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Abstract

This paper describes an approach us-
ing wearables to demonstrate the viabil-
ity of measuring physiometric arousal in-
dicators such as heart rate in assessing
how urban built environments can in-
duce physiometric arousal indicators in
a subject. In addition, a machine learn-
ing methodology is developed to classify
sensor inputs based on annotated arousal
output as a target. The results are then
used as a foundation for designing and
implementing an affective intelligent sys-
tems framework for arousal state detec-
tion via supervised learning and classifi-
cation.

1 Introduction
1.1 Goals
In this paper, we propose using machine learning classifi-
cation techniques such as support vector machines (SVMs),
general linear mixed models (GLMMs), logistic regression
(LR), and artificial neural networks (ANNs) to demonstrate
the viability of using automation and machine learning tech-
niques in classifying biometric arousal state, as determined
by domain expert annotation. We address the task of learning
a classification-based signal identification model for arousal
response from multichannel sensor data produced in a built
environment. This task entails a need for ground truth an-
notations, for which we develop a rating scale based on def-
initions given by neurobiological domain experts to support
annotations by such experts.

The motivating goal is to develop an intelligent system to
both classify and predict biometric arousal state, automating
a process that is traditionally performed by human experts
in both physiometric signal identification and environmental
sciences. Unique aspects of this approach include using ma-
chine learning on location-aware time series data (the topic of
this paper) and potential future work on multisensor integra-
tion using a range of wearable sensors together with images
of the built environment to incorporate visual stimuli.

1.2 Limitations of Existing Work
Traditionally, it has been necessary to measure physiometric
arousal indicators such as temperature, galvanic skin response
(GSR), and heart rate in humans by relying on high precision
laboratory equipment. The subject in an experiment will of-
ten be required to have sophisticated equipment attached to
them in order to monitor and collect data from them. In addi-
tion, this information is often collected from the subject in a
controlled environment such as walking or running on a tread-
mill while data is being recorded. The advent of wearables
such as the Empatica E4, Polar, and Garmin Vivosmart 3 pro-
vides researchers with the ability to conduct new experiments
such as measuring physiometric arousal indicators induced
by a subjects urban environment. These sensors include high
quality pedometers, optical heart rate omnitor, accelerome-
ters, barometer, GPS, and GSR allowing the researcher to col-
lect high quality data in a non-intrusive manner. Geolocation
sensors and chronometers on some wearables now enable the
collection of geospatial data for spatiotemporal analytics.

Despite the advances in measurement technology, the cur-
rent state of the field for built environments still relies com-
pletely on human defined expert annotation. In other words,
the current state of the field is notable in its absence of using
automation and machine learning approaches for classifica-
tion and prediction. We seek to explore how to fit a classi-
fier model that generalizes over individual routes to impute
arousal state by classification in a manner consistent with the
state defined, and identified in historical data, by a human ex-
pert annotator. In addition, the full potential of real-time data
collection, annotation, and prediction of arousal given a sub-
jects environment by using the inputs collected by wearable
devices as described above has not been sufficiently explored.
As such, fitting machine learning algorithms and models, to
address the problems posed by this new research domain, has
not been sufficiently explored.

1.3 Objectives and Significance
Our desire is to demonstrate that our experimental approach
will show promise in the the classification and detection of
arousal. By doing so, we hope to be able to begin constructing
a machine learning framework for [developing] a predictive
intelligent system in future work. In addition, we desire to
determine which machine learning classification approaches
are appropriate over others.



This paper proposes significance by making two novel con-
tributions to state of the field. The first is to demonstrate the
viability of machine learning algorithms being an appropriate
venue to fit data in a built environment scenario. The second
is to motivate future work by showing several open questions
suggested by the findings in this paper.

Here, built environment is defined as the human developed
space that is comprised of where people live, work, and recre-
ate on a daily basis [Roof and Oleru, 2008]. The second is
since the application domain field relies on expert annotation
of arousal, developing an effective model for classification
and prediction will demonstrate the viability our of approach
and provide a baseline for further research into intelligent sys-
tems.

