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Abstract

We present an application of inductive concept learning and interactive visualization
techniques to a large-scale commercial data mining project. This paper focuses on design and
configuration of high-level optimization systems (wrappers) for relevance determination and
constructive induction, and on integrating these wrappers with elicited knowledge on attribute
relevance and synthesis. In particular, we discuss decision support issues for the application (cost
prediction for automobile insurance markets in several states) and report experiments usingD2K,
a Java-based visual programming system for data mining and information visualization, and
several commercial and research tools. We describe exploratory clustering, descriptive statistics,
and supervised decision tree learning in this application, focusing on a parallel genetic algorithm
(GA) system,Jenesis, which is used to implement relevance determination (attribute subset
selection). Deployed on several high-performance network-of-workstation systems (Beowulf
clusters),Jenesisachieves a linear speedup, due to a high degree of task parallelism. Its test set
accuracy is significantly higher than that of decision tree inducers alone and is comparable to that
of the best extant search-space based wrappers.

Keywords: constructive induction, scalable high-performance computing, real-world decision
support applications, relevance determination, genetic algorithms, software development
environments for knowledge discovery in databases (KDD)
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1. Introduction
This paper discusses a commercial decision support project where data mining techniques

are applied to a large customer database. It presents these techniques – data cleaning,
quantization, exploratory analysis (dimensionality reduction and descriptive statistics), supervised
inductive learning, attribute subset selection, and interactive visualization – in a survey of the
project life cycle. Concurrently, this survey presents components of arapid application
developmentenvironment for high-performance knowledge discovery in databases (KDD), called
D2K. We describe a KDD process specification and its implementation usingD2K and several
commercial and experimental data mining packages. Our focus isJenesis, a parallel genetic
algorithm (GA) that implements and calibrates a wrapper for attribute subset selection, cf. [KJ97].
During the implementation of our experimental data mining system for the decision support
application, interactive (visualization-driven) and automated methods for constructive induction
were used, which drove the development of the GA, and which provided prior knowledge for the
optimization subproblem (selecting and synthesizing relevant attributes). We report on the
deployment of the GA in high-performance network-of-workstation environments: its
performance on two Beowulf clusters is compared to that of theMLC++ wrapper for feature
subset selection [KS96]. Experimental evaluation uses the refined data set from the commercial
decision support problem. The paper concludes with an account of system deployment: the
methodology and process of its delivery to users, reuse issues inD2K, and the impact of the
project results as a decision support resource.

1.1 Framework: High-Performance KDD for Prediction and Decision Support

Figure 1. Data flow in a prototypical KDD application (adapted from [Fa96])

We begin with a description of the NCSAData to Knowledge (D2K)system and the
research objectives that guide its development.D2K comprises a visual programming system and
a scalable framework for implementing wrappers for performance enhancement in inductive
learning. Written in Java, it usesJavaDocfor literate programming, and provides a specification
mechanism for data flow in a prototypical KDD process, as depicted in Figure 1.

The key novel contributions of the system are:

1. The explicit organization of learning components intorecombinable and reusable classes
2. An interactive approach to constructive inductionbased on visualization, descriptive

statistics, and preliminary data clustering



3. Trainable hyperparametersfor bias optimization (change of representation, technique
selection for overfitting prevention and avoidance)

4. A hierarchical genetic algorithm(implemented using an efficient distributed, parallel system)
for attribute subset selection and reduced-error pruning that calibrates and uses these
hyperparameters

Control of model complexity to achieve higher test set accuracy (through control of
overfitting) is the key design goal ofD2K that is documented in this paper. Typical applications
for a system are decision support problems that are susceptible to overfitting due to many
irrelevant attributes [JKP94], or (usually worse) redundancy among attribute subsets [KJ97].

The rest of this section outlines the abstract application (decision support in uncertain
optimization domains), the isolation of a KDD problem (predictive classification) from the
representative project and several similar industrial projects at NCSA, and the role ofD2K and its
high-performance computing platform.

1.1.1 KDD application: risk prediction for decision support
The significance of data mining in many decision support problems posed to NCSA

through its Industrial Partners Program is often due to the need for a predictive model for policy
optimization. In some cases, this requires a performance element that solves a constraint system
(e.g., adaptive dynamic programming, or ADP, methods such as value iteration and policy
iteration [RN95]); in others, such as the auto insurance underwriting application described in this
paper, decisions are coarser-grained or more qualitative. The decision support objective of the
auto insurance underwriting application is to answer the following questions, formulated in order:

1. Do the attributes currently used to classify customers in the existing rule-based system carry
anypredictive informationfor the analytical objective (prediction of paid loss)?

2. Can this objective be used to define a family ofdiscrete supervised learning problems(such
that inductive learning can produce a model withdiscriminatory poweramong classes)?

