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Abstract

The goal of this paper is to develop a methodology and model to classify and characterize
the arousal state of participants in a built environment. Demonstrating this showcases
the potential of developing an intelligent system capable of both classifying and predicting
biometric arousal state. This classification process is traditionally performed by human
experts. Our approach can be leveraged to take advantage of the diversity of real-time
sensor data to inform the development of smart(er) environments to improve human health.
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1. Introduction

1.1. Goals

This paper proposes using a binary classification machine learning technique such as logistic
regression (LR) to detect user annotated affect in a built environment. The work in this
paper is an extension of the work begun in Yates et al. (2017b), but with some notable
differences. First, we consider user annotation of perceived safety in a built environment
as ground truth for the detection of arousal in a built environment. Second, this paper
considers an additional 6 participants. Third, no aggregate window was used to smooth
the data and instead, the biometric data were normalized by participant and by zone. In
addition, new environmental and participant characteristics were considered in the analysis.

1.2. Objectives and Significance

Research suggests strong correlations and relationships between a physical environment
and the influence on the physical and mental well-being of humans Evans (1984); Kuo et al.
(1998); Evans (2003); Abraham et al. (2010); Berman et al. (2012). There is also evidence
that there is a complex relationship between city living, urban upbringing, and the effect of
neural stress in humans Lederbogen et al. (2011). Feelings of safety have been linked as a
specific affect regulation system which that has relationships to depression, anxiety, stress,
and self-criticism Gilbert et al. (2008). The authors assert that an affective computing
approach may offer a way to generate more responsive environments that improve well-
being of those who use them. Wearable sensors and the activities of those using them can
be better understood using machine learning techniques to create a viable framework in
unify the design of built environments with computer science. In other words, affective
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computing can provide a new metric to measure this subjective experience of participants
in built environments.

1.3. Evaluation Strategy

This paper examined the predictive accuracy of the models by fitting machine learning
algorithms to the data. Specifically, comparing logistic (LR) to RF, SVM, and MLP. In
addition, Area under the Curve (AUC) was considered. The conservative Mann-Whitney
test compares the accuracy and AUC scores of LR to other algorithms. The test uses
α = 0.05. Since LR performed statistically as reasonably well as the other algorithms,
different models were evaluated on LR using model fit and performance such as AIC and
McFadden’s pseudo R2 score. Please refer to section 5.5 for further discussion.

2. Background and Related Work

2.1. Wearables

The affective computing approach of detecting arousal using wearable technology is still
young, but has been around since the 1990s with the dawn of wearable technology. This
trend is likely to accelerate given the rise of high quality commercially available technology,
such as Empatica, Fitbit, Garmin and a variety of commercially available smart watches.
Currently, Empatica is considered medical grade quality and fitbit has been FDA approved
Garbarino et al. (2014); Erdmier et al. (2016). The sophistication of these biomedical
wearable sensors is not only expanding the horizons on what is possible in experimental
design and data collection, but also in health care and Internet of Things (IoT) Mertz
(2016); Metcalf et al. (2016).

In this paper, two sensors were used to collect biometric data. The first was the Po-
lar V800 that collected GPS data and heart rate (HR). Research has been conducted on
validating the HR to measure RR intervals at rest Giles et al. (2016). The second was
the Empatica E4 which collected electrodermal activity (EDA), HR, and temperature. Re-
search has shown the Empatica E4 has excellent performance metrics for EDA, HR, and
temperature McCarthy et al. (2016). The sensor has also been used in multimodal data
collection experiments for mental stress monitoring Kye et al. (2017).

Machine learning has played an inference role in measuring arousal using commercial
and laboratory grade wearable technology. Notable experiments focused on linear and
classification machine learning algorithms Sano and Picard (2013). Binary classification
has been explored to correlated physiological and behavioural markers for arousal using
wearables Garbarino et al. (2014), and it is possible to classify panic attacks using wearables
and mobile computing Rubin et al. (2015). In the authors’ earlier work, an analysis was
conducted on participants outfitted with an Empatica E4 and a Polar wearable sensor, and
they walked through a built environment. After the experiment, they filled out a survey
indicating their responses to the environment. The biometric data and survey results were
interpreted by an expert and annotated for the presence of arousal or not. The results
demonstrated the viability of machine learning in a built environment context to detect
annotation Yates et al. (2017b,a).
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2.2. Random Forests

A classic and very effective machine learning method for binary classification and small
data sets is an algorithm called random forests (RF). This method is primarily based on
the principle of bagging with random feature selection that adds diversity to the decision
tree model. After the collection of trees a forest is generated, the model then uses a vote to
combine the tree’s predictions Robert (2014); Christopher (2016). The algorithm is known
for being very good at accuracy, handling large and small datasets, and being used for
giving estimates of what variables are important in the data Lantz (2015).

