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Abstract—Identification of nodes relevant to a given node
in a relational network is a basic problem in network analysis
with great practical importance. Most existing network analysis
algorithms utilize one single relation to define relevancy among
nodes. However, in real world applications multiple relation-
ships exist between nodes in a network. Therefore, network
analysis algorithms that can make use of more than one relation
to identify the relevance set for a node are needed. In this paper,
we show how the Random Walk with Restart (RWR) approach
can be used to study relevancy in a bi-relational network from
the bibliographic domain, and show that making use of two
relations results in better results as compared to approaches
that use a single relation. As relational networks can be very
large, we also propose a fast implementation for RWR by
adapting an existing Iterative Aggregation and Disaggregation
(IAD) approach. The IAD-based RWR exploits the block-wise
structure of real world networks. Experimental results show
significant increase in running time for the IAD-based RWR
compared to the traditional power method based RWR.

Keywords-Relational data mining; node relevancy; random
walk; iterative aggregation and disaggregation approach.

I. INTRODUCTION

Identification of nodes relevant to a given node in a
relational network is of significant practical importance.
Node relevancy information enables the study of complex
properties of a network. As an example, in a bibliographic
network, information about researchers relevant to a given
researcher can be used to predict potential co-author rela-
tionships or communities that a researcher should join.

Among several approaches to the problem of identifying
a relevancy set for a given node in a network, random walk
based algorithms have proven very effective [1]. Tradition-
ally, random walk algorithms exploit one type of relation
(e.g., co-author relationships) when finding relevance scores
for a node (in our example, an author).

However, in real world applications, for a particular do-
main there always exist several types of objects (e.g., papers,
authors, venues) and relations among objects of interest
(e.g., co-author relationships, citation relationships, author-
paper relationships). While each relation can be exploited
by itself for solving a particular network analysis task, more
insights into the properties of the network can be gained if
multiple relations are used together. In this work, we focus
on bi-relational network analysis using a Random Walk
with Restart (RWR) approach and show its advantages as
compared to single relational network analysis.

Given the large scale of network data available nowadays,
fast implementations of the RWR algorithms are needed
even in the case of single relational network analysis [2]. For
the analysis of networks with two or more relations, time and
memory efficient algorithms are imperative. To address this
challenge, we propose a fast implementation of the RWR
algorithm for bi-relational networks. This implementation
takes advantage of a nice property that real world networks
present, specifically their block-wise structure. Based on this
property, an iterative aggregation and decomposition (IAD)
algorithm is adapted to RWR.

The rest of the paper is organized as follows. We de-
fine relevance scores and introduce single and bi-relational
networks in Section II. We introduce the RWR network
analysis approach in Section III. Our adaptation of the RWR
approach to bi-relational networks is presented in Section
IV, while the IAD-based RWR and a discussion on the
efficiency of the method are presented in Section V. Section
VI describes the experimental evaluation of the proposed
approach. We conclude with a summary and discussion of
the related work in Section VII.

II. BACKGROUND AND MOTIVATION

A. Relevance of Nodes

Generally, a relational network can be represented as a
graph G =< V,E >, where V is the set of nodes and E is
the set of edges representing relationships between nodes in
the network. Similar to previous work [1], the main question
we address in this paper can be stated as follows: given a
node a ∈ V , which nodes in V are most relevant to a? To
answer this question, for each node b ∈ V , we use RWR to
compute a relevance score to a. All scores together form a
relevance score vector with respect to the node a. We expect
nodes that are highly relevant to a to have higher scores than
nodes that are not relevant to a. Thus, the score vector can
help identify nodes relevant to a and also quantify relevancy.

B. Bi-Relational Networks

We will use a simple academic community example to
motivate and describe bi-relational networks. In a typical
academic community, given a researcher a, one may be
interested in finding the most relevant researchers b for a.
Here, we assume that b is relevant to a if a and b share
similar research interests. The set of nodes for this example
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Figure 1. Bi-relational network: authors are associated with papers
through author-has-paper relationships; papers are linked through similarity
relationships.

consists of researchers and papers. In principle, we can
compute the relevancy score vector for researcher a based
on co-author relationships (single-relational network) in a
bibliographic data set. However, we can also build a bi-
relational network in which papers can be linked to each
other based on content similarity relationships (i.e., two
papers are similar if they share similar words); authors can
be linked to papers through author-has-paper relationships.
Figure 1 shows a view of the bi-relational network induced
by these two relationships. Intuitively, authors who have
similar papers share similar interests. Thus, using these
relationships together to find authors most relevant to a given
author should result in a stronger relevancy compared with
the relevancy obtained using each relation independently.

