
A Multistrategy Approach to Classifier Learning from Time Series

WILLIAM H. HSU
bhsu@ncsa.uiuc.edu
National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL 61820

SYLVIAN R. RAY
ray@cs.uiuc.edu
Department of Computer Science and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801

DAVID C. WILKINS
dcw@uiuc.edu
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Editors: Floriana Esposito, Ryszard Michalski, Lorenza Saitta

Abstract. We present an approach to inductive concept learning using multiple models for time series. Our objective is to
improve the efficiency and accuracy of concept learning by decomposing learning tasks that admit multiple types of
learning architectures and mixture estimation methods. The decomposition method adapts attribute subset selection and
constructive induction (cluster definition) to define new subproblems. To these problem definitions, we can apply metric-
based model selection to select from a database of learning components, thereby producing a specification for supervised
learning using a mixture model. We report positive learning results using temporal artificial neural networks (ANNs), on
a synthetic, multiattribute learning problem and on a real-world time series monitoring application.

Keywords. multistrategy learning, time series, attribute partitioning, constructive induction, metric-based model
selection, mixture estimation

1. INTRODUCTION

This paper discusses inductive concept learning from time series data. It presents a new
approach that adapts attribute subset selection and constructive induction – especiallycluster
definition (Michalski, 1983; Stepp & Michalski, 1986; Donoho, 1996) – to decompose
problems, then uses quantitative metrics to select techniques for each identifiable (and
relevant) embedded subproblem. This approach is best suited forheterogeneoustime series
data – that arising from multiple sources of data (such as in sensor fusion or multimodal
human-computer interaction). The multistrategy solution is compared to some hierarchical
mixture models that recombinine specialized classifiers, for large-scale data sets.
Experimental evaluation uses real and synthetic data that captures heterogeneity in time series
and in general.

The purpose of applying integrative, multistrategy learning to such data is to improve the
accuracy and efficiency of classifier learning using a mixture model, through systematic
transformation of learning tasks into a collection of subtasks. Problems that admit this
transformation are referred to in this paper asdecomposable, by means of task partitioning
and subproblem definition, quantitative model selection, and construction of hierarchical
mixture models for data fusion. Decomposition of time series learning tasks alleviates some
aspects of heterogeneity, such as having multimodal inputs and diversity in scale and
structure, that arise in monitoring problems. Equally important, it supports selection of the
most appropriate learning architecture (Benjamin, 1990; Engelset al, 1998) for each

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 2

homogeneous component of a time series, and accounts for prior knowledge on subdivision
of learning tasks.

The key novel contributions of the system are:

1. The explicit organization of learning components into recombinable and reusable classes
2. Metrics for properties of data sets that indicate an appropriate learning technique
3. A framework for decomposing learning tasks and combining classifiers learned using

different techniques

A typical application for such a system is learning forcrisis monitoring, the prediction and
classification of anomalous, potentially catastrophic, conditions. This form of pattern
recognition is useful in decision support orrecommender(Resnick and Varian, 1997) systems
for many time-critical applications. Examples of crisis monitoring problems in the industrial,
military, agricultural and environmental sciences are numerous. They include: crisis control
automation (Wilkins and Sniezek, 1997; Hsuet al, 1998), online medical diagnosis (Hayes-
Rothet al, 1996), simulation-based training and critiquing for crisis management (Mengshoel
& Wilkins, 1996; Grois et al, 1998), and intelligent data visualization (Horvitz & Barry,
1995).

2. BACKGROUND

This section surveys background material on time series learning using stochastic process
models, particularly temporal artificial neural networks (ANNs). It presents the concepts of
memory forms, convolutional codes, the autoregressive moving average (ARMA)family of
processes, and the linear models (corresponding to time-delay, recurrent, and gamma
memories) that can be used to represent ARMA processes. It then describes a framework for
integrated, multistrategy learning of time series that adapts one of several constructive
induction techniques to decompose a learning task, derives a learning specification by
selecting among supervised inductive learning architectures and algorithms, and synthesizes
the resultant predictions using a mixture model.

2.1Heterogeneous Time Series: Learning Techniques

A key assumption made in this paper is that predictive capability is a good indicator of
performance (classification accuracy) for a time series learning architecture, such as a
recurrent ANN. Although the merit of this assumption varies among time series classification
problems (Gershenfeld & Weigend, 1994; Mozer, 1994), the authors have found it to be
reliable for a variety of problems studied. The design rationale that follows from this
assumption defines metrics for evaluating problem definitions. Each metric estimates an
intrinsic statistical property: namely, how closely a particular type of stochastic process fits
(i.e., can generate) observed data. Our objective is to identify the predominantprocess type
to select an appropriate learning architecture. Thememory form,as defined by Mozer
(1994), is a property of a time series learning architecture that characterizes how it represents
a temporal sequence. Memory forms include limited-depth buffers, exponential traces,
gamma memories (Principé & deVries, 1992; Principé & Lefebvre, 1998), and state transition

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 3

models. In the ideal case, learning subtasks can be isolated that each exhibit exactly one
process type (i.e., each ishomogeneous), and these can be matched to known memory forms
in the system’s catalogue.

For temporal ANNs, a memory form can be represented using a functional descriptor called a
convolutional code. Past values of a time series are stored by a particular type of recurrent
ANN, which transforms the original data into its internal representation. This transformation
can be formally defined in terms of akernel functionthat is convolved over the time series.
This definition is important because it yields a general mathematical characterization for
individually weighted “windows” of past values (time delay orresolution) and nonlinear
memories that “fade” smoothly (attenuated decay, ordepth) (Principé & deVries, 1992;
Mozer, 1994; Principé & Lefebvre, 1998). The interested reader is referred to Mozer (1994)
and Hsu (1998) for definitions of the convolutional codes for temporal ANNs discussed in
this paper. These are tapped delay-line memories, also called time-delay neural networks, or
TDNNs (Lang, Waibel & Hinton, 1990); exponential trace memories, also called input
recurrent networks (Ray & Hsu, 1998); and gamma memories (Principé & deVries, 1992;
Principé & Lefebvre, 1998). The latter express both resolution and depth, at a cost of more
degrees of freedom, convergence time, and kernel function complexity.

To evaluate the degree to which a time series exhibits known memory forms, the
convolutional code for each one is applied to the time series data, and the transformed data
sets are compared to choose the most effective one. The criterion for this metric-based
model selection step is the change inconditional entropy(Cover & Thomas, 1991), with
respect to each convolutional code, for the stochastic process of which the training data is a
sample. The entropy of the next value conditioned on past values of theoriginal data should,
in general, be higher than that of the next value conditioned on past values of thetransformed
data. This indicates that the memory form yields an improvement in predictive capability,
which is ideally proportional to the expected performance of the mode being evaluated.

To model a time series as a stochastic process, one assumes that there is some mechanism
that generates a random variable at each point in time. The random variablesX(t) can be
univariate or multivariate (corresponding to single and multiple attributes orchannelsof input
per exemplar) and can take discrete or continuous values, and time can be either discrete or
continuous. For clarity of exposition, the experiments focus on discrete classification
problems with discrete time. Following the parameter estimation literature (Duda & Hart,
1973), time series learning can be defined as finding the parameters{ }nθθ ,,1 ÿ=Θ that

describe the stochastic mechanism, typically by maximizing the likelihood that a set of
realized or observable values, () () (){ }ktxtxtx ,,, 21 ÿ , were actually generated by that

mechanism. This corresponds to the backward, or maximization, step in theexpectation-
maximization (EM)algorithm (Dempster, Laird & Rubin, 1977). Forecasting with time series
is accomplished by calculating the conditional density () () (){ }{ }()mtXtXtXP −−Θ ,,1,| ÿ , when
the stochastic mechanism and the parameters have been identified by the observable values
{x(t)}. The orderm of the stochastic mechanism can, in some cases, be infinite; in this case,
one can only approximate the conditional density.