2.3. Support Vector Machines

The support vector machine (SVM) is a classic machine learning algorithm that derives its
name from the idea that a hyperdimensional plane is compressed down to a plane which
divides the hyperdimension into two spaces. In other words, the algorithm partitions the
data groups of similar data through a process referred to as the maximum margin hyperplane
ensuring the greatest separation between the two classes. The algorithm has found notable
success in the field of bioinformatics, text, and even in the detection of security breaches
Wang (2005). The decision boundary is chosen to be the one for which the margin is
maximized Murphy (2012). This can be concisely described as min1

2‖w‖
2 such that yi(w ∗

xi − b) ≥ 1 for all xi where all data points must satisfy the given constraint for the given
margins Christopher (2016).

2.4. Multilayer Perceptrons

One of the most classic and well-known artificial neural networks is the three layer feed-
forward neural network or multilayer perceptron (MLP), and is the de facto standard in
ANN topology Lantz (2015). In a classic three-layer multilayer perceptron, there are three
layers referred to as the input, hidden, and output layer. As the name indicates, the input
layer is for the variables we wish to feed into the algorithm. The hidden layer processes
the signals from the input before they reach the output layer Christopher (2016). Training
of the network occurs through backpropagation Rumelhart et al. (1986). Artificial neural
networks with at least one hidden layer also have been shown to be a universal function ap-
proximator, which means they can be made to approximate any continuous function Hornik
et al. (1989). In the context of this paper, artificial neural networks will be used for binary
classification.

2.5. Logistic Regression

Logistic regression (LR) is a very important, powerful, and spatio-temporal machine learn-
ing algorithm that has its origins in statistical learning Friedman et al. (2001). The name
logistic implies that the relationship is a binary categorical outcome. It is very useful in
binary classification and it’s connection to statistics renders it an attractive model for infer-
ence. Regression here refers to specifying the relationship between the binary classification
predictor to be estimated and the several input variables specified to describe the relation-
ship Robert (2014). Logistic regression is also formally refereed to as a generalized linear
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model for binary data where the outcome to be estimated is either a probability between 0
or 1. Mathematically, we can describe it as follows Christopher (2016):

log

(
π(x)

1− π(x)

)
= α+ β1x1 + β2x2 + ...+ βnxn for all xi such that i = 1, 2, ..., n

Let π(x) denote the probability of the outcome such that 0 ≤ π(x) ≤ 1 where the

logit function log
(

π(x)
1−π(x)

)
has a binomial distribution. The β terms determine the rate of

increase or decrease of logistic curve function. That is β > 0 implies an increase in π(x)
and β < 0 implies a decrease in π(x). Otherwise the curve is flat Agresti (2002).

3. Experiment Design: Methodology

3.1. Approach

The experiment was designed and conducted in Manhattan, Kansas. Specific urban built
environments were chosen by built environment domain experts based on environmental
characteristics, such as walkability, number of trees, presence of grass, and the likelihood of
the environment to invoke an arousal response. For the latter, examples include a darken
alley, poorly or well lit streets, sidewalks, and calming park-like settings.

Figure 1: Urban Built Environment Annotated with Zones (Reprinted with permission from
Whitaker (2018))

For this methodology, 12 distinct environmental zones were identified and geospatially
delineated. The zones were named sequentially based on their location in the route as shown
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above. In each zone, there are several urban built environment characteristics and features,
such as trees, grass, pavement, buildings, and powerlines. While the authors acknowledge
there are a wide number of possible environmental characteristics, only a few were evaluated
for this stage of the methodology. The data set is comprised of 18 participants, which
was collected from work done by earlier studies Parker (2016); Whitaker (2018). Each
participant was fitted with a Polar V800 and an Empatica E4. Participants were then
provided a map and asked to walk the designated route as indicated in the figure below.

