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Abstract

Protein-protein interactions (PPI) refer to the associa-
tions between proteins and the study of these associations.
Recent studies show that a network representation of pro-
teins provides a more accurate model of biological systems
and process compared to conventional pair-wise analysis.
Many graph analysis has been proposed to the network
for interactions prediction, pathway discovery and complex
membership prediction. Random walk with restart (RWR)
has been demonstrated to be a competitive approach on PPI
network in terms of accuracy and effiency. RWR provides
a good relevance score between two nodes in a weighted
graph. However, with the high-thoroughput of the detection
of PPI interactions, the straightforward application of RWR
into the problem does not scale up well.

We propose fast solutions to this problem. The heart of
the approach is to exploit the block-wise structural property
of PPI and furthermore, an iterative aggregation and deseg-
regation method is adapted into this problem. The results
shows a speedup factor of 10 in terms of time and conver-
gence. We proposed a new approach to integrate protein-
protein pair information into network. Finally, we evaluate
the proposed technique on prediction of interaction, path-
way and complex membership using three different bench-
mark data sets. Our methods shows a similar and better
results compared with previous work.

1 Introduction

In the past few years, much effort has gone into develop-
ing and applying methods for discovering the complete set
of protein-protein interactions (PPI) in an organism. Iden-
tification of these functional modules in PPI network is the
first step in understanding the organization and dynamics of
cell functions. Experimentally, both large-scale and small-
scale studies have collected a large number of results and
store them in the database [8]. However, the comparison

between results of large-scale methods and those of small-
scale methods shows that high-throughout approaches such
as yeast two-hybrid (Y2H) screens [26, 9] and mass spec-
trometric identification of protein complexes [7] are also
prone to higher error rates that those conventional small-
scale studies. It makes traditional presentation of inter-
actions (binary interaction) and analysis methods [14, 20]
not appropriate to use for analyzing the PPI network (with-
out accounting for the quality or quantity of evidence sup-
porting each interaction). Asthana et al in [1] proposed a
probabilistic presentation of the PPI network, in which in-
teractions are assigned confidence values to experimentally
derived interactions using the manually curated catalogs of
known complexes in MIPS (Munich Information Center for
Protein Sequences) [15] as a trusted reference set. Other
information integration techniques that utilize indirect ge-
nomic evidence [2, 13] and experimental interaction data
sets [10] have provided methods that infer protein function,
linkages and more accurate associations [28] with multiple
supporting evidence.

Various graph analysis techniques have been proposed to
mine these networks for pathway discovery [?, ?] and pre-
diction of complex membership [1]. The intrinsic cluster
structure of a protein network provides more accurate bi-
ological insights compared to local pairwise comparisons.
Bader and Hogue [?] propose a clustering algorithm to
detect densely connected regions in a protein interaction
network for discovering new molecular complexes. Other
approaches post-process the cluster results through refin-
ing the cluster members based on functional homogeneity,
cluster size and interaction density [?, ?]. However, these
clique-based, density-based approaches may miss the de-
tection of some nodes may not be the same subgraphs. In-
corporating additional biological information or graph char-
acteristic into the network for preprocessing the structure of
the network can be found in [4]. The authors add level-2 in-
teractions into the PPI network and showed the increase of
precision by this approach. These level-2 interactions rep-
resent indirect interactions between proteins which do not



directly interact and are calculated using only topological
weights of the PPI network.

The characteristics of the PPI network, (1) error-prone
identification of interactions and (2) incompleteness of the
interactions, make the Random walk with restart (RWR)
techniques be appropriate in this case. RWR represent the
whole network as a weighted graph, in which each node
represents a protein and each edge represents a probabil-
ity between proteins. It may overcome the incompleteness
property of the network because the random walk technique
exploits the global structure of the network and provide
a good relevance score between two nodes in a weighted
graph. (i.e., RWR may assign a high probability of interac-
tion between the nodes that do not directly interact).