We will use the following definitions for single and bi-
relational networks:
• A single-relational network is a network induced by a

single relation among nodes. If G =< V,E > is the
graph corresponding to the network, then E is the set
of edges defined by the single relation among nodes V .

• A bi-relational network is a network induced by
two types of relations among nodes. Formally, a bi-
relational network is given by G =< V1 ∪ V2, E1 ∪
E2 >, where E1 ⊂ V1 × V2 and E2 ⊂ V2 × V2.

III. RANDOM WALK WITH RESTART

The notations used in this paper are shown in Table I. The
RWR method defines a transition matrix Pn×n (where n is
the number of nodes). This matrix models the probability
of transition between every two nodes in the network. If P
is row normalized (i.e., the sum of elements in a row is 1),
then P is irreducible and aperiodic. Therefore, according to
the Perron-Frobenius theorem, there is a unique stationary
distribution of the matrix P .

Given the transition matrix P , a RWR can be seen as a
non-homogeneous Markov chain. A RWR is defined by the
following formula:

π
(t+1)
(k) = (1− c)π(t)

(k)P + c · ek (1)

Table I
SYMBOLS AND DEFINITIONS

Symbol Definition
π(k) 1× n stationary distribution vector by running

RWR from starting node k
π

(t)

(k)
distribution vector after t iterations runs

c the restart probability, 0 < c < 1
ek 1× n starting vector, the kth element is 1

and all the other elements are 0
ck 1× n starting vector ck = cek

n the number of nodes in the graph
N the number of partitions
P the original transition matrix
M the transformed transition matrix, M = (1− c)P
A N ×N coupling matrix of M
mi the size of each sub matrix Mii

c′k 1×mk sub-starting vector for the sub-matrix Mkk

where one element corresponding to the starting
node k is 1 and 0 for others

πi sub-eigenvector of sub-matrix Mii

c1×N 1×N vector where one element corresponding
to Mkk is 1 and the others are 0

where π(k) is the probability distribution of a particle starting
at node k, c ∈ (0, 1) is the restarting probability, and ek is
the initial vector.

As can be seen in the equation, at each iteration, a constant
c·ek interpreted as the “restart” is added. Eq. (1) converges as
the number of iterations approaches infinity [3]. Therefore,
we have:

π(k) = (1− c)π(k)P + c · ek = π(k)M + ck (2)

The stationary distribution π(k), which represents the prob-
ability distribution of reaching any node a from k, can be
seen as the relevance score vector corresponding to k.

IV. RWR FOR SINGLE AND BI-RELATIONAL NETWORKS

In what follows, we explain how we apply RWR to single
and bi-relational networks, respectively.

A. Single-Relational Networks

Obviously, we can directly apply RWR for single re-
lational networks. To do that, P is constructed from the
network G =< V,E > (which is a weighted graph); ea
represents the vector starting with node a. The stationary
distribution π(a) can be used as the relevance score vector
corresponding to the node a.

B. Bi-Relational Networks

Remember that a bi-relational network is defined by
G =< V1 ∪ V2, E1 ∪ E2 >, where E1 ⊂ V1 × V2 and
E2 ⊂ V2 × V2. Our goal is to use RWR to identify nodes
b in V1 relevant to a node a in V1 by making use of both
relationships in E1 and E2. To achieve that, we construct the
transition matrix P from < V2, E2 >. Then, for the given
node a ∈ V1 and every edge (a, p) ∈ E1 (consequently for
every node p ∈ V2 that is linked to a), we run RWR with



transition probability P and starting vector ep. The resulting
stationary distribution represents the relevance score vector
corresponding to the starting node p. Based on the relevance
score vector, we choose a set of nodes V ′2 ⊂ V2 that are
most relevant to node p. Finally, the nodes relevant to a are
defined as those nodes b in V1 for which there exists an edge
(b, q) (where q ∈ V ′2 ).