Figure 2: Designated Route for Walk by Each Participant

The biometric data, such as HR and EDA, were normalized, and a baseline was estab-
lished using the entire biometric data collected by participants. Please see the next section
of this paper for further details. After the participant completed walking the route, the
participant filled out a survey and rated the perceived safety of each zone. The survey was
a Likert scale with 1 to 7, with 1 indicating an arousal event of feeling very unsafe versus
7 feeling very safe Parker (2016); Whitaker (2018). The tuples in the data outside of the
zones in the survey were not rated and therefore not used beyond the normalization of HR
and EDA. The data were cleaned, processed, and organized by participant ID and time.
The user annotation of safety was filtered into a binary signal. Please refer to section 5.3.3
and 5.3.4 for further details. After the data were processed and cleaned, the data have
been trained on several machine learning algorithms, such as LR, RF, SVM, and LR. This
experiment used the standard methods provided by the R statistical language. For example,
MLP has four units in the hidden layer, decay of 0.001, and max iterations of 1000. SVM
has a cost of 100 and gamma of 1 Meyer (2004); Ripley et al. (2016). Please see section 5.4
and 5.5 for more details.

3.2. HR and EDA Normalization

Heart Rate (HR) and electrodermal activity (EDA) data were used as inputs in the machine
learning algorithms to assist in generating estimates and predictions about the arousal state
of each participant as they walked through each experimental zone. Research has shown
that normalization of biometrics can be an useful and effective methodology in the detection
of affective states Healey and Logan (2005); Healey and Picard (2005). The procedure was
as follows. Normalization of HR and EDA was done by participant. The procedure for HR
is as follows:
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1. Find the top 10% and bottom 10% of the biometric data

2. Find the median of the top 10% and bottom 10% and denote it as tophr and bottomhr

respectively

3. Consider all HR tuples for a participant by zone, and find the lowest HR value that
occurs in that particular zone. Denote this by lowesthrzone

4. The normalized HR is calculated for each participant and zone as follows:

normhr =
HR− lowesthrzone
tophr − bottomhr

The procedure for EDA normalization was equivalent. This normalization approach
provides an acceptable range and scale by participant while also removing the lowest out-
lier by participant per zone. This normalization and smoothing of the data provided the
machine learning algorithms with normalized biometric data for each participant, removing
extreme values and providing a scaled metric to better detect meaningful patterns in the
data. Standard normalization for HR and EDA biometrics was performed as well, but the
normalization above was deemed more useful both in model performance and better suited
to the structure of the data based on methodologies and literature in affective computing.

3.3. Arousal Prediction Target

The detection of affect in the experiment was the estimation and prediction of ground
truth affect or arousal by filtering the likert scale of perceived safety of in space from 1
to 7, where 1 is feeling very unsafe and 7 is feeling very safe, into a binary classification
prediction target. For example, the likert scale implies a multinomial distribution and can
make inference with machine learning algorithms not very tenable. Since the question at
hand is to determine if core biometric and main environmental effects have an influence on
arousal, it is quite reasonable to consider a binary classification target for easier inference
and model building. In other words, the advantage of this approach is in parsimonious model
building and inference by machine learning algorithms. The procedure for converting the
likert scale to a binary classification can be described with the following simple procedure:

If(annotation < 5){

annotation_{binary} = 1

}else{

annotation_{binary} = 0

}

The likert scale and the boundary decision above forces the filter to unevenly spread
the binary classification to denote 1 for arousal or unsafe affect versus 0 for no arousal
or safe affect. Here, arousal describes a core affect more associated with feelings of being
uncomfortable and unsafe.
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3.4. Data Preparation