In addition, random walk with restart (RWR) [18]
has been successfully used in some applications, such as
Automatic captioning of images [18, 25], outlier detec-
tion [16] and protein-protein interaction [3], personalized
PageRank[6], and many more. The interpretation of RWR
is that given a weighted graph, a particle starts from the
initial state and move into another state randomly on every
run, except that before the move, the particle returns back
the initial state with a certain probability. After the number
of runs goes to limit, there is a stationary distribution that
represents the probability of every state which the particle
will reach. This distribution will provide a good relevance
score between two nodes.

The straightforward implementation of RWR needs a it-
eration of a large matrix or even worse an inverse of a ma-
trix. It therefore does not scale well for large large graphs
in many applications. In this paper, we propose a fast and
sound solution to RWR and we apply it to the problem
brought by protein-protein interaction (PPI) network. The
basic idea underlying the algorithm is using the property
that the network of PPI forms block-wise and community-
like clusters (i.e. some proteins are more closely interac-
tive to each other than to others). Based on this property,
we propose a Iteratively Aggregation and Decomposition
(IAD) method for RWR. The rest of the paper is organized
as follows. We introduce random walk with restart models
and present a motivation for our approach with its formal
derivation in Section 3. Section 4 introduces the algorithm
proposed in our work. Section 5 describes the data set and
experiments in our experiments. We present experimental
results in Section 6 and conclude with a summary and ideas
for future work in Section 7.

2 Random Walk with Restart

The notation in this paper is shown in Table 1. RWR
defines a transition n � n matrix P ( n is the number of
proteins) which model the probability of transition among
proteins. Suppose P is row normalized ( the sum of all ele-

Table 1. Symbols and Definition

Symbol Definition
πpkq 1� n stationary distribution vector by running

RWR from starting node k
π
ptq
pkq distribution vector after t iterations runs
c the restart probability, 0   c   1
ek 1� n starting vector, the kth element 1

and 0 for others
ck 1� n starting vector ck � cek
n the number of proteins in the graph
N the number of partitions
P the transition matrix
M transition matrix, M � p1� cqP
A N �N coupling matrix of M
mi the size of each sub matrix Mii

c1k 1�mk sub starting vector of the sub matrix Mkk

where one element corresponding to the starting
node k is 1 and 0 for others

πi sub eigenvector, π � pπ1, π2, ..., πN q

ments in a row is 1), therefore P is irreducible and aperiodic
and Frobenius Theorem [5] guarantee there is a unique sta-
tionary distribution of the matrix P (i.e. P has a left eigen-
vector corresponding eigenvalue 1). Based on the transition
matrix P , RWR can be considered as a non-homogeneous
case of Markov Chain. The formula of RWR is

π
pt�1q
pkq � p1� cqπ

ptq
pkqP � cek (1)

where πpkq is the probability distribution of a particle start-
ing at node k. c P p0, 1q is a restarting probability, and ek
is an initial vector in which the kth element is 1 and 0 for
others. Each run, it plus a constant cek which has a mean-
ing of ”restart”. Eq. (1), will converge after the number of
iterations goes to a large value and the proof is shown in [?].
Thus we can have the equation

πpkq � p1� cqπpkqP � cek � πpkqM � ck (2)

We observe a property of πpkq, if a matrix M has the struc-
ture such as

M �

�
������

M11 0 ... 0 0
0 M22 ... 0 0
...

...
. . .

...
...

0 0 ... MN�1,N�1 0
0 0 ... 0 MN,N

�
�����

(3)

where each block sub matrix Mii is size of mi, i �
1, 2, ..., N and Mkk has the starting protein k.



Replacing (2) with (3), we get

pπ1, π2, ..., πk, ..., πN q � pπ1, π2, ..., πk, ..., πN q

�

�
���������

M11 0 ... 0 ... 0
0 M22 ... 0 ... 0
...