We contend that arousal detection using biometric, envi-
ronmental variables, and neurophyscologist annotation is an
area that is relatively unexplored as a machine learning task
in built environments. Exploring models and training them to
fit data to detect arousal using the above features is possible.

Concretely, this paper proposes the goal of detecting
expert-annotated arousal or arousal measurement by classify-
ing a stream of observations as belonging to an arousal event
or not.

1.4 Central Hypothesis
We have two hypothesis we wish to test. The first is discrim-
ination of the data. That is, can we fit a model using ma-
chine learning algorithms to the data. The second is to con-
sider the accuracy and AUC (area under the curve) of SVM,
ANN, Logistic, and GLMM on the validation sets on 3 and 4
fold cross validation. We train our models and then compare
the mean accuracy and AUC of our tests. The conservative
Mann-Whitney test which makes no parametric distributional
assumptions is used. We formalize our hypothesis as follows:

H0 : µA1 − µA2 = 0
HA : µA1 − µA2 6= 0

Here A1 and A2 denote distinct machine learning algo-
rithms such as SVM, ANN, Logistic, or GLMM. The test
uses α = 0.05 and results are shown below in the evaluation
strategy and results section.

1.5 Approach
Evidence suggests linkages between the physical environ-
ment and its influence on mental health, well-being and hu-
man health [Evans, 1984; Kuo et al., 1998; Evans, 2003;
Abraham et al., 2010; Berman et al., 2012]. However,
there is much to learn about how particular design charac-
teristics, natural elements, architecture and planning play a
role in influencing well-being. Fortunately, there are indica-
tions that natural elements do improve mental [Ulrich, 1981;
Parsons et al., 1988; Parson et al., 1998] and physical health
(new research LURP). With global urbanization, the pres-
sures for development and density are increasing. At times,
urban development places pressure on the availability of out-
door amenities and recreational spaces because these may be
seen as less valuable than the proposed built-infrastructure,
but are critically important [Groenewegen et al., 2006;
Maas et al., 2006]. Unfortunately, the replacement of nature

with built infrastructure may negatively impact public health
at-large [Jackson, 2003], leading to a greater risk of suffer-
ing from conditions such as stress and mental fatigue [Ul-
rich, 1981; 1983; Kaplan and Kaplan, 1989; Kaplan, 1995;
Parson et al., 1998] .

Growing our knowledge of how design and urban form in-
fluence mental health is a critical issue in the 21st century.
With new technologies and methods, we are now able to in-
vestigate relationships between the built-environment and hu-
man affective response in order to ascertain how design and
planning of urban spaces may influence well-being. Research
conducted by Ulrich [1991] and Tsunetsugu et al. [2013] sug-
gests that there are strong physiological responses (e.g. re-
ductions in heart rate) to viewing nature. Whereas their re-
search was conducted in laboratory settings with discrete or
short-term data, new machine learning techniques and wear-
able sensors [Poh et al., 2010] offer a unique opportunity to
investigate affective responses to elements of urban form and
assess the extent to which these elements influence long-term
mental health and stress.

The experiment relies on the Empatica E4 wearable and
consists of 12 subjects who volunteered to participate. The
experiment was conducted by placing an Empatica E4 sensor
on each individual subject. This sensor measures tempera-
ture, galvanic skin response, heart rate, time, and geospatial
position.

Each individual walked a predetermined route in a Manhat-
tan, Kansas urban environment divided into a series of zones
selected to reflect a specific urban setting. Examples include
a dark alley, poorly lit street, well lit sidewalk, and calming
park areas. For the control, the user was asked to sit and
calmly walk from a predetermined starting point at a hotel to
the beginning of the route. This two-minute period toward
the experimental route provides the baseline data for heart
rate, temperature, and galvanic skin response. Each partic-
ipant after the experiment was given a survey and rated the
perceived safety of each zone. The data outside of zones in
the survey are not rated by participants and therefore receive
a zero arousal score by default.