After normalization, the data were cleaned and organized and aggregated by participant.
The Empatica E4 raw data was comprised of HR, EDA, and temperature. The raw Empat-
ica data were the information that allowed the data once processed to be time stamped. The
polar data contained timestamp and GPS information. They were processed and merged
with environmental variables produced from Whitaker (2018). The environmental variables
include number of street lights, number of trees, number of distinct grass spaces, walk-
ability score, and the zone the participant was in. The characteristics were evaluated by
aggregating the number of these features that intersected or were within 50 feet of the
delineated zones. In addition, the polar data were tagged with a start and end times to
indicate points where participants has walked for a block (to achieve a walking heart rate)
and ended the experiment as shown in figure 5.2. These points helped to clean data that
may have been messy beacuse of GPS inaccuracies as participants walked into and out of
the building as a base for study logistics. The survey data were also cleaned and processed
converting survey question numbers to the appropriate zone number, properly naming and
numbering participants 1 to 18. In addition, biographical information was also verified and
processed such as age, race, sex, body type, and urban background. The polar data were
merged with the processed Empatica data by timestamp. The biometric HR and EDA data
was normalized as described in section 3.3.2. The participant arousal response was filtered
into a binary classification annotation target as described in section 3.3.3. Finally, the data
were filtered to only include tuples for GPS coordinates that occurred in the experimental
zones. The table below represents the schema of the cleaned and processed experimental
data used for the analysis.

Table 1: Schema of Data
Variables

Participant ID
Normalized HR
Normalized EDA
Gender
Bodyshape
Urban Origin
Urban Preference
Study Area Familiarity
Exercise
Walkability
Number of Lights
Number of Trees
Number of Lines
Number of Points
Number of Grass
Number of Scrubs
Binary Annotation
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Participant ID refers to the identification number assigned to the participant in the
experiment. The normalized HR and normalized EDA is the processed HR and EDA
biometric data as described in section 3.3.2. The demographic characteristics of the user
is included in gender, bodyshape, and exercise. Urban origin and urban preference explore
the origin where the participant grew up and if their preference is urban, suburban, or
rural. Study area familiarity was a categorical variable that indicated the user’s familiarity
with experimental route. The environmental characteristics used in the data refer to the
number of lights, trees, power-lines, points, grass, and shrubs in the experimental zones as
determined by Whitaker (2018).

In addition to the scheme above, additional variables, such as skin temperature, age,
and race, were explored but ultimately discarded from the data schema because they did
not contribute to sufficiently explaining model building process according to the criteria
outlined in the next section. Nevertheless, these variables still remain of interest in future
work as the sample size of participants increases.

4. Experiment Design: Evaluation Strategy

This section outlines the criteria used in building custom machine learning models used in
this experiment. At the heart of the criteria is the goal of building the most parsimonious
model consisting of main effects or core variables that explain arousal in the data without
introducing bias or correlation. Considering the issue of correlation as an example, zone is
clearly correlated with environmental characteristics present in a zone, such as number of
lights, trees, and grass. Therefore, this analysis considered models with only zone and those
with the environmental characteristics. After an exploratory data analysis, the following
models were chosen to be used in this experiment:

Table 2: Model Specification
Model Variables

A Normalized HR and EDA

B Walkability, Number of Lights, Trees, Lines, Points, and Grass

C All Variables Present

D Normalized HR and EDA, Walkability, Number of Lights,
Trees, Lines, Points, and Grass

E Normalized HR and EDA, Zone, and Participant ID

In models A, C, D, and E normalized HR and normalized EDA were used. Model A
can be thought of using only biometric signals to estimate user arousal. Conversely, model
B relied only environmental variables. The full model is model C, which used all variables
as specified in the data schema in section 3.3.4. Model D is the most nuanced model
with biometric and select environmental characteristics chosen. The last model E relies
primarily on zone and participant identification in conjunction with biometrics to explain
arousal. The criteria used to compare these models is discussed in the next two sections.
It is also important to note that this paper treated the environmental characteristics as
factors for LR. The results are discussed in section 5.
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4.1. Model Selection and Discrimination Strategy

First, an exploratory analysis was conducted on several models until the five models as
specified earlier were chosen for a final comparison. The exploratory data analysis procedure
was straightforward and proceeded by fitting the full model and then removing variables,
one at a time, to see how the model would perform.