...
. . .

...
...

...
0 0 ... Mk,k ... 0
...

... ....
...

. . .
...

0 0 ... 0 ... MN,N

�
��������
�

�
���������

0
0
...
c1k
...
0

�
��������

T

where πk is the sub eigenvector for block sub matrix Mkk

and c1k is a (1 � mk) vector of the sub matrix Mkk where
one element corresponding to the starting node k is 1 and 0
for others.

Thus, each πi can be found from

πiMii � πi, i � k and πkMkk � c1k � πk

Note that ρpMiiq   1 1, therefore πi � 0, for i �
1, 2, ..., N , i � k. We only need to solve the equation
πkMkk � c1k � πk. This property explains the nice ob-
servation of [23], in which the authors noticed that most of
elements in the distribution are close to zero and therefore
proposed an idea of performing RWR on the partitioned lo-
cal block based on this property.

In the PPI network applications, we will exploit this type
of community-like property, and find a way to construct a
partition of M and the partition will make M which has a
structure such as

M �

�
����
M11 M12 ... M1N

M21 M22 ... M2N

...
...

. . .
...

MN1 MN2 ... MNN

�
���

where Mii represents the links in a protein cluster and
Mij , i � j represents the links among the clusters. The
constraint of the partition is that we will maximize the
weight (sum of all weight of links) in the cluster, whereas
the weight between cluster will be minimized. With this
property, we compute the left eigenvector for each diagonal
square sub matrix Mii, i � k

uiMii � λiui and ukMkk � c1k � uk (4)

where λi ¤ p1� cq. We want to use the eigenvectors ui of
Mii as an approximation to πi and further combine ui into
one eigenvector for the whole matrix. Following this idea,
we adapt IAD [21, 22, 17] method to find an solution of the
steady distribution of RWR.

1ρ is the spectral radius of a matrix, i.e. the maximal eigenvalue of a
matrix

3 Iterative Aggregation and decomposition
algorithm to RWR

We know that we can derive each eigenvector for each
sub block. However, note that each sub eigenvector is a
local eigenvector, thus we need a further step to combine
these local eigenvectors into the whole one for the matrix
M . The combination of each sub eigenvectors needs to take
the weight of each sub block into account. The first part
of IAD algorithm is for calculating this weight vector. The
algorithm firstly constructs a coupling matrix from M by
two steps. Suppose πi is known for i � 1, 2, ..., N

1. replacing each row of each block Mij with the sum of
its elements in each row,

2. then multiple the column of each block from step one
by a weighting factor φi, where φi � πi{||πi||1, i � k,
for i � 1, 2, ..., N

The coupled (N � N ) matrix, A, can be, mathematically,
represented as

aij � φiMijen�N (5)

We want to solve the equation ξ � ξA � c1�N and one
observation is that A has such a stationary distribution

p||π1||1, ||π2||1, ..., ||πN ||1qA � p||π1||1, ||π2||1, ..., ||πN ||1q

�

�
�����

π1
||π1||1

0 ... 0
0 π2

||π2||2
... 0

...
...

. . .
...

0 ... 0 πN

||πN ||1

�
����Men�N � c1�N

�πpkqMen�N � pπpkq � ckq

�
����
e 0 ... 0
0 e ... 0
...

...
. . .

...
0 ... 0 e

�
���� c1�N

�p||π1||1, ||π2||1, ..., ||πk � c1k||1, ..., ||πN ||1q � c1�N

�p||π1||1, ||π2||1, ..., ||πk||1, ..., ||πN ||1q

Note that ||πk � c1k||1 � c � ||πk||1, we can derive the last
step. We let ξ � p||π1||1, ||π2||1, ..., ||πk||1, ..., ||πN ||1q be
the this stationary distribution and consider it as the weight
vector for each sub block matrix

φi is not known in advance, for i � 1, 2, ..., N ; there-
fore, we hope to use the ui as an approximation to πi and
expect this approximation not to cause a big error because
the whole structure of M is close to the structure in Eq. (3)
and ||Mii||1 will be maximized if we can make a appropri-
ate partition of M .