3. If so, whatdata integrityissues affect this learning problem with respect to the objective?
4. What subsets of attributes (selected and synthetic) aremost relevantto the objective?
5. Whatlevel of accuracyin predicting the objective yields useful decision support power?

D2K has also been applied to decision support problems in text report mining (document
categorization and tracking for detection of emerging issues in quality control of truck engines)
and resource allocation (prediction and monitoring of home repair demand by service category
for short and long term ADP-based optimization) [HW99].

1.1.2 Data management and exploration: research objectives
Three issues motivate the design of theD2K components that are documented in this

paper: control of overfitting through relevance determination, scalability, and validation methods
for the performance tuning wrappers themselves. First, we address control of overfitting by
applying wrappers formoderatedattribute subset selection. The moderating criteria depend on
the type of model (hypothesis representation) used and its description length – e.g., decision trees
and number of decision nodes – and the importance of minimizing the subset of relevant
attributes. Second, we address scalability through our configuration of high-performance
platforms for D2K and parallel, distributed implementations of the search criteria – namely,
genetic wrappers [CS96, RPG+97, HWWY99]. Third, we addressmeta-learning, or bias
optimization, through abstraction (variabilization) of the wrapper “constants” and calibration of
these variables, or hyperparameters, through further statistical validation.



The role of high-performance computing is twofold: first, a distributed, shared memory
(DSM) system is ideal for the application, because of the high degree of functional (task-level)
parallelism in the genetic wrappers used. Since the experimental focus inD2K was on attribute
subset selection and high-level validation of the selection criteria, we found that the symmetric
multiprocessing (SMP) model also yielded performance gains and high scalability. The high
performance-to-price ratio of commodity off-the-shelf (COTS) systems, such as the
multiprocessor Beowulf clusters we report on in this paper, makes them an appropriate choice for
implementing this DSM model.

1.2 Solution Approach:D2K
Figure 2 illustrates the design ofD2K [ARTW99], a rapid application development

system for high-performance (parallel and distributed) KDD.D2K is a visual programming
system that manages multiple knowledge sources and provides a standardized application
programmer interface (API) for learning components. It implements the data mining life cycle
through persistence of model representations (e.g., serialization of trained inducers for
performance tuning wrappers and committee machines [KS96, Ha99]). The KDD process is
observed and controlled through a presentation layer that acquires user specifications and delivers
interactive visualization and output post-processing functions. Benefits of theD2K system
include reuse, modularity, task-level parallelism, and distributivity, which are documented in
[ARTW99] and surveyed for this application.

Figure 2. D2K: a rapid application development system for KDD

1.2.1 Role of supervised learning, data clustering, and constructive induction wrappers
Supervised learning for the auto insurance underwriting problem is formulated as a

classification problem, but we also defined a data mining problem that uses inductive learning to
predict migration of instances (insurance policy records) between classes. The classification
model was used to audit an existing rule-based classification system over the same instance



space, and to calibrate an underwriting model (to guide pricing decisions for policies) for an
experimental market. The migration model was designed to trackchurn between the user’s
indemnity and non-indemnity divisions, and can be applied (through optimization by ADP) to
generate recommendations for distributingtiers (classes) in the experimental market, subject to
the objective of equalizing expected cost across classes. The inducer (supervised inductive
learning algorithm) used for this project wasID3 [Qu85], but other inducers are used in this same
framework: simple (aka naïve) Bayes for the text mining (story report) project, feedforward
artificial neural networks (ANNs) and hidden Markov models (HMMs) for the demand prediction
project [HW99].

Unsupervised learning fills a twofold exploratory role in this project: first, as an
technique for dimensionality reduction, or vector quantization, in order to compute descriptive
statistics; second, as a mapping from raw data to synthetic classes to guiderule refinementin the
original knowledge-based classification system. Thiscluster definitionstep can also be used to
performchange of representation[Be90, Do96] for the supervised classifier learning stage.

Both cluster definition and feature extraction and construction (i.e., dimensionality-
reducing transforms, attribute subset selection, and synthesis of new attributes) were used in this
project. Finally, the constructive induction phase is implemented using an attribute subset
selection wrapper for overfitting control and a meta-learning (hyperparameter tuning) system for
model selection.

1.2.2 D2K itineraries and data mining process pipeline
Figure 3 illustrates a visual specification and data flow model, called anitinerary

[ARTW99], for the KDD steps in the underwriting project. The itinerary design is documented in
the rest of this paper, and the KDD operations in particular are documented in Section 3.

Figure 3. D2K itinerary for the Allstate One Company project



2. Problem
This section presents an overview of the commercial project, sponsored by Allstate

Insurance Company, which we will refer to as the One Company project through the rest of the
paper. We first describe the decision support objectives of the One Company project and the
purpose of KDD, then discuss project-specific issues surrounding the preprocessing of raw data
and its transformation into a usable form for KDD.

