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ABSTRACT

We present an end-to-end transformer-based framework
named TRDLU for the task of Document Layout Understand-
ing (DLU). DLU is the fundamental task to automatically
understand document structures. To accurately detect content
boxes and classify them into semantically meaningful classes
from various formats of documents is still an open challenge.
Recently, transformer-based detection neural networks have
shown their capability over traditional convolutional-based
methods in the object detection area. In this paper, we con-
sider DLU as a detection task, and introduce TRDLU which
integrates transformer-based vision backbone and transformer
encoder-decoder as detection pipeline. TRDLU is only a vi-
sual feature-based framework, but its performance is even
better than multi-modal feature-based models. To the best
of our knowledge, this is the first study of employing a fully
transformer-based framework in DLU tasks. We evaluated
TRDLU on three different DLU benchmark datasets, each
with strong baselines. TRDLU outperforms the current state-
of-the-art methods on all of them.

Index Terms— Document Layout Understanding, Vision
Transformer, Object Detection, Document Structure Extrac-
tion

1. INTRODUCTION

Rapidly growing digital documents have become a key part of
information transformation. However, due to the various lay-
outs and the complex structures of documents, automatically
structured analysis of documents is crucial to speed up the
transformation process (Fig. 1). Document Layout Under-
standing (DLU) is a central step in automatic analysis, recog-
nition of document structure, and information extraction out
of document images. It leads to an important research direc-
tion for both Computer Vision (CV) and Natural Language
Processing (NLP), and is a fundamental task of Document
AI, which aims to automatically read, understand, and ana-
lyze documents. [1].

DLU plays an essential role in object detection tasks for
document images to detect and recognize the fundamental
components such as title, text body, figures, and tables in the
document as objects. Some well-known deep learning-based

Fig. 1. Examples of complexity layouts of document image.

object detection methods have been applied to DLU tasks,
such as using a CNN-based neural network at pixel-level for
document segmentation [2, 3] and Faster R-CNN based ar-
chitecture for document layout detection [4]. Meanwhile, re-
cent work introduces and integrates text, visual features, spa-
tial features as the multi-modal model for DLU tasks [5, 6].
These additional information could help models obtain SOTA
performance on relevant datasets. In this paper, we only use
visual features for DLU tasks.

The attention-based transformer architecture has been
widely employed in Natural Language Processing domain,
and has been approved for its performance. It is also becom-
ing increasingly attractive in recent object detection fields.
Carion et al. [7] develop DETR which is the first transformer-
based end-to-end object detection framework. In contrast to
conventional one-stage and two-stage detection networks, it
utilizes prediction methods which directly conduct bounding



Fig. 2. The architecture of TRDLU.

box predictions with Hungarian bipartite matching, instead
of using the anchor and non-maximum suppression (NMS)
mechanism. However, the slow convergence and inaccuracy
of small object performance of DETR make it inefficient.
Zhu et al. [8] propose Deformable DETR based on DETR
architecture which solves DETR’s issue of slow convergence
and high complexity, and they have introduced the idea of
deformable convolution [9] to the attention module.

Given the impressive performance of the transformer in
the CV field, it will be interesting to see if we can also take
advantage of it in the DLU area. Therefore, we propose a
fully transformer-based framework for document layout un-
derstanding, namely TRDLU. The TRDLU is an end-to-end
DLU detector with vision transformer - Swin Transformer
[10] as the backbone for feature extraction from the input im-
age, and connect with transformer encoder-decoder for docu-
ment layout detection and recognition. This study integrates
the most recent work in the transformer of the object detection
area and outperforms the previous transformer-based as well
as CNN-based object detection frameworks [7, 8] for DLU
task.

The main contributions of our paper are presented as
follows: (i) this study is the first one to introduce a fully
transformer-based detector pipeline for the task of DLU
method, namely TRDLU; (ii) the proposed detector pipeline
outperforms the previous transformer-based detector on DLU
tasks, and is even better than the multi-modal feature-based
detectors; (iii) the experiment results show that TRDLU out-
performs the previous state of the art in DLU benchmark
datasets.

2. METHODOLOGY

The overall TRDLU contains three main components: a
transformer backbone, transformer encoder-decoder, and

set prediction.The transformer backbone is used for visual
feature extraction from the input images. The transformer
encoder takes the feature in, and outputs the potential object
features. The transformer decoder uses encoder outputs and
object queries to generate final predictions for feed forward
network (FFN). The final output will be generated by the set
prediction process. The details of the detector pipeline are
shown in Fig. 2.