Despite recent developments with nonlinear models (Kantz & Schreiber, 1997), some of the
most common stochastic models used in time series learning are parametric, linear models for
generating processes calledautoregressive (AR), moving average (MA), andautoregressive

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 4

moving average (ARMA)processes. We refer the reader to Hsuet al (1998) and Hsu (1998)
for the mathematical definition of these models. Inheterogeneoustime series, the embedded
temporal patterns belong to different categories of statistical models, such asMA(q) and
AR(p), where q and p denote the polynomial order of the process. Examples of such
embedded processes are presented in the discussion of the experimental test beds. A
multichannel time series learning problem can be decomposed into homogeneous subtasks by
aggregation or synthesis of attributes.Aggregationoccurs in multimodal sensor fusion (e.g.,
for medical, industrial, and military monitoring), whereeach group of input attributes
represents the bands of information available to a sensor (Stein & Meredith, 1993). Complex
attributes may besynthesizedexplicitly by constructive induction, as in causal discovery of
latent (hidden) variables (He96); or implicitly by preprocessing transforms (Haykin, 1994;
Mozer, 1994; Ray & Hsu, 1998).

For a stochastic process (time-indexed sequence of random variables)X(t), we are interested
in the conditional entropy of the next value given earlier ones. This can be written as:

() () ()()tXtXtXHH ddefd ,,| 1 ÿ= . To measure the improvement due to convolution with a kernel

function withd components, we further define: () ()()ditXtXHH idefd ≤≤= 1,ˆ|ˆ where ()tXi
ˆ is as

defined above. Similarly, we define s
d

H and s
d

Ĥ , for the restriction ()tX s of X(t) to thesubset

of attributess. Our refinement permits specific subsets of input data to be evaluated to
determine the predominant process type. Given a kernel function for a candidate learning
architecture, we define a metric: s

d
s
dR HHM ˆ/= for a recurrent ANN of type

{ }GAMMASRNTDNNR ,,∈ , which denotes the degree of match between a known memory
form and observed time series data.

2.2 Integrated Multistrategy Learning Systems

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 5

Figure 1. Overview of the integrated, multistrategy learning system.

Figure 1 depicts a learning system for decomposable, multi-attribute data sets. The central
elements of this system are:attribute partitioning, metric-based model selection, and adata
fusionmechanism for integration of multiple models. Given a specification for reformulated
(reduced or partitioned) input, new intermediate concepts'

iy
� can be formed by unsupervised

learning – e.g., conceptual clustering cf. Stepp and Michalski (1986); the newly defined
problem or problems can then be mapped to one or more appropriate hypothesis languages
(model specifications). The next section presentsSelect-Net, a high-level algorithm for
generating this specification, which we shall refer to as acomposite. This algorithm also
configures and trains subnetworks in a hierarchical system for multistrategy learning, whose
components are selected bySelect-Net; a data fusion step occurs after individual training of
each model. The system incorporates attribute partitioning into constructive induction to
obtain multiple problem definitions (decomposition of learning tasks); applies metric-based
model selection over subtasks tosearch for efficient hypothesis preferences; and integrates
these techniques in a data fusion (mixture estimation) framework.

3. LEARNING TASK DECOMPOSITION AND MODEL SELECTION

This section introducesattribute partitioning for problem decomposition in multiattribute
inductive learning and a new metric-based model selection approach (composite learning) for
decomposable learning tasks.

Multiattribute
Data Set

{x
�

Attribute
Partitioning

'
1x

�

'
nx

�

Subproblem
Definition

'
1y

�

'
ny

�

?

?

?

?

Partition
Evaluator

Metric-Based
Model Selection

Learning
Architecture

Learning
Method

Learning Specification
(Composite)

Data
Fusion

Overall
Prediction

Subproblem (Architecture,
Method)

Tree Metrics

Node
Metrics

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 6

3.1Attribute-Driven Problem Decomposition: Subset Selection and Partition
Search

Many techniques have been studied for decomposing learning tasks, to obtain more tractable
subproblems and to apply multiple models for reduced variance. This section examines
attribute-basedapproaches for problem reformulation, especiallypartitioning of input
attributes in order to defineintermediate concepts(Fu & Buchanan, 1985) in problem
decomposition. This mechanism produces multiple subproblems for which appropriate
models must be selected; the trained models can then be combined usingclassifier fusion
models adapted from bagging (Breiman, 1996), boosting (Freund & Schapire, 1996), stacking
(Wolpert, 1992), and hierarchical mixture models (Jordan & Jacobs, 1994).

Attribute subset selectionis the task of focusing a learning algorithm's attention on some
subset of the given input attributes, while ignoring the rest (Kira & Rendell, 1992; Kohavi &
John, 1997). In this research, it is adapted to the systematic decomposition of learning
problems over heterogeneous time series. Instead of focusing a single algorithm on a single
subset, the set of all input attributes is partitioned, and a specialized algorithm is focused on
each subset. Whereas subset selection presumes a single learning model by default,
partitioning is designed specifically for multiple-model learning. This new approach adopts
the role of feature construction in constructive induction: to formulate a new input
specification from the original one (Donoho, 1996). It uses partitioning todecomposea
learning task into parts that are individually useful (usingaggregationas described in Section
2.1), rather than toreduceattributes to a single useful group. This permits new intermediate
concepts to be formed by unsupervised learning methods such as conceptual clustering (Stepp
and Michalski, 1996) or cluster formation using self-organizing algorithms (Kohonen, 1990;
Hsu et al, 1999). The newly defined problem or problems can then be mapped to one or
more appropriate hypothesis languages (model specifications). In our new system, the
subproblem definitions obtained by partitioning of attributes also specify a mixture estimation
problem (i.e., data fusion step occurs after training of the models for all the subproblems).

{1,2,3,4}

{1}{2}{3}{4}

{1,2,4}{3} {1,2}{3,4} {1,3,4}{2} {1,3}{2,4}{1,2,3}{4} {1,4}{2,3} {1}{2,3,4}

{1,2}{3}{4} {1}{2,4}{3} {1,4}{2}{3} {1}{2,3}{4}{1,3}{2}{4} {1}{2}{3,4}

Set Partition State Space
Poset Relation: Set Partitioning
A ≤ B = “A is a refinement

(subpartitioning)
of B”

“Up” operator: MERGE
(abstraction)

“Down” operator: SPLIT
(refinement)

Figure 2. State space formulation of the attribute partitioning problem

Figure 2 depicts the state space of all partitions of a set of 4 attributes. The size of the state
space forn attributes isBn, thenth Bell number, defined as follows:

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 7

ÿ
�

ÿ
�

�

−+−−
=

≠=<
=

=�
=

otherwiseknkSknS

knif

nkorknif

knS

knSB
n

k
n

),1()1,1(

1

0,00

),(

),(
0

Thus, it is impractical to search the space exhaustively, even for moderate values ofn. The
functionBn is ω(2n) ando(n!), i.e., its asymptotic growth is strictlyfaster than that of2n and
strictly slower than that ofn!. It thus results in a highly intractable evaluation problem if all
partitions are considered. Instead, a heuristic evaluation function is used so that informed
search algorithms such as hill climbing, best-first search, beam search, and A/A* (Barr &
Feigenbaum, 1981; Russell & Norvig, 1995) may be applied. This evaluation function is the
modular mutual information score(Hsu, 1998), which measures mutual information across
subsets of a partition (Jordan, 1997b). It is directly proportional to the conditional mutual
information of the desired output given each subsetby itself (i.e., the mutual information
between one subset and the target class,given all other subsets). This quantity,modular
mutual information, is denotedIi for each subset of input attributesX i. The score is inversely
proportional to the difference between joint and total conditional mutual information (i.e.,
shared information among all subsets). Themodular common informationis denoted∇I for
an entire partitionX:

() () ()

() ()

()YX

YXYXXX

XXXXYXYXXYX

;2

;;;;;

,,,,,,|;|;

11

1
21

111

IIIIM

IIII

HHII

k

i
i

k

i
iHMEMS

k

i
idefkdef

kiiidefiidefi

−�
�

�
�
�

�=−�
�

�
�
�

�=

−==

−==

��

�

=
∇

=
−

=
∇

+−≠

ÿ

ÿÿ

The purpose of the score,MMS-HME, is to reward high conditional mutual information between
an attribute subset and the desired output given other subsets (i.e., each learning component
will be alloted a large share of the work through the subproblem defined on that subset). It
should also penalize high common information (i.e., the gating network is alloted more work
relative to the experts). Note that while the partition separates inputs into groups of channels
Xi, it does not affect the intrinsic cross-information among these groups.