For example, let us assume that an author a has four
papers. These papers are part of a paper similarity network.
To identify authors related to a, we run RWR with a
transition matrix given by the paper similarity network and
starting vectors corresponding to each of the author’s papers,
in turn. Thus, we will obtain a set of four relevance score
vectors. From each vector, we choose the most related papers
and infer that their authors are most relevant for the given
author.

V. SCALING UP RWR
The straightforward implementation of RWR requires

many iterations over the transition matrix or, even worse,
calculating the inverse of the matrix [2]. As multi-relational
networks are usually large, using this implementation is
impractical for most real world applications. To address this
limitation, we propose an approach for scaling up the RWR
method. The theory behind our fast RWR approach and the
algorithm used in our experiments are described in what
follows.

A. RWR Property

In this subsection, we will show a nice property of
π(k) (the stationary distribution of the RWR starting at k),
assuming that the matrix M in (2) has the following diagonal
block-structure:

M =


M11 0 ... 0
0 M22 ... 0
...

...
. . .

...
0 0 ... MN,N

 (3)

where each block sub-matrix Mii is of size mi, for i =
1, 2, ..., N and Mkk contains the starting node k. Then, by
replacing M with (3) in (2), we get:

(π1, ..., πk, ..., πN ) = (π1, ..., πk, ..., πN )

×


M11 ... 0 ... 0

...
. . .

...
...

...
0 ... Mkk ... 0
... ....

...
. . .

...
0 ... 0 ... MNN

+


0
...
c′k
...
0



T

where πk is the sub-eigenvector for the block sub-matrix
Mkk and c′k is a (1×mk) vector corresponding to the sub-
matrix Mkk (the element corresponding to the starting node
k is 1 and all the other elements are 0). As a consequence,
each πi can be obtained from

πiMii = πi, i 6= k and πkMkk + c′k = πk

Note that ρ(Mii) < 1 (ρ is the spectral radius of a matrix, i.e.
the max eigenvalue of a matrix), therefore πi = 0, for i =
1, 2, ..., N , i 6= k. Thus, we only need to solve the equation
πkMkk + c′k = πk. This property explains the observation
made in [1], where the authors noticed that most elements
in the distribution are close to zero and therefore proposed
to perform RWR on the partitioned local block only.

In most real network applications, the network naturally
forms a block-wise structure, although not necessarily a
perfect diagonal block-structure like the one above. For
instance, in the academic community network example, the
author network has a block-wise community structure with
respect to authors’ interests and publications. Similarly, the
papers network has a block-wise structure with respect to
papers’ topics and similarity. We will exploit this type of
structure to scale up the RWR approach. To do that, we first
construct a block-wise partition for M that looks like:

M =


M11 M12 ... M1N

M21 M22 ... M2N

...
...

. . .
...

MN1 MN2 ... MNN

 (4)

where Mii represents the links within a “community” i and
Mij , i 6= j represents the links between “communities”
i and j. To construct such a partition for M , we use
CLUTO [4] algorithm, which maximizes the edge weight
within the community, while minimizing the weight between
communities. Once a partition of M is constructed, we can
compute the left eigenvector for each diagonal sub-matrix
Mii:

uiMii = λiui(for i 6= k) and ukMkk + c′k = uk (5)

where λi ≤ (1 − c). We will use the eigenvectors ui
of Mii as an approximation to πi (the sub-vector in π(k)

corresponding to Mii) and further combine the ui local
eigenvalue vectors into one global eigenvector for the whole
matrix by adapting the Iterative Aggregation/Disaggregation
(IAD) [3], [5], [6] method. This will allow to quickly find
the steady distribution π(k).

B. Fast RWR Using the IAD Method

The combination of the local eigenvectors corresponding
to matrices Mii into a global eigenvector for M needs to
take into account the weight of each sub-block matrix.

The first part of the IAD algorithm is used to derive
this weight vector by constructing an aggregated matrix
A from M , in two steps. Assuming that πi is known for
i = 1, 2, ..., N , the two steps are as follows: 1) replace
each row of each sub-block matrix Mij with the sum of
the elements in that row; this results in a matrix n×N (one
column for each Mij); 2) multiply each of the resulting
columns by a weight vector φi, where φi = πi/||πi||1, for



i = 1, 2, ..., N ; this results in an aggregated matrix AN×N
(one element for each sub-block matrix Mij).