2.1. Transformer Backbone

We use Swin Transformer [10] which is one of the state of the
art architecture in the vision in transformer family as back-
bone for visual feature extraction from input images. Consid-
ering the input image is H ×W × 3, Swin Transformer first
splits the image into 4 non-overlapping patches as tokens with
the patch splitting module. Then it sets the patch feature as a
concatenation of the pixel values, and feeds it into the first
stage of the two-stage module through a linear embedding
layer, followed by two Swin Transformer blocks. Starting
from the second stage, the patch features will be concatenated
into 4C-dimensional by the first patch merging layer and con-
verted into 2C-dimensional features with a linear layer. Fi-
nally, the feature transformation will be achieved by applying
Swin Transformer blocks. The steps in stage 2 will be re-
peated in the rest of the stages. We use Swin tiny version
(Swin-T) which has 4 stages as backbone, and the layer num-
ber of each stage is 2, 2, 6, and 2, respectively. The final
feature output is f ∈ RH

32×
W
32×8C , where C represents the

channel dimension. In addition, the position information is
added into the feature map, flattened to spatial feature map
f ∈ RN×D, and sent to the multi-layer transformer encoder,
similar to the Deformable DETR [9].



2.2. Transformer Detector

The novelty of this study is to combine merits of the most
recent transformer-based works in CV, including the top-k
object query [11], bounding box refinement and two-stage
strategy [9], and auxiliary losses in encoder layer [12] to
improve the performance in terms of accuracy and efficiency.
This combination is integrated into the implementation of the
transformer-based encoder-decoder detector which follows
the structure in Deformable DETR.

Transformer encoder-decoder We construct the basic
architecture of the transformer encoder-decoder following the
structure in Deformable DETR [9].

Transformer encoder employs a multi-scale deformable
attention module. The output of the previous layer is con-
sidered as the input of the current layer, which will be com-
bined with the positional embedding as object queries. The
deformable-attention reduces computational complexity by
considering only the relevant keys for each query instead of
every pair of queries and keys. Because of the decrease in
computational complexity, we add auxiliary detection heads
into the encoder layer, which will not increase the cost pres-
sure, but improve the model performance.

Transformer decoder employs self-attention and multi-
scale deformable attention modules which contain object
queries as query elements. The reference point is predicted
for each query and used for the multi-scale deformation at-
tention model to extract image features. To optimize the
model result, the detection head is applied to bounding box
prediction to predict the deviations from the box center where
the reference point was placed initially. Hence, this process
facilitates the speed of model convergence.

Top-k object query The top-k object query mechanisms
is introduced by Efficient DETR [11], where the encoder out-
puts can be used as decoder inputs and each of them is as-
sociated with an auxiliary detection head which computes a
class score as a measurement of each output’s objectness.
The top-k encode outputs are then selected as the decoder
queries based on the class score. We employ the top-k de-
coder query selection because it is identified to generate bet-
ter results compared with the methods used in DETR [7] and
Deformable DETR [9].

Bounding box refinement The implementation of bound-
ing box refinement (BBR) follows the structure that is used in
Deformable DETR [9]. The key idea of BBR is to refine the
predicted bounding boxes by the current decoder layer based
on the previous layer predictions. The predicted bounding
box is represented by bdp{x,y,w,h} ∈ R, where d is the de-
coder layer and p is the coordinator of prediction bounding
box. The BBR process is repeatable from the first decoder
layer to the last decoder layer. The final refinement result is
returned by the last decoder layer. This iterative bounding
box refinement mechanism can effectively improve detection
performance.

Two-stage We apply the two-stage method which is intro-
duced from two-stage Deformable DETR to our transformer
detector. The object queries of the decoder layer in one-stage
method are generated by predefined embeddings directly. Un-
likely, the two-stage method first selects the top-k proposal
boxes in the first stage based on their class scores, and feeds
the selected boxes into the decoder and set positional embed-
dings of object queries as positional embeddings of region
proposal coordinates during the bounding box refinement pro-
cess. These object queries are more relevant to the current
image. Following the two-stage Deformable DETR, we use
multi-scale feature maps to generate anchors for each position
and set the base anchor scale to be equal to 0.05. Then C (C
is number of classes) category scores and 4 offsets per anchor
are predicted by the detection head.

Loss function For the bounding box loss function, we use
Distance Intersection over Union [13] with l1 loss:

Lbox(bσ (i), b̂i) = λdiouLdiou(bσ (i), b̂i) + λL1||(bσ (i) − b̂i)||1 (1)

where λdiou, λL1 are hyper-parameters, Ldiou is the dis-
tance IoU loss. The Hungarian loss function is used to calcu-
late the classification loss and bounding box regression loss
between prediction and ground truth:

LHungarian(ȳ, ŷ) =

N∑
i=1

[
Li,σ̂(i)
class + 1{ȳi ̸=∅}L

i,σ̂(i)
box

]
(2)

3. EXPERIMENT

We evaluate TRDLU on three different benchmark datasets.
Two of them are document layout related datasets, and one is
a table detection dataset. For fair comparisons, we use MS-
COCO evaluation metric which is the same evaluation met-
ric used by each benchmark. The code will be available at:
https://github.com/huichentt/Transformer-DLU.