The data has been cleaned and processed and is organized
by participant ID. The data was processed and now has fields
such as zone, ratings of zones, 30 second window giving heart
rate and standard deviation. The classification target is a bi-
nary variable annotated by Dr. Greg Norman.

The data has been trained on several applied machine learn-
ing techniques such as SVM, ANN, LR, and GLMM. Perfor-
mance is measured by using accuracy and AUC.

2 Background and Related Work
2.1 Related Work
Research on estimating arousal using wearable technology
has its roots in the late 1990s with the dawn of wearable com-
puting. In the last few years there has been growing interest
in this area due to the increasingly abilities and capabilities
of wearable and mobile computing. This area of research is
still nascent and specific signal identification, pattern detec-
tion, and prediction methodologies not only constitute a new
approach but have yet to be applied and refined for many use



cases, such as arousal estimation and prediction in built envi-
ronments.

Recent work has begun to consider the role that machine
learning can play in measuring arousal using mobile and
wearable technology. Specifically, using supervised learn-
ing methods such as linear regression and support vector ma-
chines (SVM) to classify arousal [Hernandez Rivera, 2015].
In addition, work has been done in developing a user tailored
advice system feedback loop using wearable and mobile com-
puting for arousal intervention regarding sleep, diet and exer-
cise habits. The work was statistical in nature and presents
an opportunity to build upon it using more sophisticated ma-
chine learning approaches. Users with the higher levels of
arousal measured reported appreciating the intervention feed-
back [Sano et al., 2015]. Sano and Picard [2013] have used
binary classification with correlation analysis to determine
physiological or behavioral markers for arousal using wear-
ables and mobile computing. The study showed that higher
levels of arousal were correlated with activity level and screen
on/off patterns [Sano and Picard, 2013]. Feasibility studies
have shown that it is possible to classify and predict panic
attacks using wearables and mobile computing using intelli-
gent systems [Rubin et al., 2015]. The United States Army is
showing interest in using wearables to collect real time infor-
mation from the soldier [Hoyt and Karl, 2016]. Future studies
will likely consider arousal detection and prediction as well.
Very recently, industry has been developing products which
claim to detect stress in users as well by using variable heart
rate [Lisanti, 2017].

Despite the recent work in measuring arousal using wear-
able technology, there are a plethora of methodologies, mea-
surements, and instruments for measuring arousal that lead to
inconsistent results [Lutchyn et al., 2015]. Clearly, there is
a lot of work that remains to be done in general and in built
environments.

2.2 Heart Rate and Arousal Estimation

Heart rate (HR) and electrodermal activity (EDA) data were
used to generate predictions about the affective state of each
participant as they walked through predetermined zones that
ostensibly varied on dimensions of nature and urban along
with mild threat and safety [Thayer and Lane, 2009]. Data
were aggregated over 30 second segments for each partici-
pant. Additionally, all individuals completed a baseline ses-
sion prior to the walking component of the experiment in or-
der to determine within-participant change in physiological
activity during the walk [McEwen, 2007]. In an attempt to
predict the general affective state of the participant while they
walked through different zones, we normalized the HR and
EDA data within each participant and evaluated the change
in these signals within each zone. Zones that were associated
with the largest deviations from baseline were labeled stress
and zones that were associated with minimal change were la-
beled as no-stress. For the purposes of this study, the stress
vs. no-stress distinction was determined using a threshold of
2 + standard deviation change from the baseline condition for
each participant.

2.3 Support Vector Machines
Support vector machines (SVMs) are a standard approach in
solving classification problems. They are common super-
vised learning tools that fall under the of large margin meth-
ods (for minimizing the statistical risk of decision surfaces)
and kernel methods for rendering implicit those mappings de-
signed to change the learning representation by reformulating
the instance space.