The elements of the matrix, AN×N can be written as:
aij = φiMijej , where φi is a row vector with mi elements
and ej is the 1 column vector with mj elements. Having
constructed the aggregated matrix A, the goal is to find a
weight vector for each sub-block matrix Mij by solving the
equation ξ = ξA + c1×N . Indeed, we can show that A has
such a stationary distribution. This follows from:

(||π1||1, ||π2||1, ..., ||πN ||1)A = (||π1||1, ||π2||1, ..., ||πN ||1)

×


π1
||π1||1 0 ... 0

0 π2
||π2||2 ... 0

...
...

. . .
...

0 ... 0 πN

||πN ||1

Men×N + c1×N

=π(k)Men×N + c1×N = (π(k) − ck)


e 0 ... 0
0 e ... 0
...

...
. . .

...
0 ... 0 e

+ c1×N

=(||π1||1, ||π2||1, ..., ||πk − c′k||1, ..., ||πN ||1) + c1×N

=(||π1||1, ||π2||1, ..., ||πk||1, ..., ||πN ||1).

We used the fact that π(k)M = (π(k) − ck) (Eq.
1) and ||πk − c′k||1 + c = ||πk||1 (which can be
easily proved using the definition of the norm 1). If
ξ = (||π1||1, ||π2||1, ..., ||πk||1, ..., ||πN ||1) is the stationary
distribution of A, we consider this to be the weight vector
for the sub-block matrix Mii.

Note that φi (i = 1, 2, ..., N ) depends on is πi, which
is not known in advance; therefore, we will use ui as an
approximation for πi. For practical problems, this approxi-
mation should not result in a significant error as the structure
of M is presumably close to the structure in Eq. (3) and
||Mii||1 is maximized when creating the block-wise partition
of M . Therefore, an approximation is made such that

φ∗i = ui/||ui||1 ≈ φi = πi/||πi||1 (6)

We use Eq. (6) to compute an approximation A∗ to the
aggregated matrix A. Each element of A∗ is given by
a∗ij = φ∗iMijej . Next, we determine an approximation
eigenvector ξ∗ from ξ∗A∗+ c1×N = ξ∗ and use it to derive
the stationary distribution of M :

π∗(k) =
(
ξ∗1φ
∗
1, ξ∗2φ

∗
2, ..., ξ∗Nφ

∗
N

)
(7)

The second part of the IAD is used to improve the
approximation in Eq. (7). The simplest way to do this is
to incorporate Eq. (7) back into Eq. (6) and reiterate with
the goal of obtaining a better solution. However, directly
using Eq. (7) will have no effect on the approximation [3].

Therefore, similar to [3], we adapt Takahashi’s approach
[7] to improve the approximation before incorporating Eq.

(7) back into Eq. (6). We will construct a matrix Wi, i =
1, 2, ..., N such that

Wi =
(
Mii si
rTi qi

)
(8)

where rTi is a 1×mi vector defined as:

rTi =


1

1−ξi

∑
j 6=i

ξjφjMji if i 6= k

1
1−ξk

(ck +
∑
j 6=k

ξjφjMjk) if i = k
(9)

si is an mi× 1 vector defined as: si = ei−Miiei for i =
1, 2, ..., N and qi is a scalar defined as: qi = 1 −
rTi e for i = 1, 2, ..., N. Therefore, we obtain:

(πi, 1− ξi)
(
Mii si
rTi qi

)
= (πi, 1− ξi) (10)

With the constructed block Wi, we can obtain a new πi and
ξi through solving the Eq. (10). Finally we update φi =
πi/ξi with the new values for πi and ξi obtained from Wi.
The steps for scaling up RWR are shown in Algorithm 1.

Algorithm 1 IAD-based RWR
Input: a normalized matrix P , the starting vector ek and
the error threshold ε
Output: the stationary distribution π(k)

1. Construct the transformed matrix M from P .
2. Partition M into N partitions using CLUTO [4].
3. Let π

(0)
(k) = (π(0)

1 , π
(0)
2 , ..., π

(0)
N ) be a given initial

approximation to the solution and set m = 1.
4. For i = 1, 2, ..., N , compute φ(m−1)

i as:

φ
(m−1)
i = π

(m−1)
i /||π(m−1)

i ||1
5. Construct aggregated matrix A(m−1) whose elements are

(A(m−1))ij = φ
(m−1)
i Mijej

6. Solve the eigenvector problem

ξ(m−1)A(m−1) + c1×N = ξ(m−1)

7. For i = 1, 2, ..., N , construct Wi and derive π
(m)
i and

ξ
(m)
i by solving Eq. (10); update φ(m)

i = π
(m)
i /ξ

(m)
i

8. Convergence test: if the the difference between two
consecutive estimates ||π(m) − π(m−1)||2 < ε, then stop

π
(m)
(k) = (ξ(m−1)

1 φ
(m)
1 , ξ

(m−1)
2 φ

(m)
2 , ..., ξ

(m−1)
N φ

(m)
N )

Otherwise, set m = m+ 1 and go to step (4).