In the ideal case, this metric yields a speedup that reduces partition search to an NP-complete
problem – that is, finding the optimum partition of size 2, from among 2n-1, then repeating this
for the resulting refinements (or subpartitions). Empirical experiments described in (Hsu,
1998) demonstrate a speedup (up to 40 times for a synthetic 8-attribute problem) that
effectively doubles the number of attributes that can be partitioned using algorithm A.
Members of theschemafor the optimum partition (Goldberg, 1989) are also shown to have
high evaluation function scores.

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 8

3.2Subproblem Definition

This section summarizes the role of attribute partitioning in defining intermediate concepts
and subtasks of decomposable time series learning tasks, which can be mapped to the
appropriate submodels. In both attribute subset selection and partitioning, attributes are
grouped into subsets that are relevant to a particular task: the overall learning task or a
subtask. Each subtask for a partitioned attribute set has its own inputs (the attribute subset)
and its own intermediate concept. This intermediate concept can be discovered using
unsupervised learning methods, such as self-organizing feature maps (Kohonen, 1990; Hsuet
al, 1999) andk-means clustering(Russell & Norvig, 1995). Other methods, such as
competitive clustering or vector quantization using radial basis functions (Haykin, 1994),
neural trees (Li, Fang & Li, 1993), and similar models (Duda & Hart,1973; Ray & Hsu,
1998), principal components analysis (Watanabe, 1985; Haykin, 1994), Karhunen-Loève
transforms (Watanabe, 1985), or factor analysis (Watanabe, 1985), can also be used.

Attribute partitioning is used to control the formation of intermediate concepts in this system.
Whereas attribute subset selection yields asingle, reformulated learning problem (whose
intermediate concept is neither necessarily nor intentionally different from the original
concept), attribute partitioning yieldsmultiple learning subproblems(whose intermediate
concepts may or may not differ, but are simpler by design when they do). The goal of this
approach is to find a natural and principled way to specifyhow intermediate concepts should
be simpler than the overall concept.

3.3Metric-Based Model Selection and Composite Learning

Model selectionis the problem of choosing a hypothesis class that has the appropriate
complexity for the given training data (Stone, 1977; Schuurmans, 1997). Quantitative, or
metric-based, methods for model selection have previously been used to learn using highly
flexible models with many degrees of freedom (Schuurmans, 1997), but with no particular
assumptions on the structure of decision surfaces (e.g., that they are linear or quadratic)
(Geman, Bienenstock & Doursat, 1992). Learning without this characterization is known in
the statistics literature asmodel-free estimationor nonparametric statistical inference.

For time series, we seek toidentify a stochastic process type from the training data
(i.e., a process that generates the observations, as documented in Section 2.1). The
performance element, time series classification, will then apply amodel of this process
(represented by exactly one memory form) to a continuation of the input (i.e., “test” data) to
generate predictions. For example, an exponential trace memory form (Mozer, 1994; Ray &
Hsu, 1998; Hsu, 1998) can express certain types of MA(1) processes (Box, Jenkins &
Reinsel, 1994; Kantz & Schreiber, 1997). The more precisely a time series can be described
in terms of exponential processes, the more strongly it will match this memory form. The
stronger this match, the better the expected performance of an MA(1) learning model, such as
an input recurrent (IR) network. A metric that measures this degree of match on a time series
is therefore a useful predictor of IR network performance.

Table 1 lists three learning architectures (rows of the “lookup table” in Figure 1) and
metrics corresponding to their strengths. These are referred to asnode metricsbecause the
choice of architecture is local to each node (subnetwork) in a hierarchy, corresponding to a

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 9

single learning subtask. The choice of hierarchical model is global over all subtasks, so the
corresponding metrics are calledtree metrics. The metrics are calledprescriptivebecause
each one provides evidence in favor of a particular architecture.

Table 1. Learning architectures and their prescriptive metrics
Learning Architecture Node Metric
Simple recurrent network (SRN) Exponential trace (AR) score
Time delay neural network (TDNN) Moving average (MA) score
Gamma network Autoregressive moving average (ARMA) score

The ability to decompose a learning task into simpler subproblems prefigures a need to map
these subproblems to the appropriate models. The general mapping problem, broadly termed
model selection, can be addressed at very minute to very coarse levels. This paper examines
quantitative, metric-based approaches for model selection at a coarse level. This approach is
a direct extension of theproblem definition and technique selectionprocess (Engelset al,
1998). (We will henceforth use the termmodel selectionto refer to both traditional model
selection and the metric-based methods for technique selection as presented here.) The time
series learning architectures that populate part of a collection of modelcomponents(Smyth,
1998), along with their prescriptive (node) metrics, are documented in Section 2.1.

Table 2. Hierarchical models for classifier fusion and their prescriptive metrics
Hierarchical Model Type Tree Metric
Specialist-Moderator (SM) Network Factorization score
Multistrategy Hierarchical Mixture of
Experts (MS-HME) Network

Modular mutual information score

Two mixture models (columns of the “lookup table” in Figure 1, listed in Table 2), are
presented in this paper. These are theHierarchical Mixture of Experts(HME) of Jordanet
al (Jordan, Jacobs & Barto, 1991; Jacobset al, 1991; Jordan & Jacobs, 1994) and the
Specialist-Moderator(SM) network of Ray and Hsu (Ray & Hsu, 1998; Hsu & Ray, 1998).
This design choice is a critically important consideration in how a hierarchical learning model
is built, and thereby affects the performance of multistrategy approaches to learning from
heterogeneous time series. The learning methods being evaluated define the hierarchical
model used to perform multistrategy learning in the integrated, or composite, learning system.
The expected performance of this model is aholistic measurement; that is, it involves all of
the subproblem definitions, the learning architecture used for each one, and even the training
algorithm used. It must therefore take the subproblem definitions into account. As a
convention, the choice ofpartition (and intermediate training targets) is committed first; next,
the hierarchical model type; then, the learning architectures for each subset. Each selection is
made subject to the previous choices.

The tree metric for specialist-moderator networks is thefactorization score. This is an
empirical measure of howevenlythe learning problem is modularized (Ray & Hsu, 1998); it
is not specific to time series data. In (Hsu, 1998), a factorization is defined for an
intermediate target that is formed through cluster definition using a subsetai of the partition;
that is, the set of distinguishable classes depends on therestricted viewthrough a subset of
the original attributes. We characterize this restricted view in terms of the number of

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 10

distinguishable output classesoi for each subsetai, 1 ≤ i ≤ k. If the product of alloi is N, then
the score is defined:

�
=

��
�

�
��
�

�
−=

k

i
k

i
SM

N

o
M

1

lg

The tree metricMMS-HME for HME-type networks (Jacobs, Jordan & Barto, 1991; Jacobset
al, 1991; Jordan & Jacobs, 1994) is given in Section 3.1.

Definition. A compositeis a set of tuples () ()()kkkkk SBASBA ,,,,,,,,,, 11111 γθγθ ÿ=L ,

where Ai and Bi are sets of input and output attributes,iθ and iγ are names of network

parameters and hyperparameters cf. (Neal, 1996) (i.e., the learning architecture), andSi is the
name of a learning method (a training algorithm and a mixture model).

A composite is depicted in Figure 1 in the box labeled “learning specification”. Ideally, a
composite would specify the partitioning of input attributes, synthetic attributes, and all high-
level model descriptors. These include trainable weights and biases; the specification of
model structure (e.g., number, size, and connectivity of ANN hidden layers); the initial
conditions for learning (e.g., prior distributions of parameter values); and most important for
time series learning, the process type. Composites are generated using the following
algorithm.

Given:
1. A (multiattribute) time series data setD = ((x(1), y(1)), …, (x(n), y(n))) with input attributes

A = (a1, …, aI) such thatx(i) = (x1
(i), …, xI

(i)) and output attributesB = (b1, …, bO) such
thaty(i) = (y1

(i), …, yO
(i))

2. A constructive induction functionF (as described in Sections 3.1 and 3.2) such thatF(A,
B, D) = {(A’, B’)}, where A’ is an attribute partition andB’ is the set of intermediate
concepts for each subset ofA’.

Algorithm Select-Net(D, A, B, F)
repeat

Generate a candidate representation),,(),('' DBAFBA ∈
for each learning architectureττττ a

for each subsetAi’ of A’
Computenodemetricsxiττττ

a = mττττ
a(Ai’, Bi’) that evaluateττττ a with respect

to
(Ai’, Bi’).

for each learning methodττττ d

Computetreemetricsxττττ
d = mττττ

d(A’, B’) that evaluateττττd with respect to
(A’,B’).