Therefore, we make an approximation

φ�i � ui{||ui||1 � φi � πi{||πi||1 (6)



We use Eq. (6) to compute an approximation A� to the
coupling matrix A as

pA�q � φ�iMije (7)

We then determine an approximation eigenvector ξ� from
ξ�A� � c1�N � ξ� and use it to form the stationary distri-
bution of M .

π�pkq �
�
ξ�1 φ

�
1 , ξ�2 φ

�
2 , ..., ξ�Nφ

�
N

�
(8)

The second part of the IAD is used for improving the ap-
proximation of Eq. (8). The simple way is to incorporate
Eq. (8) back into Eq. (6) in hope of getting a better solu-
tion. However, direct using Eq. (8) will have no effect on
the approximation [21].

Therefore, we adapt Takahashi [24] approach to improve
the approximation before incorporating Eq. (8) back into
Eq. (6). We will attempt to construct a matrix Wi, i �
1, 2, ..., N as

Wi �

�
Mii si
rTi qi



(9)

and to complement the normalization of each row, the si
will have to be a mi � 1 vector:

rTi �

$''&
''%

1
1�ξi

¸
j�i

ξjφjMji if i � k

1
1�ξk

pck �
¸
j�k

ξjφjMjkq if i = k
(10)

one observation shows that

si � e�Miie i = 1, 2, ..., N

and

qi � 1� rTi e i = 1, 2, ..., N

And one observation shows that

pπi, 1� ξiq

�
Mii si
rTi qi



� pπi, 1� ξiq (11)

The proof can be seen in [?]. With the constructed block
Wi, we can obtain a new πi and ξi through solving the Eq.
(11). Finally we update φi � πi{ξi with the new πi and ξi
obtained from Wi,

Therefore, the algorithm is

1. Let πp0qpkq � pπ
p0q
1 , π

p0q
2 , ..., π

p0q
N q be a given initial ap-

proximation to the solution πp0qpkq and set m � 1.

2. Compute φm�1: For i � 1, 2, ..., N compute

φ
pm�1q
i � π

pm�1q
i {||π

pm�1q
i ||1

3. Construct the aggregation matrix Apm�1q whose ele-
ments are given by

pApm�1qqij � π
pm�1q
i Mije

4. Solve the eigenvector problem

ξpm�1qApm�1q � ck � ξpm�1q

5. For i � 1, 2, ..., N form Wi for πpmq
i and ξpmq

i from
Eq. (11) and update φpmq

i � π
pmq
i {ξ

pmq
i

6. Construct a test for convergence. If the estimated ac-
curacy is sufficient (less than ε), then stop and take

π
pmq
pkq � pξ

pm�1q
1 φ

pmq
1 , ξ

pm�1q
2 φ

pmq
2 , ..., ξ

pm�1q
N φ

pmq
N q

Otherwise set m � m� 1 and go step (3).

4 Experiment and Results

4.1 Data Set

Qi et al. [19] divide the protein interaction prediction
task into three sub-tasks: (1) prediction of physical (or ac-
tual ) interaction among proteins, (2) prediction of proteins
belonging to the same complex and (3) prediction of pro-
teins belonging to the same pathway. We used three dif-
ferent protein-protein interaction data set in Qi’s work as a
benchmark from [19]. It includes data from the MIPS (Mu-
nich Information Center for Protein Sequences) [15], data
from DIP (Database of Interacting Proteins) [29] and data
from KEGG [11]. Each interaction in the three data sets has
a feature vector of 162 dimension. For an example, if there
is an interaction between protein A and protein B, then there
is a feature vector to represent this interaction. The descrip-
tion how these features are extracted is orthogonal to this
paper.