C. Efficiency of the IAD-based RWR

IAD-based RWR is a divide-and-conquer method which
takes advantage of the block-wise structure of real world



networks. The running time of the algorithm depends mainly
on two factors: number of iterations and, for each iteration,
the time it takes to solve the Eq. (10) for N block sub-
matrices. Solving Eq. (10) takes time proportional to the size
of the matrix Mii). The CLUTO algorithm that we use to
partition M takes as input the number N of blocks needed
and optimizes block size to avoid partitions with a lot of
small blocks and several large block. Thus, the resulting
partitions are well suited for the IAD approach. The global
convergence of the IAD method is still an open problem.
However, we will show that for real world networks that
have a natural block-wise structure the algorithm converges
very fast. As for space, the algorithm stores the diagonal
matrices and the sparse matrix of the cross-link network.
The aggregated matrix requires O(N2) space.

VI. EXPERIMENTAL EVALUATION

A. Data Sets and Questions

The data set used for the experiments in this paper
(called paper & co-author data) is constructed from the
Cora data set http://www.cs.umass.edu/∼mccallum, which
contains research papers. For each paper, the following fields
are available: title, authors, topic, abstract, avenue (e.g.,
conference name), among others.

The data set is obtained from Cora as follows: We first
extract publications for which title and authors’ names are
available. From the resulting set of papers, we select those
for which abstracts are available. This results in a data set
that contains 4,100 papers and 10,830 authors.

Two networks are constructed from this data. First, we
construct a single relational network G =< V,E > based
on the co-author relation. The weight of an edge (a, b) from
author a to author b is defined as the number of publications
co-authored by a and b, divided by the total number of the
publications authored by a.

Second, we construct a bi-relational network G =<
V1 ∪ V2, E1 ∪ E2 > based on author-has-paper and paper
similarity relations. The weight on an edge (a, p) ∈ V1 from
an author a to a paper p is 1 if a is among paper’s p authors
and 0 otherwise. The weight of an edge (p, q) ∈ E2 between
two papers p and q is given by the cosine similarity between
the abstracts of the two papers. To calculate cosine similarity
we build an inverted index over the merged vocabulary
of all abstracts. Using the inverted index, each abstract
is represented using the TF-IDF (term frequency, index
document frequency) weighting scheme.

The questions that we want to answer about the paper
& co-author data set are the following: (Q1) What are
the most relevant authors to an author a, as identified
through the analysis of the single and bi-relational networks,
respectively? Intuitively, the more similar the papers that two
authors share, the more related the authors are. (Q2) How
accurate is the process of mining information from the single
and bi-relational networks, respectively?

B. Experimental Design and Results
We answer (Q1) through a case study. We run RWR on

the single and bi-relational networks described in section
VI-A, respectively, to get relevance score vectors. We use
the author Jiawei Han as a starting node. Table II left
column shows the top 10 relevant authors for Jiawei Han,
as identified from the single-relational co-author network.
As expected, these are mostly his collaborators (researchers
that have co-authored papers with him). Table II righ column
shows the top 10 relevant authors for Jiawei Han, as iden-
tified from the bi-relational network. These are researchers
whose interests are similar to Jiawei Han’s interests (specif-
ically, database and data mining). This case study shows
the advantage of using the bi-directional network in the
analysis: it produces results that can be used for predicting
potential future collaborations or even potential reviewers
for a researcher.