Normalize the metricsxττττ using a precalibrated functionGττττ − see Equation 1.
Select the most strongly prescribed architecture()γθ , and learning methodS for

(A', B'), i.e., the table entry (row and column) with the highest metrics.
if the fitness (strength of prescription) of the selected model meets a

predetermined threshold

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 11

then accept the proposed representation and learning technique()SBA ,,,, '' γθ
until the set of plausible representations is exhausted
Compile and train acomposite,L , from the selected complex attributes and

techniques.
Compose the classifiers learned by each component ofL using data fusion.

Equation 1. Normalization formulas for metrics xτ (τ = metric type)

The normalization formulas for metrics, given in Equation 1, simply describe how to fit a
multivariate gamma distributionf ττττ, based on acorpus of homogeneous data sets(cf. (Hsu &
Zwarico, 1995), for a related model selection application). In this calibration phase, each
data set is a “training point” for the metric normalization function,Gττττ (i.e., the shape and
scale parameters off ττττ). By applyingSelect-Netwith Gττττ thus calibrated, we can generate a
learning composite – aspecificationfor supervised, multistrategy learning on a decomposed
time series. A composite is implemented from a database of model components. For
discussions on populating this database, the reader is referred to (Hsu, 1998).

4. ADAPTING HIERARCHICAL MODELS TO MULTISTRATEGY
TIME SERIES LEARNING

Decomposition of supervised learning tasks, as presented in this paper, entails three stages:
subproblem definition, model selection for subproblems, and reintegration of trained models.
This section examines the third and final stage, reintegration, by means ofhierarchical
mixture models. It presents the problem ofdata fusionin composite learning, and a generic,
hierarchical approach using probabilistic networks. It then surveys thehierarchical mixture
of experts(HME) of Jordanet al (Jacobs, Jordan & Barto, 1991; Jacobset al, 1991; Jordan
& Jacobs, 1994), and thespecialist-moderator(SM) network, an architecture that was
specifically designed for data fusion in decomposition of learning tasks.

4.1Data Fusion and Probabilistic Network Composites

This section presentsspecialist-moderator(SM) networks andhierarchical mixtures of
experts(HME) for reintegration of composite time series models. The system overview in
Figure 3 depicts a learning system for decomposable time series. The central element of this
system is a hierarchicalmixture model− a general architecture for combining predictions

() ()

() ()
()

() yyt

t

x
xf

xxfxG

ty

tx

x

t

de

e

d

0

1

1

0

parameterscale:

parametershape:

�

�

∞ −−

−−

=Γ

Γ
=

=

τ

ττ

τ

τ

τ

τ
λ

τ
τ

τττ

λλ

τλ
τ

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 12

from submodels. In this research, the submodels are recurrent ANNs. Attribute partitioning,
described in Section 3.1, produces the subdivided inputs,x0n, to these specialist, or expert,
subnetworks (henceforth calledspecialistsor experts). Unsupervised learning methods, such
as self-organizing feature maps (SOMs) (Kohonen, 1990; Hsuet al, 1999) and competitive
clustering (Haykin, 1994), are applied to form intermediate targetsy0n, as described in
Section 3.2. Selection of subnetwork types is documented in Section 3.3. The overall
concept (y11) is the learning target for the top-level moderator.

A mixture modelis one that combines the outputs of a finite set of subordinate models by
weighted averaging (Haykin, 1994). The weights are referred to asmixing proportions
(Haykin, 1994),mixing coefficients, gating coefficients(Jordan & Jacobs, 1994), or simply
“weights”. Traditionally, a mixture model is formally defined as a probability density function
(pdf), f, that is the sum of weighted contributions from subordinate models:

() ()

n

ff

n

N

n
n

n

N

n
n

allfor0and1where

;,;

1

1

≥=

=

�

�

=

=

ππ

π ÿy�ÿy

fn are the individual pdfs for mixture components, drawn from populationsSn 1 ≤ n ≤ N, andf
is a pdf over samplesy drawn uniformly from the populationS. That is, fn denotes the
likelihood thatSn contributesy to the mixtureS. πi denotes thenormalized weightfor this
likelihood (Haykin, 1994). The parametersθ θ θ θ include all unknowns in the subordinate models
upon which the distributionsfn are to be conditioned. This generalizes over all parameters of
the learning architecture, such as network weights and biases. The hyperparametersπ π π π are
simply the mixing coefficients. The mixture estimation problem is to fitππππ, given training data
(y1, …, yn, y).

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 13

Figure 3. Role of hierarchical mixtures and two mixture models (HME and SM networks)

An alternative definition (Jordan & Jacobs, 1994) that is more familiar to the nomenclature of
connectionist (probabilistic network) learning is to estimate the distribution ofy as a weighted
sum of predictions. The mixing coefficients still denote the normalized weight for a likelihood
function over samples from a population, but we have now specified that theestimatorfor the
likelihood function is the output of anexpert. As Jordan and Jacobs (Jordan & Jacobs, 1994)
and Haykin (1994) note, experts may be arbitrary learning components. For example, Haykin
specifically considers experts that arerule generatorsor arbitrary probabilistic network
regression models, with real-valued, discrete, or 1-of-C (“locally”) coded targets (Kohavi &
John, 1997; Sarle, 1999). In this paper, only discrete (including binary) and 1-of-C-coded
classification targets are considered.

Finally, an even more flexible formulation of mixture models is as ahierarchical mixture
network(Hsu, 1998), whose vertices all represent subnetworks. The leaves are experts or
specialist networks; the internal vertices, gating or moderator subnetworks. The target
distribution f(y) is thus described as a parameter estimation problem, where the submodel
parametersθθθθ belong to probabilistic networks such as feedforward or recurrent ANNs. For
multilayer perceptrons, or MLPs (a type of feedforward ANN), the mixture isy = f(yn), 1 ≤ n
≤ N, where the vector-valued functionf is defined over output channelsfk (of which each is a

Expert
Network

Expert
Network

x x

y11 y12
x

g11

g21

Gating
Network

x x

y21 y22
x

g12

g22

Gating
Network

Expert
Network

Expert
Network

Gating
Network

y

y1
x

g1

g2
y2

Hierarchical Mixture of Experts
(HME)

Specialist-Moderator
(SM) Network

y21 = y11 × y12

x21 = x11 ° x12

y12 = y03× y04y11 = y01× y02

Moderator
Network

Specialist
Network

Specialist
Network

y01

x11 = x01° x02

x01 x02

y02

Moderator
Network

Specialist
Network

Specialist
Network

y04

x12 = x03 ° x04

x04x03

y03

Moderator
Network

Specialist/Expert
Subnetwork

y01

y11

x11

Moderator/Gating
Subnetwork

Performance Element: Classification

y02

Specialist/Expert
Subnetwork

x02x01

Preprocessing: Attribute Partitioning

Learning
Element

(x, y)

Heterogeneous Data Set

System Overview

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 14

mixture) in the output layer of the MLP (Neal, 1996; Hsu, 1998).fk are the mixture
estimation targets.

Data fusion, in the context of composite learning, can naturally be interpreted as a mixture
estimation problem. Each expert is an inducer trained on some intermediate target concept,
resulting in a classifier that maps a subset of the input, or of a continuation of the input
(Gershenfeld & Weigend, 1994) for time series, to intermediate predictions that are combined
using the mixture model. The rest of this section definespartitioning and aggregation
mixtures, two general types of mixture models that are exemplified by HME and SM
networks.