3.1. Benchmark Datasets

Scientific Literature Regions (SLR) is a synthesis dataset of
DLU. It contains 1660 document images which are captured
from three existing datasets: Article Regions [16], ICDAR-
2013 [17], and GROTOAP [18]. This dataset includes 11
classes corresponding to the main regions of documents, in-
cluding Title, Author, Address, Abstract, Keyword, Body,
Figure, Table, Caption, Reference, and Text.

PubLayNet [19] is a large dataset for document layout
analysis. The document layout is labeled by bounding boxes
and polygonal segmentations. This dataset contains 360K
document images and 5-region annotation classes: Title, List,
Text, Figure, and Table. The ground truth of the test set is
not released because the authors want to keep it for the com-
petition. Therefore, we evaluate our model on the validation
dataset.



Table 1. Detection results comparison on Scientific Literature Regions (SLR) and TNRC datasets.
Detector Dataset mAP AP50 AP75 APs APm APl AR

Faster R-CNN [4] SLR 76.24 93.52 85.77 62.78 63.67 76.33 81.31
Cascade Mask R-CNN [4] SLR 79.92 94.36 88.30 70.75 69.84 81.26 88.60

deformable detr SLR 80.61 95.50 88.50 58.70 66.90 83.30 87.70
TRDLU (ours) SLR 82.70 96.40 90.70 75.40 73.30 83.60 89.20

deformable detr [14] TNRC 86.70 93.80 87.40 - - - 89.60
TRDLU(ours) TNRC 90.60 93.90 92.50 - - - 98.10

Table 2. Detection result comparison on PubLayNet dataset.
Method Text Title List Table Figure mAP
VSR [5] 96.70 93.10 94.70 97.40 96.40 95.70

DocSgeTr [15] 89.90 73.60 89.50 97.50 96.60 89.40
TRDLU (ours) 95.82 92.13 97.55 97.62 96.62 95.95

TNCR [14] is a table detection dataset. It contains 9428
labels with 6612 document table images. This dataset in-
cludes 5 different classes to present the various table formats
of scanned document images: No lines, Partial Lined, Merged
Cells, Partial Lined Merged Cells, and Full lined.

3.2. Implementation Details

We use pre-trained Swin-Tiny Transformer [10] backbone
network. The transformer includes 6 encoder and 6 decoder
layers associated with the auxiliary detection head for each
layer. The models are trained on Nvidia A40 GPU machine.
We set batch size to 2 to train the models for 50 epochs on
Scientific Literature Regions and for 30 epochs on TNCR
datasets, respectively. The initial learning rate is set to 0.0002
and decays by 1/10 after the 40th and 25th epochs. For Pub-
LayNet dataset, the model is trained by batch size 4 for 10
epochs with an initial learning rate of 0.0002 and decays by
1/10 after the 8th epoch. The rest hyperparameters are the
same as those in Deformable DETR.

3.3. Performance comparison

We compare TRDLU on three DLU task-related benchmark
datasets with the same tasks using state-of-the-art detection
approaches. For SLR and TNCR datasets (Table 1), TRDLU
outperforms all other methods and improves the mAP (mean
average precision) up to 2.9 percent on SLR and 3.0 percent
on TNCR. It also increases the AR (average recall) by 1.5 per-
cent and 8.5 percent on SLR and TNCR, respectively. Table
2 shows the comparison results on PubLayNet. The TRDLU
outperforms most other methods, and it is even better than the
results using the VSR [5], a multi-modal framework.

Fig. 3. Attention map visualization of TRDLU. The middle
image is the input image. The two upper figures represent
the decoder attention map, the lower two figures represent the
encoder attention map.

3.4. Attention result analysis

Fig. 3 shows the attention map visualization results. The en-
coder could recognize the potential objects. It participates in
the instance separation process, and gives the approximate ob-
ject location. The decoder cloud gives the precise bounding
boxes for different objects after model training. The attention
visualization results can help us gain intuitions regarding how
attention mechanisms work.

4. CONCLUSION

In this paper, we present an end-to-end transformer-based
framework for document layout understanding, namely TRDLU.
It integrates the merits of the most recent research works in
this field. It is the first study of a fully transformer-based
framework, and outperforms the experiential results gener-
ated by other research on both CNN-based and transformer-
based frameworks.
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