The problem of estimating model parameters is specified
as a convex optimization problem. That is, any local solution
will also be the global optimum [Bishop, 2006]. The SVM
is a model which maps all observations upon a plane and di-
vides them with a linear separator and margin. The linear
separator and margin are what separates the observations into
two classes. In other words, the decision boundary is chosen
to be the one for which the margin is maximized [Murphy,
2012].

2.4 Multilayer Perceptrons
Multilayer perceptrons (MLPs) are a type of feedforward arti-
ficial neural network (ANN) which, like SVMs, are extremely
popular as inductive learning representations. They are cur-
rently an area of intense study as an essential component of
deep learning. A function learns from inputs and adjusts
weights using a hidden layer, which in turns uses an acti-
vation function to simulate the threshold and action poten-
tial of a simulated neuron. As biologically-inspired models,
MLPs and other feedforward ANNs provide flexibility as to
the type of nonlinear activation functions, pooling functions,
interlayer connectivity, overfitting control methods, and other
representational properties that enable them to function as au-
toencoders in deep learning.

2.5 Logistic and General Linear Mixed Models
The most common classification method for linear method is
logistic regression. The classification is given as a posterior
probability which relies on a logistic sigmoid acting on a lin-
ear function [Bishop, 2006; Cox, 1958].

General linear mixed models (GLMMs) are an extension of
standard general linear model to include fixed effects, random
effects, and autocorrelation. The unique aspect of GLMM
is that the response variable can come from different distri-
butions besides the normal distribution. In addition, rather
than directly modeling the responses directly it is common to
apply the data to link function. Concretely, a general linear
mixed model may be described as:

y = Xβ + Zγ + ε
where y is aN×1 column vector,X is aN×pmatrix of p

regressor variables, β is a p× 1 column vector of fixed-effect
coefficients, Z is N × q matrix of q random variables, γ is
vector of random effects, and ε is a N × 1 column of errors
not explained by the model.

It is not tenable to compute the exact likelihood function
for GLMMs. Breslow and Clayton provide an algorithm to
approximate the likelihood function [Brewslow and Clayton,
1993]. This approach is known as partial quasi likelihood
(PQL) and approximates high dimensional integration using
a Laplace approximation.



Consequently, the GLMM model has been developed to
address data that is binary and also has autoregressive fea-
tures.

3 Methodology
3.1 Data Preparation
The data has been cleaned and prepared. It is organized by
participant id. The study has a window size of 30 seconds,
with a mean heart rate and standard deviation for that period.
The data has zone rating which is the post survey results taken
by each participant to answer questions about how they feel
about zones of interest they walked through. In addition, an
expert has annotated the data for arousal using a binary vari-
able 1 for arousal and 0 for no arousal. The data is show
below in a table.

Table 1: Schema of Data
Variables

Time
Participant
Temperature
Average EDA
Speed
Latitude
Longitude
Heart Rate (HR)
Ratings
Number Street Lights
Max Road Width
Tree Frequency
Question Zone
Walk Score
Total Vegetation Sqft
Arousal

The above table consists of the schema for the experimen-
tal data. As shown above, each row has the time, participant
id, average eda, walking speed, latitude, longitude, heart rate,
and the likert rating of the question zone denoted by the vari-
able ratings. In addition, we have variables we collected from
the built environment such as number of street lights, max
road width, what zone they were in during the walk (called
question zone), a score of the walk annotated by a profes-
sional landscape expert, total vegetation of the area in sqft,
and finally the variable we wish to estimate which is the pres-
ence of arousal or not.

It is important to note that data for participants 2,3,4,12,
and 16 were removed since the participants either did not fol-
low the directions appropriately or there was no accompany-
ing zone rating data recorded. The data was annotated by Dr.
Greg Norman, an expert in neuropsychology.