4.2Multistrategy Hierarchical Mixture of Experts (MS-HME)

This section presents the HME architecture, one of two mixture models that may be selected
in our system, and discuses its adaptation to multistrategy learning as anintegrativemethod.
For a review of existing learning procedures for HME, such as algorithms for Bayesian
learning of ANN parameters (Neal, 1996; Jordan, 1997a), and a discussion of how they may
be incorporated into a “repertoire” of techniques, the interested reader is referred to (Hsu,
1998). Figure 3 shows an HME network of height 2, with 4 expert networks at its leaves.
Note that the expert and gating networks all receive the same input x. The target output
valuesylj, for level l and (gating or expert) networkj, are also identical. Traditional HME
uses a tree-structured network ofgeneralized linear models(GLIMs), or fixed, continuous,
nonlinear functions with linear parameters (McCullagh & Nelder, 1983). GLIMs include
single layer perceptrons with linear, sigmoidal, and piecewise linear transfer (activation)
functions, which implement regression, binary classification, and hazard models for survival
analysis, respectively (Jordan & Jacobs, 1994; Neal, 1996). The mixing is implemented by
gating GLIMs that combine outputs from the expert GLIMs. HME networks are trained
using an interleavedupdvate algorithm that computes the error function at the topmost
gating network, then propagates credit down through the hierarchy on every pass (a single
trainingepoch). This generic procedure can be specialized to expectation-maximization (EM)
(Jordan & Jacobs, 1994), gradient (Hsu, 1998), and Markov chain Monte Carlo (MCMC)
learning algorithms (Neal, 1996). HME thus supports a type of self-organization over
submodels (which are identical in the original formulation); (Jordan & Jacobs, 1994) explains
this property and how the “learning load” is distributed over experts by the multi-pass
algorithm.

We adapt HME to multistrategy learning (MS-HME) by replacing GLIMs with feedforward
and recurrent ANNs, with nonlinear (sigmoidal or hyperbolic tangent) or piecewise linear
input-to-hidden layer transfer functions and linear hidden-to-output layer transfer functions.
The purpose of this modification is to permit an arbitrarymixture function, which is
implemented by all of the interior (moderator) subnetworks as a whole, to be learned. As
Kohavi et al (1996) point out, however, mixture functions that arenot linear combinations of
the input (i.e., those that do not have the same mixing coefficients for any input data) are
semantically obscure. Furthermore, the real issue is not the ability to fit a mixture perfectly,
because (just as in general concept learning) it is always possible to learn by rote if there are
sufficient model resources. The true criterion isgeneralizationquality. In general concept
learning as well as mixture modeling, we can evaluate generalization by means of cross
validation methods (Wolpert, 1992). While such empirical results may not be as conclusive

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 15

as a computational learning theoretic model (Vapnik, 1995), it is more feasible to collect
them than to develop a formal generalization model for recurrent ANNs. Some discretion,
therefore, is essential when undertaking to use a general mixture function instead of a linear
gating or fusion model.

Finally, in order to adapt HME todecompositionof learning problems, it is necessary to
make inputs to experts (at the leaves of the tree-structured network)nonidentical. Section
3.1 describes attribute partitioning algorithms that split the input data along “columns”. Each
expert receives the data restricted to one subset of input attributes (i.e., the columns or
channels specified by that subset), and each gating network receives as inputs the
concatenation of inputs to each expert and the normalized output from each expert. The
target outputs at every expert and gating level are identical to one another and to the overall
target. Thus, a training exemplar is a set of subnetwork outputs, concatenated with the total
input to all experts in thedomain of the moderator (i.e., the subtree rooted at that
moderator). Training a moderator means revising its internal weights to approximate a
mixture function.

4.3Specialist-Moderator (SM) Networks

This section presents the SM network architecture and its construction, and discuses its
adaptation to multistrategy learning. The SM network, which was developed by Ray and Hsu
(Ray & Hsu, 1998; Hsu & Ray, 1998), is one of two mixture types that may be selected in
our composite learning system. Figure 3 shows an SM network with two layers of
moderators. The construction of SM networks allows arbitrary real inputs to the expert
(specialist) networks at the leaves of the mixture tree, but constructs higher level attributes
based uponx0j (see Figure 3). The target output classes of each parent are the Cartesian
product (denoted××××) of its children’s, and the children’s outputs and the concatenation of
their input (denotedοοοο) are given as input to the parent. This is one of the two main
differences between SM networks and HME. The other is that a specialist-moderator
network is trained in a single bottom-up pass, while HME networks are trained iteratively, in
a top-down fashion, duringeachM step of EM (Jordan & Jacobs, 1994). Interested readers
are referred to (Hsu, 1998) for details of the construction algorithmSM-net.

Gradient learning in SM networks was introduced in (Ray & Hsu, 1998) and (Hsu & Ray,
1998). As does HME, SM networks also admit EM (Dempster, Laird & Rubin, 1977) and
MCMC (Neal, 1996) learning for certain specialist architectures (Hsu, 1998).

The primary novel contribution is the model’s synergy with attribute-based learning task
decomposition:

1. Reduced variance. On decomposable time series learning probems, SM networks
exhibit lower classification error than non-modular networks of comparable complexity.
Section 5 reports results that demonstrate this in a manner very similar to that of Reuckl,
Cave & Kosslyn (1989) and Jacobs, Jordan & Barto (1991).

2. Improved learning efficiency. Compared to non-modular networks, SM networks
require fewer trainable weights or fewer training cycles to achieve convergence on
decomposable problems (the reader is referred to (Hsu, 1998) and (Hsu & Ray, 1999) for
experimental details).

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 16

3. Facility for multistrategy learning . Our experimental results, reported in Sections 5
and 6, show improvements using time series specialists ofdifferent typeswithin the SM
network, selected from Table 1.

The main practical distinction between SM networks and HME are the ways in which each
one achieves reduced variance and reduced computational complexity.SM-net produces
moderator networks whose worst-case complexity is the product of that of their children.
This growth is limited, however, because the tree height and maximum branch factor are
typically (very) small constants (Hsu, 1998). Thus, SM networks trade more rapid growth in
complexity and susceptibility to overtraining (compared to HME, which computes no cross-
product targets) for increasedresolution capabilityand reduction oflocalization error. By
exploiting differences among the problem definitions for each subnetwork, an SM network
can distinguish among more concepts than its components, and achieve higher classification
accuracy than a comparable non-modular network. In time series learning applications such
as multimodal sensor integration, this localization error may be reduced in space or time
(Jacobs, Jordan & Barto, 1991; Stein & Meredith, 1993).

5. EXPERIMENTAL RESULTS

This section presents experimental results with comparisons to existing inductive learning
systems (Kohaviet al, 1996), traditional regression-based methods as adapted to time series
prediction, and non-modular probabilistic networks (both atemporal and ARMA-type ANNs).

5.1A Time Series Learning Problem: Musical Tune Classification

This section documents a sensor fusion experiment onmusical tune classification, illustrated
in Figure 4. It gives a design rationale for the test bed used to evaluate the SM network. In
experiments using hierarchical classifier fusion models, our focus is primarily onclassification
of time series. The architecture addresses one of the key shortcomings of many current
approaches to time series learning: the need for anexplicit, formal model of inputs from
different modalities. For example, the specialists at each leaf in the SM network might
represent audio and infrared sensors in an industrial or military monitoring system (Stein &
Meredith, 1993). The SM network model and learning algorithm, described in Section 4.3,
capture this property by allocating different channels of input (collected in each complex input
attribute) to every specialist. Other models that can be represented by SM architecture are
hierarchies of decision-making committees (Bishop, 1995).

The input data was generated from digitized audio recordings of musical tunes, preprocessed
using a simple autocorrelation technique to find a coarse estimate of thefundamental
frequency(Beauchamp, Maher & Brown, 1993). This signal was used to produce the
frequency component, an exponential trace of a tune over 7 input channels (essentially, a 7-
note scale). The other group of input attributes is therhythm component, containing 2
channels: the position in the tune (i.e., a time parameter ranging from 1 to 11) and a binary
sound-gap indicator. Figure 4 also depicts non-modular and specialist-moderator
architectures for learning the musical tune classification database. The non-modular network
receives all 9 channels of input and is trained using the overall concept class. The first-level
(leaf) networks in the specialist-moderator network receivespecializedinputs: the frequency
component only or the rhythm component only. The concatenation of frequency and rhythm

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 17

components (i.e., the entire input) is given as input to the moderator network, and the target
of the moderator network is the Cartesian product of its children's targets (Hsu, 1998). The
intermediate targets are equivalence classes IF = { F1, F2, F3, F4 } and IR = { R1, R2, R3, R4 }.
Experiments using feedforward networks and Elman, Jordan, and input recurrent varieties of
simple recurrent networks (Elman, 1990; Principé & Lefebvre, 1998) showed input recurrent
networks to achieve higher performance (accuracy and convergence rate) for exponentially
coded time series, alone and as part of the specialist-moderator networks (Ray & Hsu, 1998).