Second, criteria used for model selection and discrimination was placed upon accuracy
and AUC scores. In addition, logistic regression was assessed with Akaike Information
Criterio (AIC), Chi-Square Tests for fit, and McFadden’s pseudo R-squared (pR2). AIC
is an estimator and score used for model selection between logistic models where AIC =
2k−2ln(L̂) such that L is the maximum value of the likelihood function for the model and k
is the number of parameters in the model Neter et al. (1996). When comparing two models,
the model with the minimum AIC score is to be chosen. Chi-square tests for fit are used to
both measure if a null model or full model is appropriate. In addition, it can be useful in
seeing if adding additional variables to the model is useful. Last, there is no strict measure
of fit for logistic models like linear models have with R2. Consequently, the Mcfadden’s
pseudo R2 was devised for logistic regression as a measure of fit McFadden (1974). It can
be succinctly described as follows:

pR2 = 1−
ln(L̂full)

ln(L̂intercept)

In general, a score between 0.20 to 0.40 is considered the standard for a good fit and is
the criteria used in this paper Hensher and Stopher (1979).

Third, this paper relies on properties of logistic regression and general linear models to
make some interpretations of the model parameters in logistic regression. It is important
to note that the interpretation is to be explanatory in nature and not necessarily predictive
in nature at this time, but the results should be useful in future work.

4.2. Cross-validation Strategy and Calibration Strategy

This paper implements a cross validation strategy that focuses on the participants. That is,
leave one out (LOOCV), leave 2 out (2FCV), and leave 3 out (3FCV). We briefly elaborate.
For LOOCV, we train on all participants except labling one for testing and validation.
This gives us 18 folds, one for each participant. For 2FCV, we train on 16 participants
and validate on two. This gives us 9 folds. For 3FCV, we train on 15 and validate on 3
participants. This gives us 6 folds. The merit of implementing cross-validation is allowing
a more comprehensive picture of model fit and potential for prediction to emerge.

The models as specified in the beginning of section 4 according to criteria outlined in
section 4.4.1 were then trained and tested on LR, RF, SVM, and MLP. In addition, two
pathological or naive models that predicted either all arousal or none were also fitted to the
training and testing data above.
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5. Experiment Design: Results

5.1. Comparisons

In this section, LR model D’s accuracy is compared to the algorithms RF, SVM, and NN
model D performance using the Mann-Whitney-Wilcoxon test at the 0.05 significance level.
Please see section 5.5.3 for further details on why the specific comparison to model D is
being made. Most importantly, RF and NN did not perform better in accuracy than LR
statistically. That said, LR model performed better than SVM. Thus, given the advantages
of LR for assessment of fit and interpretability, we chose this as the focus of further study
and development.

The null hypothesis is that the accuracy of LR when compared to algorithms accuracy
such as from RF, SVM, and NN is from the same population Higgins (2003). This can be
described more formally as follows:

H0 : µLR − µA2 = 0
HA : µLR − µA2 6= 0

Please note that A2 in the comparison denotes RF, SVM, or NN. The results of the
comparison and tests are given below:

Table 3: LR Model D Accuracy Comparison LOOCV
Comparison P-Value

LR and RF 0.5841

LR and SVM 0.0129

LR and NN 0.9129

Table 4: LR Model D Accuracy Comparison 2FCV
Comparison P-Value

LR and RF 0.3401

LR and SVM 0.0027

LR and NN 0.2973

Table 5: LR Model D Accuracy Comparison 3FCV
Comparison P-Value

LR and RF 0.5287

LR and SVM 0.0003

LR and NN 0.6070

First, this paper rejects the null hypothesis of accuracy scores between LR and SVM
for model D. The comparisons fail to reject the null hypothesis when LR was compared
to RF and NN respectively. The results are similar when comparing other LR models to
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other machine learning algorithms on accuracy and AUC. Therefore, since LR is statistically
similar to NN and RF in accuracy and AUC performance, it follows this analysis would use
of general linear model theory on LR for fit and interpretation of coefficients to build an
explanatory model. The comparisons reveal that LR through model D is a viable candidate
machine learning algorithm to detect and predict arousal in participants given biometric
and built environment characteristics.

5.2. Logistic Model Fit

In this section, this paper will examine the model performance of LR across LOOCV, 2FCV,
and 3FCV to assess model fit. Specifically, we will look at the accuracy, AUC, AIC, PR2,
and Chi-Square results.