4 Experiment Design: Evaluation Strategy
This section discusses variables present in the building cus-
tom and novel machine learning models in this paper. The
evaluation strategy is to use the core variables in the data

that could help explain arousal in the data without introducing
bias or correlation. Correlation is an issue with this data set.
For example, lat/long, zone and zone ratings are correlated.
Thus, only zone ratings is considered. In addition, the quality
of gsr was not certain and ignored. Therefore, the core input
variables are shown below:

4.1 Model Selection and Discrimination Strategy

Our approach for the detection and classification of arousal
can be understood by performing model selection and dis-
crimination on the data.

We began simply with a full model and observed which
variables were statistical significant. We then removed, one
at a time, variables not statistically significant or necessary to
fit the data. The small sample size of participants and data
for each participant due to smoothing the data per 30 second
window should be noted. First, it is believed interpretation of
the models parameters is not as important as demonstration
that a model can be fitted. Second, the variables in the model
fitted are of interest to us in motivating subsequent studies.
We discuss the results of this strategy in section 5.2.

4.2 Cross validation Strategy and Calibration
Strategy

In order to access the accuracy of detecting for arousal, the
data is divided into training and testing data sets. Specifically,
leave one out, 3 fold, and 4 fold cross validation has been
conducted. We chose four and three fold cross validation
only taking into account the small sample size and wanting
to emphasize the possibilities, but introductory nature of the
analysis to inform future studies. Since our data is longitudi-
nal and organized by participant ids, we name and dived the
data into sections based on participant id. For example, for
the first fold of 4 fold cross validation we trained the model
on participants 1, 5, 6, 7, 8, 9, 10, and 11. We then accessed
accuracy on participants 13, 14, 15, and 17.

Figure 1: 4 Fold Cross Validation
Fold Train Test

1 1,5,6,7,8,9,10,11 13,14,15,17
2 1,5,6,7,13,14,15,17 8,9,10,11
3 8,9,10,11,13,14,15,17 1,5,6,7

The data is divided into training and testing data sets by
participant id using 3-fold cross validation as follows:

Figure 2: 3 Fold Cross Validation



Fold Train Test
1 1,5,6,7,8,9,10,11,13,14,15 17
2 1,5,6,7,8,9,10,11,13,14,17 15
3 1,5,6,7,8,9,10,11,13,15,17 14
4 1,5,6,7,8,9,10,11,14,15,17 13
5 1,5,6,7,8,9,10,13,14,15,17 11
6 1,5,6,7,8,9,10,13,14,15,17 11
7 1,5,6,7,8,9,11,13,14,15,17 10
8 1,5,6,7,8,10,11,13,14,15,17 9
9 1,5,6,7,9,10,11,13,14,15,17 8

10 1,5,6,7,8,10,11,13,14,15,17 7
11 1,5,7,8,10,11,13,14,15,17 6
12 1,5,6,7,8,10,11,13,14,15,17 5
13 1,6,7,8,10,11,13,14,15,17 1

The models were then trained and tested on SVM, ANN,
GLM, and Logistic Regression. The small sample size of
the participants and data collected due to smoothing by a 30
second window per each participant is noted and emphasized
here. This analysis is preliminary, but believed it is still worth
merit to investigate model accuracy and AUC to inform sub-
sequent studies.

5 Experiment Design: Results
5.1 Normalized Heart Rate by Question Zone
We wanted to examine the raw heart rate data of participants
as varied by the question zones to see if there were any no-
table differences. The data was normalized as follows:

normhr(xi) =
xi−minhr(x)

maxhr(x)−minhr(x)

where x denotes the participant and i an arbitrary observa-
tion in the data. Please note that minhr(x) and maxhr(x)
are global extrema based upon all heart rates for the partic-
ipant. We used the normalized heart rate and calculated the
mean for all participants for each zone given the 95% confi-
dence interval.

