Wiki 9.45 112987.68

Table 5 contains the results of the A*-search for graphs
drawn with the HDE method. The SE method is not able
to draw these graphs because of time/space complexity
limitations.

One result of particular interest is the MPL-ε for the
GRIDGraph with the distance heuristic f(d) in Table 5. The
error rate is equal to or almost equal to 0. We believe that
this is because the HDE layout of GRIDGraph very closely
resembles a checkerboard or a grid. Therefore, distance
and angle heuristics can accurately guide the A*-search
algorithm to the goal.

As in the previous set of experiments, the heuristic
searches found paths from u to γ much faster than breadth-
first search. However, this speed up is often at the expense
of accuracy which fluctuates among graph-types.

Table 5: Results from heuristic searches performed on full-
size graphs drawn by the high dimensional embedding
(HDE) method using straight-line and angle deviation heuris-
tics.

SPL Relaxations MPL-ε Correct

h
(d

)

LJ 7.65 5866.41 2.39 12.3%
Grid 661.28 236732.77 0.0 100.0%

DBLP 11.11 56637.80 1.57 40.1%
Wiki 20.12 97747.48 10.67 14.3%

h
(Θ

)

LJ 13.60 4833.80 8.34 4.4%
Grid 661.37 253017.65 0.09 96.7%

DBLP 10.96 59749.61 1.42 49.1%
Wiki 20.64 132307.91 11.19 17.5%

6. Conclusions
In conclusion, we have described a pathfinding approach

that uses heuristics gleaned from Euclidean drawings of oth-
erwise dimensionless graphs. This approach readily operates
on graphs with millions of vertices and edges and makes
no assumptions about the type or density of the graph. The
strength of this approach is shown by time and space savings
in terms of the number of relaxations as shown in Table 6.

Table 6: Comparison of the error on the SPL and Savings
(in terms of Relaxations) from Tables 4-5 using straight-line
and angle deviation heuristics.

SPL-Error Savings

h
(d

)

LJ 45.16% 70.71%
Grid 0.00% 52.69%

DBLP 16.34% 67.09%
Wiki 112.91% 13.49%

h
(Θ

)

LJ 158.06% 75.86%
Grid 0.01% 49.44%

DBLP 14.76% 65.28%
Wiki 118.41% -17.10%

Table 6 also shows the weakness of this approach; that
is, for some graphs, the error rate may outweigh the savings
benefits.

These results suggest that the use of graph drawing
techniques may be useful in approximating shortest paths
in large explicitly-presented graphs, particularly in applica-
tions requiring many different paths from the same graph.
However, the goals of graph drawing and path finding are
not identical. For example, a requirement of graph drawing
is that the graph be embedded in two, or sometimes three,
dimensions. While using fewer dimensions reduces the over-
head of computing Euclidean distance or angle deviation,
the requirement that the graph be embedded in two or three
dimensions is not essential for these heuristics.

This observation suggests that it might be worthwhile to
try applying our heuristics directly to the high dimensionsal
embedding of Harel and Koren. They have observed that
50 dimensions tends to work well for the ultimate purpose
of drawing a graph in two dimensions. However, it would
seem to be worth trying our heuristics on graphs embedded

in fewer dimensions, but more than two. It is not clear at
this point where the best balance between the accuracy of
the heuristics and their computational costs might occur.
One theoretically attractive feature of this this approach
is that Harel and Koren have shown bounds relating the
distances between nodes in the embedding and their graph-
theoretic distances [23]. These bounds might be used to show
theoretical bounds on the accuracy of the approximations and
the running times of the algorithms.

Another alternative worth considering is the use of other
measures of distance. For example, Manhattan distance is a
bit easier to compute than Euclidean distance, and it might
yield results that are just as accurate.

7. Acknowledgements
This research was partially funded by a grant from the

Defense Intelligence Agency. In addition, we would like to
thank Jiawei Han, Yizhou Sun and Yintao Yu for their help
with the DBLP graph, Henry Haselgrove for publishing the
Wikipedia graph, and the Tulip software team.