Table 6: LOOCV LR Accuracy, AUC, AIC, PR2, and Chi-Square
Algorithm Model Accuracy AUC AIC PR2 Chi-Square

LR A 0.5632 0.4977 14836.26 0.0211 0*

LR B 0.7075 0.7239 11663.41 0.2354 0*

LR C 0.6532 0.6643 7053.463 0.5391 0*

LR D 0.7220 0.7357 11491.89 0.2470 0*

LR E 0.7563 0.7842 10001.08 0.3418 0*

The ∗ means that every Chi-Square fit tests in the fold rejected the null hypothesis at
0.0000 meaning all models in the table above are statistically more useful than the null
average intercept only model. From the above, model A had the worst accuracy, AUC,
and fit. Model C, the full model, had the best fit score of 0.5391 but the lower accuracy
score shows this model overfits the training data. Model B and Model D are comparable
in accuracy and AUC scores. However, model D has a lower AIC score than model B.
Alone, this would suffice in preferring model B given accuracy and AUC are comparable.
In addition, model D also has a better pR2 score and therefore fits the training data better.
Model E by the metrics used above looks very competitive with accuracy, AUC, AIC, and
fit values competitive with the other models. However, the next section will reveal why this
model should likely not be chosen.

Table 7: 2FCV LR Accuracy, AUC, AIC, PR2, and Chi-Square
Algorithm Model Accuracy AUC AIC PR2 Chi-Square

LR A 0.5399 0.5005 13910.33 0.0233 0*

LR B 0.7548 0.7567 11084.73 0.2270 0*

LR C 0.5179 0.5449 5646.649 0.6154 0*

LR D 0.7566 0.7585 10921.22 0.2387 0*

LR E 0.8096 0.8266 9526.058 0.3329 0*

Again, model A continues its poor performance. The full model has excellent fit, but
poorer accuracy and AUC which indicates overfit. Here, it appears that model B and D
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have almost indistinguishable accuracy and AUC. However, the average AIC and pR2 clearly
favor model D over model B. Model E again has good accuracy, AUC, and fit metrics.

Table 8: 3FCV LR Accuracy, AUC, AIC, PR2, and Chi-Square
Algorithm Model Accuracy AUC AIC PR2 Chi-Square

LR A 0.5487 0.4983 13020.57 0.0277 0*

LR B 0.7734 0.7641 10547.08 0.2180 0*

LR C 0.5248 0.5537 4895.327 0.6395 0*

LR D 0.7705 0.7606 10355.5 0.2326 0*

LR E 0.8183 0.8292 9089.698 0.3231 0*

3FCV is the most general fit and therefore the most ideal validation considered in this
paper. Thus, extra attention should be paid to the results above. The trends observed in
the other folds continue. Model A has performed poorly. The full model, model C, has
excellent fit but the accuracy and AUC reveal the overfit issue is persistent. Models B and
D has comparable accuracy and AUC scores, but the average AIC and pR2 clearly favor
model D being a superior fit. Most importantly, the accuracy and AUC scores have gone up,
which indicates that the models are not overfitting on the data as they were for LOOCV.

Given the above, we now reflect on the interpretation of the coefficients of the LR algo-
rithm. Based on the accuracy and fit metrics discussed above, it has been shown that 3FCV
LR model D is a viable model for detecting and predicting arousal in participants given
biometric and built environmental characteristics and the criteria above. The explanatory
implications of the model are further described below. This paper will also briefly discuss
why model E should be discarded.

5.3. Explanatory Model

This paper looked at the coefficients for 3FCV for model D and E. Despite model E hav-
ing competitive accuracy, AUC, and fit metric scores, it has been discarded because the
coefficients in the model for Zone were not statistically significant at 0.05 level. Said more
concretely, the addition of the zone variable increased the performance metrics above but
did not statistically contribute to explaining arousal in the model. In a sense, model E was
the most appropriate model from the experimental design perspective since the experiment
relied upon experimental zones and participants. Therefore, it was no surprise that model E
had good accuracy, AUC, and fit. However, from a explanatory model perspective, the zone
does not adequately capture the environmental characteristics as other models, especially
model D that has walkability, Number of Lights, Trees, Lines, Points, and Grass. In other
words, while model E might be an interesting model from a machine learning centric ap-
proach, it fails as a good explanatory model. Therefor, 3FCV was considered as a template
for an explanatory model. The folds and performance of 3FCV were very similar for all 6
folds. Consequently, it suffices for us to consider the results for fold 1. In addition, this
section will only discuss the variables that are statistically significant in the model. See
below for the explanation of the coefficients:
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Table 9: 3FCV LR Model D Statistically Significant Coefficients
Coefficient Estimate Std. Error P - Value