Figure 1: Mean Normalized HR and 95% Confidence Interval
by Question Zone

Looking at the figure above, one can note that there are
differences between the normalized HR and that these mean
heart rates tend to cluster or group. That is, the normalized

mean HR in Q33 to Q38, Q39 to Q42, and Q43 to Q45 tend
to group around a particular mean normalized HR while dif-
fering with normalized HR in other groups. We conclude that
there are differences in normalized mean HR between ques-
tion zones for participants.

5.2 Model Selection and Discrimination
The scope of our hypothesis, given the small sample size, was
to assess the ability of machine learning models to fit the data
in this context. We fitted full models for SVM, ANN, Lo-
gistic, and GLMM models. Our approach is standard, we
removed one variable at a time in model specification until
we came down to heart rate, temperature, and speed. The
misclassification errors for all algorithms did not change that
greatly, so we opted to keep speed in the model given the pre-
liminary nature of the analysis. We assessed each algorithm
on heart rate, temperature, and speed. The p-values for logis-
tic and glmm can be seen below:

Figure 3: Estimated Model Variable P-Values
Term LR GLMM
HR 0.000 0.000

Temp 0.000 0.014
Speed 0.500 0.4128

This is an interesting result, but not entirely surprising. Our
expert annotation was primarily based on smoothing of the
heart rate. Thus, it is not surprising that HR would be a part
of the final model. It is interesting that temperature, another
biometric measure, was also statistically significant. The mis-
classification errors for the machine learning algorithms is
given below:

Figure 4: Misclassification Error Rate
Term SVM ANN LR GLMM

Error Rate 0.092 0.150 0.137 0.142

It is interesting to note that in model selection, usually the
problem is from over fitting the models, but that is not the
case here. Since the data is binary in nature, we wish to con-
duct future studies that both smooth over smaller windows (5
second, 10, and 15 second intervals instead of 30 seconds in
this study) and collect continuous annotation data of stress.
That is, instead of taking post survey questionnaires and rely-
ing only on expert annotation of stress we provide users with
a sensor that they can input their stress levels continuously in
real time.

5.3 Model Calibration
We compare SVM, ANN, LR, and GLMM. Specifically,
we compare accuracy and AUC. The conservative Mann-
Whitney test revealed no statistical differences between the
algorithms compared in accuracy and AUC. Consequently,
we did not report mean and confidence intervals in the fig-
ures below. Although the trends observed were not statis-
tically significant, the models performed considerably well
given the small sample sizes. The results below are for 4 fold
CV. Please note columns 1, 2, and 3 refer to folds. Please see
below:



Figure 5: 4 Fold CV Accuracy
Algo Fold 1 Fold 2 Fold3
SVM 0.756 0.756 0.832
ANN 0.876 0.821 0.744
LR 0.892 0.821 0.824

GLMM 0.892 0.902 0.816

The accuracy scores are extremely close to each other and
no statistically significant differences were detected between
them. We also report AUC scores as follows:

Figure 6: 4 Fold CV AUC
Algo Fold 1 Fold 2 Fold 3
SVM 0.756 0.756 0.832
ANN 0.876 0.821 0.744
LR 0.892 0.821 0.824

GLMM 0.892 0.902 0.816

The AUC scores were also very similar to each other across
the algorithms under consideration. The differences between
the algorithms were not statistically significant. The re-
sults below are for 4-fold CV. We compare SVM, ANN, and
GLMM accuracy and AUC results. Please note columns 1, 2,
3, and 4 refer to folds.