References
[1] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Extracting

large-scale knowledge bases from the web,” in Proceedings of the
25th VLDB Conference, 1999, pp. 639–650.

[2] M. Kuramochi and G. Karypis, “An efficient algorithm for discovering
frequent subgraphs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 16, pp. 1038–1051, 2002.

[3] J. Abello, M. G. C. Resende, and R. Sudarsky, “Massive quasi-clique
detection,” in In Latin American Theoretical Informatics (LATIN,
2002, pp. 598–612.

[4] S. Brin, “The anatomy of a large-scale hypertextual web search
engine,” in Computer Networks and ISDN Systems, 1998, pp. 107–
117.

[5] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM, vol. 46, pp. 668–677, 1999.

[6] W. H. Hsu, A. King, M. S. Paradesi, T. Pydimarri, and T. Weninger,
“Structural link analysis from user profiles and friends networks: A
feature construction approach,” in ICWSM, Boulder, CO, 2007, pp.
75–80.

[7] T. Weninger, “Link discovery in very large graphs by constructive
induction using genetic programing,” Master’s thesis, Kansas State
University, Manhattan, KS, USA, December 2008.

[8] L. Getoor, “Link mining: A new data mining challenge,” SIGKDD
Explorations, vol. 4, no. 2, pp. 1–6, 2003.

[9] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach
(2nd Edition). Prentice Hall, December 2002.

[10] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths
algorithms: Theory and experimental evaluation,” Mathematical Pro-
gramming, vol. 73, pp. 129–174, 1996.

[11] M. Marathe, N. I. Ona, L. L. Aboratory, R. Jacob, R. Jacob, M. V.
Marathe, K. Nagel, and K. Nagel, “A computational study of routing
algorithms for realistic transportation networks,” ACM Journal of
Experimental Algorithms, vol. 6, 1999.

[12] D. Wagner and T. Willhalm, “Geometric speed-up techniques for
finding shortest paths in large sparse graphs,” in ESA, 2003, pp. 776–
787.

[13] J. Hershberger and S. Suri, “Finding a shortest diagonal of a simple
polygon in linear time,” Comput. Geom., vol. 7, pp. 149–160, 1997.

[14] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan,
“Linear-time algorithms for visibility and shortest path problems
inside triangulated simple polygons,” Algorithmica, vol. 2, pp. 209–
233, 1987.

[15] J. S. B. Mitchell, “A new algorithm for shortest paths among obstacles
in the plane,” Ann. Math. Artif. Intell., vol. 3, no. 1, pp. 83–105, 1991.

[16] ——, “Shortest paths among obstacles in the plane,” Int. J. Comput.
Geometry Appl., vol. 6, no. 3, pp. 309–332, 1996.

[17] R. Sedgewick and J. S. Vitter, “Shortest paths in euclidean graphs,”
Algorithmica, vol. 1, no. 1, pp. 31–48, 1986.

[18] D. Auber, “Tulip : A huge graph visualisation framework,” in Graph
Drawing Softwares, ser. Mathematics and Visualization, P. Mutzel and
M. Jünger, Eds. Springer-Verlag, 2003, pp. 105–126.

[19] T. Kamada and S. Kawai, “An algorithm for drawing general undi-
rected graphs,” Inf. Process. Lett., vol. 31, no. 1, pp. 7–15, 1989.

[20] ——, “Automatic display of network structures for human understand-
ing,” Department of Information Science, Tokyo University, Technical
Report 88-007, February 1988.

[21] P. Eades, “A heuristic for graph drawing,” Congressus Nutnerantiunt,
vol. 42, pp. 149–160, 1984.

[22] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-
directed placement,” Softw., Pract. Exper., vol. 21, no. 11, pp. 1129–
1164, 1991.

[23] D. Harel and Y. Koren, “Graph drawing by high-dimensional embed-
ding,” in In GD02, LNCS. Springer-Verlag, 2002, pp. 207–219.

[24] A. Patel, “Heuristics,” 2008, http://theory.stanford.edu/~amitp/
GameProgramming/Heuristics.html.