Norm HR -0.96054 0.13778 3.14e-12

Norm EDA 0.52031 0.10942 1.98e-06

Walkability -0.42300 0.03400 2e-16

Num Lights 6 0.55417 0.14641 0.000154

Num Lights 9 0.96066 0.24840 0.000110

Num Lights 17 0.62360 0.24744 0.011728

Num Trees 2 -0.57888 0.12320 2.62e-06

Num Trees 5 -0.49781 0.11358 1.17e-05

Num Trees 6 -0.73623 0.11477 1.41e-10

Num Trees 7 -0.97217 0.13441 4.73e-13

Num Trees 8 -1.32633 0.16632 1.53e-15

Num Trees 9 -1.48456 0.15702 2e-16

Num Tees 10 -2.94440 0.61184 1.49e-06

Num Lines 0.41176 0.02682 2e-16

Num Points 0.22438 0.07942 0.004728

Num Grass 1 0.62416 0.08694 7.00e-13

Num Grass 2 1.47801 0.10110 2e-16

Num Grass 3 2.86276 0.11734 2e-16

Num Grass 4 2.81924 0.15745 2e-16

Num Grass 5 2.52025 0.43669 7.87e-09

Num Grass 6 2.98681 0.54243 3.66e-08

These results are mostly significant at an 0.001 level and all at a significance level of
0.05. The coefficients were tested individually in assessing if their addition contributed to
explaining the variation of the model in a meaningful way. For example, Norm HR is highly
significant in contributing to explaining arousal in the model at a p-value of nearly 0. Before
this paper proceeds further, let us briefly mention that the levels in number of lights were
from 1 to 19, but only 6, 9, and 17 contributed to explaining arousal in the model. For
example, if a participant observed lights other than 6, 9, or 17 then it follows that the terms
for lights in the model would be 0 and as discussed in section 5.2.5, would have a neutral
contribution to arousal. Similarly, the number of trees had levels 2 to 13 but only levels
2, 5, 6, 7, 8, 9, and 10 were statistically significant. Interestingly, all levels for grass were
statistically significant.

The model suggests that higher heart rate and presence of trees contribute to the like-
lihood of the user to have low arousal and therefore some association with feeling safer.
Conversely, the model suggests higher rates of EDA, lines, points, and grass contribute
to the individual having a higher likelihood of experiencing an arousal event and there-
fore feeling less safe. While the findings may be useful for interpretation, they should be
cautiously considered until further studies can be conducted. Nevertheless, the primary
outcome demonstrates that the proposed machine learning methodology can be used to
identify specific characteristics that cause arousal.
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There are some important caveats to mention. The authors assert that this model is
useful and explanatory of the data fitted by the LR machine learning algorithm. The model
is not meant to be generalized beyond the current data and be inferred on the general pop-
ulation. The results, however, are suggestive, and future work should focus on such a task.
In addition, the models have only focused on main effects and not interactions. Statistical
interactions are likely to be highly informative both to machine learning and built environ-
ment researchers. Nevertheless, the results in this paper establish a connection between a
participants biometrics, environmental variables, and the detection of their arousal affects
via machine learning.

6. Summary

The authors assert that future work should focus on increasing the scale of the experiment,
diversify and increase the number of built environments in the experiment, balance par-
ticipants by gender, and further weaken potential cofounding influences in the experiment
by requiring half of the participants to walk the route counter-clockwise and the other half
clockwise.

Many machine learning researchers have noted that there is no single best model that
works optimally for all kinds of problems Robert (2014). However, the results in this
analysis certainly suggest that binary classification machine learning algorithms provides a
useful approach and methodology in the detection of affect in a built environment. First,
the Chi-Square tests reveal that the models are statistically useful in explaining affect over
the null or intercept model. Second, AIC provide a useful measure in suggesting model
D as an appropriate model over the others. Model E was competitive, but the Wald test
revealed it was an inappropriate explanatory model. In summary, pR2, Wald tests, and the
accuracy and AUC models indicate that LR model D fits the data well, predictive abilities,
and contains useful explanatory information about the data collected in the course of the
experiment.
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