Figure 7: 4 Fold CV Accuracy
Algo Fold 1 Fold 2 Fold 3 Fold 4
SVM 0.693 0.833 0.956 0.739
ANN 0.836 0.802 0.945 0.652
LR 0.867 0.802 0.956 0.760

GLMM 0.887 0.895 0.956 0.739

Like 3 fold cross validation, the results are similar across
algorithms. In addition, there are no statistical results ob-
served. The AUC scores for 4 Fold CV are as follows:

Figure 8: 4 Fold AUC
Algo Fold 1 Fold 2 Fold 3 Fold 4
SVM 0.407 0.602 0.804 0.681
ANN 0.871 0.260 0.405 0.537
LR 0.864 0.864 0.981 0.591

GLMM 0.866 0.846 0.990 0.595

It is of interest to note there are some decreases in AUC
in SVM and ANN. These differences were not enough to be
statistically significant. Nevertheless, it is of interest for sub-
sequent studies to explore the potential differences between
linear models and other machine learning classification algo-
rithms. The algorithms did considerably well given the small
sample sizes, but we believe further study is merited with
more environmental variables should be included in subse-
quent studies.

6 Summary
This initial experiment has yielded preliminary results that
demonstrate how it is feasible to learn classification-based
models of arousal state from a combination of biometric data
and built environment data. We have shown the potential for
these algorithms to have tolerable misclassification errors and
demonstrated the potential for prediction by promising AUC
scores. We note the sample size is small and that statistical in-
ference cannot be made. In addition, we also convey that the

results did not allow us to differentiate which methods might
be better. Nevertheless, we believe the potential for machine
learning to be applied in this problem domain has been suffi-
ciently suggested and merits further research.

6.1 Limitations and Open Questions
This research has generated several open questions during our
investigation. The sample size of the data was limited to 13
participants. It is desirable that future work exceed this num-
ber and seek as many participants as possible to reduce vari-
ability and increase the potential for statistical inference.

Results have shown that machine learning algorithms can
be trained to fit biometric built data and that while inconclu-
sive, AUC curves are promising. Unfortunately, the small
sample size means that statistical comparisons between the
machine learning algorithms is inconclusive both in fitting
and validating the data. It is an open question which methods
will give the researcher better fit and prediction. Concretely,
whether linear classification models being compared to neu-
ral classification algorithms.

The expert annotated data was binary. Data was averaged
by 30 seconds to provide a mean heart rate and standard de-
viation to help determine if a arousal event was observed. It
is unknown how a smaller window might have influenced the
machine learning algorithms.

Results shown that the models selected favored heart rate,
which correlated unsurprisingly with the prediction target of
arousal. It an open question what is the best prediction tar-
get for the estimation of arousal given a built environment.
Specifically, it is of interest to determine whether a discrete
target variable or continuous variable target will lead to better
machine learning results and statistical inference.

It is unknown what are the essential variables that could po-
tentially aid building a machine learning model both fits the
data and predicts future arousal in built environments well.
Therefore, it is of interest to collect as many variables in a par-
ticipants environment as possible. We believe there is merit
in also exploring how to best collect this environmental data
of their built environment and represent it to the the machine
learning algorithms.

The ability to detect an arousal event in a user given their
built environment presents interesting and new possibilities
in affective computing research. There are many questions
about which is the most appropriate approach for sensor fu-
sion, model building, and how to build applications which
could affectively respond to a user based on their arousal
state.

6.2 Future Work
In our continuing work on developing this multisensor ap-
proach to arousal state detection and prediction, we plan to
perform another experiment with as many participants as pos-
sible. Our experiment design involves users being supplied
with mobile sensors that they can use to annotate their per-
ceived arousal state given their built environment in real time.
We intend to explore the performance of machine learning al-
gorithms in a continuous prediction variable target scenario.
At the same time, we wish to observe as many variables as we
can about the environment they are in, and collect as much



biometric data from the user as possible. In order to develop
a model that can fit the data well and be used for prediction,
we will systematically explore machine learning representa-
tions (especially loss functions and hyperparameters) and al-
gorithms to determine those most appropriate to this problem.
These specifically include linear methods suitable for discrete
variables or continuous spatiotemporal domains. Our overall
goal is to devise a machine learning based methodology for
both detection and prediction of arousal events in a built en-
vironment that can provide affective response feedback to a
user.
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