4.2 Network Construction and Partition

To construct a PPI network in which each interaction
will be assigned a quantifier indicating the strength of its
interaction, we use machine learning approach, specifically,
support vector machine algorithm [27] to learn such a prob-
ability for each protein-protein pair example. A probability
will be assigned to each pair in terms of its distance to the
decision hyper-plane. In our work, CLUTO [12] is used
to partition the graph with the constraint of maximizing
the inner-weight of a cluster, and minimizing the crossing-
weight among clusters. We tune the parameters such as the
number of the clusters N and different types of similarity
functions, and make choose the best parameter (N � 180)



Table 2. Characteristics of data sets
DIP MIPS KEGG

number of proteins 1451 870 1129
number of interactions 5232 16472 77922

Table 3. Accuracy after First Iteration (||πp1q �
π||2)

Power Method IAD
DIP 5.93e�2 1.47e�2

MIPS 2.12e�2 1.74e�3

KEGG 1.02e�2 2.95e�4

that returns best criteria (the size of each clusters and the
inner-weights and crossing-weights of the partitions).

Figure (1) shows a preview and post-clustering view of
PPI network.

Figure 1. Using CLUTO on DIPS data set. The
number of clusters is chosen to maximize a
criterion in CLUTO which indicates maximal
inner weights of a cluster . There are 180
clusters in the right figure.

4.3 Evaluation of Random Walk

We measure the efficiency of random walk in two per-
spectives of view, the converge rate and the overall converge
steps. Table 3 and Table 4 compares the traditional power-
method (i.e. multiply the transition matrix with π until the
L2 norm of successive estimates of π below the threshold
ε ) and the IAD-based RWR in terms of first step’s accu-
racy and number of converge steps. Figure 2 compares the
convergence rate of Power method and that of IAD-based
algorithm on three sets of graph.

Figure 2. Converge rate

Table 4. Number of iterations for convergence
(ε � 10�5)

Power Method IAD
DIP 62 4
MIPS 66 4
KEGG 57 3

4.4 Accuracy of RWR

In order to evaluate the performance of the random walk
technique for the prediction protein-protein relationship, we
used 10 randomly selected directed interaction pathways
from DIPS the 27 MIPS complexes examined by Asthana et
al. [1] and 10 selected pathways from the KEGG pathway
database which is also used in [3]. We used the leave-one-
out benchmark to assess the accuracy of the analysis tech-
niques. In this benchmark, for each of the directed interac-
tion pathways, the complexes and pathways examined, one
member protein and its connected interactions in the path
are left out in turn. We used this protein as query to the the
remaining network (i.e. run random walk with restart start-
ing from the left-out protein) and see if RWR can find the
remaining set of proteins of the core complex or in the par-
tially known pathway. The ratio of how many proteins given
by the query to the size of the complex or pathway provides
a measure of accuracy. A successful analysis method should
report the all the remaining proteins in top ranks. Therefore,
the accuracy in the Figure (3) shows, above a threshold rank
k the average ratio of the number of complex proteins found
by each leave-one-out query to the size of the complex or
the pathway plus k.

5 Conclusion

In this paper, we propose a fast solution to random walk
and we apply it into protein-protein network. We evaluated
its efficiency and ability of predicting for the complex mem-



Figure 3. the accuracy of the number of com-
plex proteins found by each leave-one-out
query

bership problem in the protein-protein network. We also
proposed a new approach to integrate protein-protein pair
information into network (i.e. how to construct the similar-
ity protein-protein network from the profile of protein pro-
tein interaction ). The relevance score defined by RWR has
many good properties: compared with those pair-wise met-
rics, it can capture the global structure of the graph; com-
pared with those traditional graph distances (such as short-
est path, maximum flow etc), it can capture the multi-facet
relationship between two nodes. The experimental results
shows that RWR it is a promising method that can scale
well for large, genome-scale protein networks.
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