Specialist-Moderator
Network

F2

F1

F3

F4

R4

3

6

6

6

R1

5

7

6

4

R2

6

4

7

6

R3

6

7

4

6

Problem Factorization by
Frequency and Rhythm

7 Frequency
Channels 4IF

2 Rhythm
Channels

Rhythm

Frequency

7 Frequency °°°° 2 Rhythm

16C = 4IF × 4IR

4IR

Moderator

ANN
(Feedforward

or Simple
Recurrent
Network)

16C

Simple (Non-Modular)
Artificial Neural Network

7 Frequency
Channels

2 Rhythm
Channels

Figure 4. Organization of the musical tune classification experiment

Table 3 lists performance statistics (mean, extrema, and standard deviations of classification
accuracy) using atemporal inducers such asID3, C5.0, Naïve Bayes,IBL, andPEBLSon the
the musical tune classification problem (S4 data set) described in this section. The non-ANN
inducers tested are all part of the MLC++ package (Kohaviet al, 1996). Table 4 shows the
performance of the non-modular (simple feedforward and input recurrent) ANNs compared
to their specialist-moderator counterparts – each network has approximately 1200 weights
each. Each tune is coded using between 5 and 11 exemplars, for a total of 589 training and
128 cross validation exemplars (73 training and 16 cross validation tunes). The italicized
networks have 16 targets; the specialists, 4 each. Prediction accuracy is measured by the
number of individual exemplars classified correctly in a 1-of-4 or 1-of-16 coding (Sarle,
1999). Significant overtraining was detected only in the frequency specialists and did not
affect classification accuracy for this data set. The resultsillustrate that input recurrent
networks (simple, specialist, and moderator) are more capable of generalizing over the
temporally coded music data than are feedforward ANNs. The advantage of the specialist-
moderator architecture is demonstrated by the higher accuracy of the moderator test
predictions (100% on the training set and 81.25% or 15 of 16 tunes on the cross validation
set, the highest among the inducers tested). As Table 5 shows, our implementation of a non-

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 18

recurrent HME network (trained using gradient learning) with 8 leaves outperforms the
version with 4 leaves and is comparable to the specialist-moderator network of feedforward
networks. It is, however, outperformed by the specialist-moderator network of input
recurrent networks.

Table 3. Performance of an SM network versus that of other inducers on the tune classification problem

Classification Accuracy, Musical Tune Classification (%)

Training Cross Validation
Inducer Min Mean StdDev Max Min Mean StdDev Max
ID3 99.4 99.4 0.09 99.6 46.6 63.4 5.67 73.2
ID3, bagged 99.4 99.4 0.09 99.6 48.6 63.4 5.55 74.0
ID3, boosted 99.4 99.4 0.09 99.6 53.4 66.6 4.85 83.6
C5.0 95.0 95.8 0.64 96.3 67.1 77.1 3.41 84.9
C5.0, boosted 94.4 98.9 1.11 99.6 57.5 77.5 5.57 89
IBL 92.7 94.0 1.02 95.6 41.1 52.7 4.88 62.3
Discrete Naïve-
Bayes

93.8 95.6 0.78 96.3 41.1 59.6 4.79 67.1

DNB, bagged 93.4 94.6 0.79 96.3 47.9 60.8 4.19 67.1
DNB, boosted 93.8 94.4 0.47 96.5 45.2 58.3 5.34 69.2
PEBLS 72.6 76.8 1.67 84.2 30.8 42.5 4.71 56.8
SM net, FF – – – 74.9 – – – 60.2
SM net, IR – – – 100.0 – – – 81.3

Table 4. Performance of non-modular and specialist-moderator networks
Design Network

Type
Training

MSE
Training Accuracy CV

MSE
CV

Accuracy
Feedfwd. Simple 0.0575 344/589 (58.40%) 0.0728 67/128 (52.44%)
Feedfwd. Rhythm 0.0716 534/589 (90.66%) 0.1530 104/128 (81.25%)
Feedfwd. Frequency 0.0001 589/589 (100.0%) 0.0033 128/128 (100.0%)
Feedfwd. Moderator 0.0323 441/589 (74.87%) 0.0554 77/128 (60.16%)
Input rec. Simple 0.0167 566/589 (96.10%) 0.0717 83/128 (64.84%)
Input rec. Rhythm 0.0653 565/589 (95.93%) 0.1912 107/128 (83.59%)
Input rec. Frequency 0.0015 589/589 (100.0%) 0.0031 128/128 (100.0%)
Input rec. Moderator 0.0013 589/589 (100.0%) 0.0425 104/128 (81.25%)

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 19

Table 5. Performance of HME and specialist-moderator networks.
Design Training MSE Training Acc. CV MSE CV Accuracy

HME, 4 leaves 0.0576 387/589 (65.71%) 0.0771 58/128 (45.31%)
HME, 8 leaves 0.0395 468/589 (79.46%) 0.0610 77/128 (60.16%)

SM net, FF 0.0323 441/589 (74.87%) 0.0554 77/128 (60.16%)
SM net, IR 0.0013 589/589 (100.0%) 0.0425 104/128 (81.25%)

5.2An Application: Crop Condition Monitoring

The real-world test bedfor model selectionin our multistrategy learning system is a
prediction and monitoring problem using weekly crop condition estimates (corn condition in
Illinois farms) collected over 11 years. (Hsu,1998) describes the problem in detail and
presents several visualizations of the time series data. The data is shown to admit two
embedded process types: an exponential trace (MA) process and an autoregressive (AR)
process. Task decomposition can improve performance here, by isolating the AR and MA
components for identification and application of the correct specialized architecture (a time
delay neural network (Lang, Waibel & Hinton, 1990; Haykin, 1994) or simple recurrent
network (Elman, 1990; Principé & Lefebvre, 1998), respectively). The training target is
quantized to nominal values: {very poor, poor, fair, good, very good}, thereby defining a
predictive evaluation, or simulation, model. (Hsu, 1998) reports how recurrent ANNs
outperform linear prediction methods (and certainly outperform naïve linear or quadratic
regression, which invariably predict no change in condition from one week to the next) in the
“middle to distant future”. This is important because the utility of near-term predictions tends
to be lower for decision support systems (Russell & Norvig, 1995).

To demonstrate the decomposability of thecrop condition-monitoring problem, an
experiment was first conducted an experiment using Elman, Jordan, and input recurrent
networks as well as TDNNs and MLPs (Hsu, 1998). A gamma network in an MS-HME
configuration (as defined in Section 4.2) was used to select the correct classifier (if any) for
each exemplar. This context-sensitive fusion step combined predictions from the two best
overall networks (input recurrent, or IR, with momentum of 0.9 and time-delay neural
networks, or TDNNs, with momentum of 0.7). It reduced the error by almost half, indicating
that even with identical inputs and targets, a simple mixture model could reduce variance.
These results are reported in (Hsu, 1998). A pairedt-test with 10 degrees of freedom (for
11-yearcross-validation over the weekly predictions) indicates significance at the level ofp <
0.004 for the moderator versus TDNN and at the level ofp < 0.0002 for the moderator
versus IR. The null hypothesis is rejected at the 95% level of confidence for TDNN
outperforming IR (p < 0.09), which is consistent with the hypothesis that an MS-HME
network yields a performance boost over either network type alone. This result, however, is
based on relatively few samples (in terms of weeks per year) and very coarse spatial
granularity (statewide averages).