Table II
AUTHORS RELEVANT TO JIAWEI HAN

Single-relational network Bi-relational network
n. stefanovic 0.02252 l. lakshmanan 0.23718

j. chiang 0.01853 t. topaloglou 0.05464
w. gong 0.01853 j. mylopoulos 0.04723

b. xia 0.01853 r. missaoui 0.03594
o. r. zaiane 0.01853 r. ramakrishnan 0.02847
m. kamber 0.01787 h. hirsh 0.02330

l. lakshmanan 0.01684 s. sudarshan 0.02099
k. koperski 0.01520 m. j. zaki 0.02015

w. wang 0.01442 a. j. bonner 0.01487
a. pang 0.01431 d. srivastava 0.01453

We conduct two experiments to answer (Q2). The first
experiment (Q2.1) is designed to evaluate the accuracy of
the process of labeling papers with categories using the
similarity network only. The second experiment (Q2.2) is
designed to test the accuracy of the process of predicting
co-authors based on the bi-relational network.

(Q2.1) In the Cora data set, each paper has a label
indicating the research category associated with the paper.
We consider the k-th most related papers to a given paper
in the data set (according to their relevance scores). The
accuracy is defined as the number of papers categorized in
the same category as the given paper, divided by k. Figure 2
shows the results. As expected, the accuracy decreases with
the number of papers k considered.

(Q2.2) To test the accuracy of the process of predicting
co-author relationships from the bi-relational network, we
randomly select three distinct sets of author pairs. The
authors in a pair have co-authored some papers, which are
removed from the network. We assume that in addition to
the papers that a pair of authors have co-authored (removed),
the two authors might have published other similar papers.
Our intuition is that if a pair of authors share similar papers,
then they will be predicted to be co-authors based on the bi-
relational author-paper network.



Figure 2. Paper labeling prediction accuracy, as a function of the total
number k of papers for which labels are predicted, based on mining the
paper similarity network.

For each pair, we run RWR staring at an arbitrary paper of
one of the authors in the pair (this will not be a co-authored
paper, as those have been removed) and identify the k-th
most related authors. A pair is predicted correctly if the co-
author in the pair is among the related authors. We define the
accuracy as the number of co-authors identified divided by
the number of pairs in a data set. Figure 3 shows the results.
As expected, the more related authors k are retrieved, the
better the prediction accuracy.

Figure 3. Co-author prediction accuracy, as a function of the number k
of authors retrieved for each pair of potential co-authors, based on mining
the bi-relational network.

C. Efficiency of Random Walk

Table III shows a comparison between the traditional
power method (which multiplies the transition matrix with π
until the L2 norm of successive estimates of π goes below
the threshold ε) and the IAD-based RWR in terms of the
||π(1)−π(0)||2 values after the first iteration and number of
steps to convergence. Results for three partitions are shown.

Table III
VALUES OF ||π(1) − π(0)||2 AFTER THE FIRST ITERATION AND NUMBER

OF ITERATIONS FOR CONVERGENCE WHEN ε = 10−5 , FOR THE
TRADITIONAL POWER METHOD VS. IAD APPROACH.

||π(1) − π(0)||2 # Iterations
# Partitions Power IAD Power IAD

1000 4.77e−2 1.79e−4 55 2
2000 2.24e−2 1.59e−2 52 5
4000 9.01e−2 1.33e−2 88 6

VII. SUMMARY AND RELATED WORK

In this paper, we have shown how to use the RWR ap-
proach to analyze a bi-relational network. A similar analysis
has been performed for networks with three relations, but
was omitted here due to space limitations (to be published as
a technical report). Generalization of our approach to multi-
relational networks is possible, according to the semantics
of the relations in a particular network.

We have also proposed an IAD-based fast RWR imple-
mentation. This implementation makes use of the block-
wise structure that many networks present. Experimental
results on a data set from the bibliographic domain show the
benefits of using bi-relational networks as opposed to single
networks. The relevance scores defined by RWR have many
useful properties. Compared with other pairwise metrics, the
relevance scores can capture the global structure of the graph
as well as the multi-facet relationships between nodes.

RWR is a popular method for network analysis. Many
applications use random walk and related methods as a
building block. Tong et al. [2] provides an excellent review
of RWR. An exact solution for RWR usually requires the
inversion of a large matrix. Therefore, fast approximate
solutions to the problem have been proposed before [1].
Similar to our proposed approach, other existing solutions
make use of the block-wise structure of real world networks.
Tong et al. [2] approximate the stationary distribution of
RWR by heuristic-based low rank approximation. Sun et al.
[1] perform RWR only on the partition that contains the
starting point. Their method outputs a local estimation of
the stationary distribution.
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