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 20

Table 6. Accuracy of MS-HME versus that of other inducers on the crop condition monitoring problem

Classification Accuracy, Crop Condition Monitoring (%)

Training Cross Validation
Inducer Min Mean Max StdDev Min Mean Max StdDev
ID3 100.0 100.0 100.0 0.00 33.3 55.6 82.4 17.51
ID3, bagged 99.7 99.9 100.0 0.15 30.3 58.2 88.2 18.30
ID3, boosted 100.0 100.0 100.0 0.00 33.3 55.6 82.4 17.51
C5.0 90.7 91.7 93.2 0.75 38.7 58.7 81.8 14.30
C5.0, boosted 98.8 99.7 100.0 0.40 38.7 60.9 79.4 13.06
IBL 93.4 94.7 96.7 0.80 33.3 59.2 73.5 11.91
Discrete
Naïve-Bayes

74.0 77.4 81.8 2.16 38.7 68.4 96.7 22.85

DNB, bagged 73.4 76.8 80.9 2.35 38.7 70.8 93.9 19.63
DNB, boosted 76.7 78.7 81.5 1.83 38.7 69.7 96.7 21.92
PEBLS 91.6 94.2 96.4 1.68 27.3 58.1 76.5 14.24
IR Expert 91.0 93.7 97.2 1.67 41.9 72.8 94.1 20.45
TDNN Expert 91.9 96.8 99.7 2.02 48.4 74.8 93.8 14.40
MS-HME 98.2 98.9 100.0 0.54 52.9 79.0 96.9 14.99

Table 6 summarizes the performance of an MS-HME network versus that of other induction
algorithms fromMLC++ (Kohavi et al, 1996) on the crop condition monitoring problem.
This experiment illustrates the usefulness of learning task decomposition over heterogeneous
time series. The improved learning results due to application of multiple models (TDNN and
IR specialists) and a mixture model (the Gamma network moderator). Reports from the
literature on common statistical models for time series (Box, Jenkins & Reinsel, 1994;
Gershenfeld & Weigend, 1994; Neal, 1996) and experience with the (highly heterogeneous)
test bed domains documented here bears out the idea that “fitting the right tool to each job” is
critical. Research that is related to this paper (Hsuet al, 1999) applies this methodology to
specific problems in diagnostic monitoring for decision support (orrecommender) systems
(Resnick & Varian, 1997).

6. CONCLUSIONS AND FUTURE WORK

This section analyzes the experimental results reported in the previous sections, especially
Section 5. It begins with a discussion of the design choices and properties of interest,
continues with an account of the the main findings and their ramifications, and concludes with
a brief synopsis of current and future work.

Traditionally, domain knowledge about the sources of data is used in their decomposition
(Hsu & Ray, 1998; Hsuet al, 1998). This is typical of the time series learning problems
surveyed in Section 1; examples of heterogeneous time series with multiple data sources
include multimodal sensor integration (sensor fusion) and multimodal HCI. Section 3.1
describes a knowledge-free approach (attribute partitioning) that can be applied when such
information is not available, but the learning problem is decomposable. As explained in
Section 1, this paper focuses on decomposable learning problems defined over heterogeneous
time series. To briefly recap, a heterogeneous time series is one containing data from multiple

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 21

sources (Stein & Meredith, 1993), and typically contains different embedded temporal
patterns, which can be formally characterized in terms of different memory forms (Mozer,
1994). These sources can therefore be thought to correspond to different “pattern-
generating” stochastic processes. A decomposable learning problem is one for which multiple
subproblems can be defined by systematic means, possibly based on heuristic search (Barr &
Feigenbaum, 1981; Russell & Norvig, 1995; Kohavi & John, 1997) or other approximation
algorithms. Some specific properties that characterize most kinds of heterogeneous and
decomposable time series, and are typically of interest for real-world data, are as follows:

1. Heterogeneity: multiple processes for which a stochastic model is known or can be
hypothesized and tested

2. Decomposability: a known or hypothesized method for isolating one or more of these
processes (often part of the application domain knowledge)

3. Feasibility: evidence that that (ideally) all of identifiable embedded processes are
homogeneous

These properties are present to some degree in the musical tune classification and crop
condition monitoring test beds, and can be simulated in purely synthetic data (Hsu, 1998).

An important topic of continued research is the process of automating task decomposition for
model selection. This paper has shown how recurrent neural networks and hierarchical
mixture models can be organized for multistrategy learning. Some of the findings reported
here indicate that the most appropriate learning architecture, mixture model, and training
algorithm can be selected for each subproblem in a modular task decomposition. For
example, a boost in classifier accuracy was achieved on the crop condition monitoring
problem by using multistrategy (i.e., multiple process model) learning. This shows how the
quality of generalization achieved by a mixture of classifiers can benefit from the ability to
identify the “right tool” for each job. The findings reported here, however, only demonstrate
the improvement for a very limited set of real-world problems, and a (relatively) small range
of stochastic process models. This needs to be greatly expanded (through collection of much
more extensive corpora) to form any definitive conclusions regarding the efficacy of the
coarse-grained model selection approach. The relation of model selection to attribute
formation and data fusion in time series is an area of continuing research (Hsu & Ray, 1998;
Hsu & Ray, 1999). A key question that the authors continue to investigate is: how does
attribute partitioning-based decomposition supportrelevance determination(Kohavi & John,
1997) in a modular learning architecture?

Another very important issue that is beyond the scope of this paper is the role of prior
background knowledge (e.g., about time series preprocessing, the sources of data, etc). In
the musical tune classification problem, for example, the 4-by-4 factorization was discovered
using competitive clustering by Gaussian radial-basis functions (RBFs) (Haykin, 1994; Ray &
Hsu, 1998). In this experiment, the frequency and rhythm partitioning ofinput is self-evident
in the signal processing construction, so thesubdivision of input through attribute
partitioning could have been constrained or guided by prior knowledge from sensor
specifications (Stein & Meredith, 1993). (Note, however, that the intermediate targets are
not known in advance, and the same knowledge is not necessarily useful for cluster
definition.)

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 22

7. ACKNOWLEDGEMENTS

Support for this research was provided in part by the Office of Naval Research under grant
N00014-95-1-0749 and by the Naval Research Laboratory under grant N00014-97-C-2061.
The authors thank Nathan Dale Gettings for helpful discussions on data fusion and time series
analysis. Thanks also to Nathan Dale Gettings, Yu Pan, and Victoria Lease for
implementations of several key components of the system described in this paper.

8. REFERENCES

Barr, A. & Feigenbaum, E. A. (1981). Search, InThe Handbook of Artificial Intelligence, Volume 1, p. 19-
139. Reading, MA: Addison-Wesley.

Beauchamp, J. W., Maher, R. C., & Brown, R. (1993). Detection of Musical Pitch from Recorded Solo
Performances. InProceedings of the 94th Convention of the Audio Engineering Society, Berlin,
Germany.

Benjamin, D. P., editor. (1990).Change of Representation and Inductive Bias. Boston: Kluwer Academic
Publishers.

Bishop, C. M. (1995).Neural Networks for Pattern Recognition. Oxford, UK: Clarendon Press.
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994).Time Series Analysis, Forecasting, and Control (3rd

edition).San Fransisco, CA: Holden-Day.
Breiman, L. (1996). Bagging Predictors.Machine Learning, 24:123-140.
Cover, T. M. & Thomas, J. A. (1991).Elements of Information Theory. New York, NY: John Wiley and

Sons.
Dempster, A, Laird, N., and Rubin, D. (1977). Maximum Likelihood From Incomplete Data Via the EM

Algorithm. Journal of the Royal Statistical Society, 39(Series B):1-38.
Donoho, S. K. (1996).Knowledge-Guided Constructive Induction.Ph.D. thesis, Department of Computer

Science, University of Illinois at Urbana-Champaign.
Duda, R. O. & Hart, P. E. (1973).Pattern Classification and Scene Analysis. New York, NY: John Wiley

and Sons.
Elman, J. L. (1990). Finding Structure in Time.Cognitive Science, 14:179-211.
Engels, R., Verdenius, F., & Aha, D. (1998).Proceedings of the 1998 Joint AAAI-ICML Workshop on the

Methodology of Applying Machine Learning (Technical Report WS-98-16), AAAI Press, Menlo Park,
CA.

Freund, T. & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. InMachine Learning:
Proceedings of the Thirteenth International Conference on (ICML-96).

Fu, L.-M. & Buchanan, B. G. (1985). Learning Intermediate Concepts in Constructing a Hierarchical
Knowledge Base. InProceedings of the International Joint Conference on Artificial Intelligence (IJCAI-
85), Los Angeles, CA, p. 659-666.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural Networks and the Bias/Variance Dilemna.Neural
Computation, 4:1-58.

Gershenfeld, N. A. & Weigend, A. S. (1994). The Future of Time Series: Learning and Understanding. In
Time Series Prediction: Forecasting the Future and Understanding the Past (Santa Fe Institute Studies
in the Sciences of Complexity XV),Weigend, A. S. & Gershenfeld, N. A., editors. Reading, MA:
Addison-Wesley.

Goldberg, D. E. (1989).Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA:
Addison-Wesley.

Grois, E., Hsu, W. H., Wilkins, D. C., & Voloshin, M. (1998). Bayesian Network Models for Automatic
Generation of Crisis Management Training Scenarios. InProceedings of the National Conference on
Innovative Applications of Artificial Intelligence (IAAI-98), Madison, WI, p. 1113-1120. Menlo Park,
CA: AAAI Press.

Hayes-Roth, B., Larsson, J. E., Brownston, L., Gaba, D., & Flanagan, B. (1996).Guardian Project Home
Page, URL: http://www-ksl.stanford.edu/projects/guardian/index.html

Haykin, S. (1994).Neural Networks: A Comprehensive Foundation. New York, NY: Macmillan College
Publishing.

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 23

Horvitz, E. & Barry, M. (1995). Display of Information for Time-Critical Decision Making. InProceedings
of the Eleventh Conference on Uncertainty in Artificial Intelligence. San Mateo, CA: Morgan-
Kaufmann.

Heckerman, D. A. (1996).A Tutorial on Learning With Bayesian Networks. Microsoft Research Technical
Report 95-06, revised June 1996.

Hsu, W. H. (1998).Time Series Learning With Probabilistic Network Composites. Ph.D. thesis, University of
Illinois at Urbana-Champaign (UIUC-DCS-R2063). URL:
http://www.ncsa.uiuc.edu/People/bhsu/thesis.html.

Hsu, W. H., Gettings, N. D., Lease, V. E., Pan, Y., & Wilkins, D. C. (1998). A New Approach to
Multistrategy Learning from Heterogeneous Time Series. InProceedings of the International Workshop
on Multistrategy Learning, Milan, Italy.

Hsu, W. H., Pottenger, W. M., & Welge, M. (1999). Self-Organizing Systems for Knowledge Discovery in
Databases. InProceedings of the International Joint Conference on Neural Networks (IJCNN-99),
Washington, DC, to appear.

Hsu, W. H. & Ray, S. R. (1998). A New Mixture Model for Concept Learning From Time Series. In
Proceedings of the 1998 Joint AAAI-ICML Workshop on AI Approaches to Time Series Problems
(Technical Report WS-98-07), Madison, WI, p. 42-43. Menlo Park, CA: AAAI Press.

Hsu, W. H. & Ray, S. R. (1999). A Recurrent Mixture Model for Time Series Classification. InProceedings
of the International Joint Conference on Neural Networks (IJCNN-99), Washington, DC, to appear.
Hsu, W. H. and Zwarico, A. E. (1995). Automatic Synthesis of Compression Techniques for
Heterogeneous Files.Software: Practice and Experience, 25(10): 1097-1116

Jacobs, R. A., Jordan, M. I., & Barto, A. G. (1991). Task Decomposition Through Competition in a Modular
Connectionist Architecture: The What and Where Vision Tasks. Cognitive Science, 15:219-250.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive Mixtures of Local Experts.
Neural Computation, 3:79-87.

Jordan, M. I. (1997a). Approximate Inference via Variational Techniques. (1997). Invited talk,International
Conference on Uncertainty in Artificial Intelligence, Providence, RI.

Jordan, M. I. (1997b). Personal communication, August, 1997.
Jordan, M. I. & Jacobs, R. A. (1994). Hierarchical Mixtures of Experts and the EM Algorithm.Neural

Computation, 6:181-214.
Kantz, H. & Schreiber, T. (1997).Nonlinear Time Series Analysis. Cambridge, UK: Cambridge University

Press.
Kira, K. & Rendell, L. A. (1992). The Feature Selection Problem: Traditional Methods and a New

Algorithm. In Proceedings of the National Conference on Artificial Intelligence (AAAI-92), San Jose,
CA, p. 129-134. Cambridge, MA: MIT Press.

Kohavi, R. & John, G. H. (1997). Wrappers for Feature Subset Selection.Artificial Intelligence, Special
Issue on Relevance,97(1-2):273-324.

Kohavi, R., Sommerfield, D., & Dougherty, J. (1996). Data Mining UsingMLC++ : A Machine Learning
Library in C++. In Tools with Artificial Intelligence, p. 234-245. Rockville, MD: IEEE Computer
Society Press.

Kohonen, T. (1990). The Self-Organizing Map.Proceedings of the IEEE, 78:1464-1480.
Lang, K. J., Waibel, A. H., & Hinton, G. E. (1990). A Time-Delay Neural Network Architecture for Isolated

Word Recognition.Neural Networks, 3:23-43.
Li, T., Fang, L., & Li, K. Q-Q. (1993). Hierarchical Classification and Vector Quantization With Neural

Trees. Neurocomputing, 5:119-139.
McCullagh, P. & Nelder, J. A. (1983).Generalized Linear Models. London, UK: Chapman and Hall.
Mengshoel, O. J. & Wilkins, D. C. (1996). Recognition and Critiquing of Erroneous Student Actions. In

Proceedings of the AAAI Workshop on Agent Modeling, p. 61-68. Menlo Park, CA: AAAI Press.
Michalski, R. S. (1983). A Theory and Methodology of Inductive Learning.Artificial Intelligence,

20(2):111-161, reprinted inReadings in Knowledge Acquisition and Learning, Buchanan, B. G. &
Wilkins, D. C., editors. (1993). San Mateo, CA: Morgan-Kaufmann.

Mozer, M. C. (1994). Neural Net Architectures for Temporal Sequence Processing. InTime Series
Prediction: Forecasting the Future and Understanding the Past (Santa Fe Institute Studies in the
Sciences of Complexity XV),Weigend, A. S. & Gershenfeld, N. A., editors. Reading, MA: Addison-
Wesley.

Neal, R. M. (1996).Bayesian Learning for Neural Networks. New York, NY: Springer-Verlag.

A MULTISTRATEGY APPROACH TO CLASSIFIER LEARNING FROM TIME SERIES 24

Principé J. & deVries. (1992). The Gamma Model – A New Neural Net Model for Temporal Processing.
Neural Networks, 5:565-576.

Principé, J. & Lefebvre, C. (1998).NeuroSolutions v3.02. URL: http://www.nd.com. Gainesville, FL:
NeuroDimension.

Ray, S. R. & Hsu, W. H. (1998). Self-Organized-Expert Modular Network for Classification of
Spatiotemporal Sequences.Journal of Intelligent Data Analysis, 2(4), URL: http://www-
east.elsevier.com/ida/browse/0204/ida00039/ida00039.htm.

Resnick, P. & Varian, H. R. (1997). Recommender Systems.Communications of the ACM, 40(3):56-58.
Rueckl, J. G., Cave, K. R., & Kosslyn, S. M. (1989). Why are “What” and “Where” Processed by Separate

Cortical Visual Systems? A Computational Investigation.Journal of Cognitive Neuroscience, 1:171-
186.

Russell, S. & Norvig, P. (1995).Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice
Hall.

Sarle, W. S., editor. (1999).Neural Network FAQ, periodic posting to the USENET newsgroup
comp.ai.neural-nets.

Schuurmans, D. (1997). A New Metric-Based Approach to Model Selection. InProceedings of the
Fourteenth National Conference on Artificial Intelligence (AAAI-97), Providence, RI, p. 552-558.

Smyth, P. (1998). Challlenges for the Application of Machine Learning Problems. Invited Talk,1998 Joint
AAAI-ICML Workshop on the Methodology of Applying Machine, Madison, WI. Menlo Park, CA: AAAI
Press.

Stein, B. & Meredith, M. A. (1993).The Merging of the Senses. Cambridge, MA: MIT Press.
Stepp, R. E. & Michalski, R. S. (1986). Conceptual Clustering: Inventing Goal-Oriented Classifications of

Structured Objects. InMachine Learning: An Artificial Intelligence Approach, R. S. Michalski, J. G.
Carbonell, & T. M. Mitchell, editors. San Mateo, CA: Morgan-Kaufmann.

Stone, M. (1977). An Asymptotic Equivalence of Choice of Models by Cross-Validation and Akaike’s
Criterion. Journal of the Royal Statistical Society Series B, 39:44-47.

Vapnik, V. N. (1996).The Nature of Statistical Learning Theory. New York, NY: Springer-Verlag.
Watanabe, S. (1985).Pattern Recognition: Human and Mechanical. New York, NY: John Wiley and Sons.
Wilkins, D. C. & Sniezek, J. A. (1997).DC-ARM: Automation for Reduced Manning. Knowledge Based

Systems Laboratory Technical Report UIUC-BI-KBS-97-012. Beckman Institute, University of Illinois at
Urbana-Champaign.

Wolpert, D. H. (1992). Stacked Generalization.Neural Networks, 5:241-259.