2.1 Allstate One Company Project
The One Company project is an initiative of the Allstate Insurance Company’s

underwriting division. Its purpose is to reorganize its existing models for pricing of automobile
insurance policies in an experimental market, to reduce attrition (loss of customers to
competitors) and to control distribution of loss (paid losses due to damage or personal injury
claims) across pricing categories. The pricing model is primarily based on a classification
problem: given policy descriptors (demographic data about the policyholders, automobile-specific
data, driver accident and vehicle code violation history, etc.) identify thetier (pricing category) to
which a policy belongs. The Allstate underwriting division uses classification to achieve two
objectives:

- Develop a predictive model of churn (inter-tier migration) to reduce attrition
- Develop a predictive model of loss and use it torefine and formulate rules for

decision supportin organizing tiers

The focus of this paper is the second objective, but a concurrent phase of the One
Company project addressed the first objective and used the same raw and intermediate data sets
(with different attributes being selected and synthesized for each).

During initial consultation with the users – decision-makers at Allstate’s underwriting
division – we established these important characteristics and conjectures regarding the problem:

1. Fact: Allstate currently uses a rule-based system to categorize policies. This system
was developed approximately 20 years ago using both knowledge elicited from
subject matter experts and basic techniques such as linear regression, and has been
revised by Allstate’s research center to account for concept drift (primarily
demographic drift).
Conjecture: Because compilation of the original rule set was based in part on
elicitation and in part on statistical modeling, it is possible to define a KDD problem
on recent collections of this historical data.

2. Fact: While the rule-based system is the canonical method for placing new customers
into tiers and migrating them across tiers (based on updated demographics and
accident histories), it does not produce classes that predict loss accurately. Tiers are
dissimilar according to analysis of variance (see Section 3.1.1), but predictive
accuracy is not significantly better than random for single policies
Conjecture: Prediction accuracy might be improved upon by using modern learning
methods, such as decision tree induction, on the data originally used for rule
extraction, but the prediction target is not necessarily thepaid lossfor a single policy.

3. Fact: The entities available for online analytical processing (OLAP) and KDD are
expressed in a data set calledALLVARproduced by the Allstate research center and
used by the underwriting division. This data set contains 471 raw attributes collected
by the company from forms submitted by insurance agents and customers and from



private records (e.g., payment histories transmitted from the previous insurance
company) and public records (e.g., accident and driving violation histories).
Conjecture: Several data integrity problems affectALLVAR, particularly ambiguities
in the definitional data model. There are many irrelevant attributes for predicting
targets that represent either of the decision support objectives (churn and loss).

4. Fact: The Allstate research center constructs decision trees usingALLVAR for
evaluation and calibration of the rule-based system. In these experiments, policies
are aggregated, and the prediction target isaggregate loss ratio[Jo99].
Conjecture: Aggregation of policies from the data set may be appropriate for control
of model size and attribute selection (both to reduce overfitting), and to make the
learning problem more computationally feasible.Aggregate loss ratio is an
appropriate learning target for the loss minimization objective.

5. Fact: The subset of attributes fromALLVAR that can be used to make pricing
decisions is constrained by current laws (e.g., exact age is prohibited even though
exact age categories such as “21-24” are used) and is revised based on continuing
legislative decisions. Some attributes inALLVAR are accounted for in other
knowledge-based models developed by the Allstate underwriting division and do not
belong in experiments involving learning from data.
Conjecture: Subject matter expertise can be used here to reduce (select and
constrain) and synthesize attributes.

The existence and role of the rule-based system established the One Company problem as
one of knowledge-based decision support, but the problem definition remained incomplete. This
definition was deferred to the descriptive statistics phase, in which the conjectures regarding
appropriateness of decision trees, data integrity, and irrelevance were borne out. Related work at
Allstate’s research center and our own exploratory experiments (using data clustering, descriptive
statistics, and pre- and post-visualizations) suggested the data cleaning techniques and emphasis
on attribute subset selection that were adopted.

Sources of data and knowledge for the One Company project comprised:

- TheALLVARdata set and data dictionary (a rudimentary ontology and data model)
- Subject matter expertise related in knowledge elicitation and engineering phases by

the Allstate underwriting personnel, the Allstate research center, and the authors
- KDD experiments using intensively preprocessed versions ofALLVAR

2.2 General Issues
The One Company project consisted of three main phases: data verification, exploration,

and preprocessing; model development; and model refinement. These phases generated the
following project milestones:

1. Phase I: clean upALLVARfor data mining; pre-select and pre-synthesize attributes
2. Phase II: find correct granularity level, representation for training examples
3. Phase II: generate decision trees, rules; generate and collect feedback with users of

rule-based system; interactively select and synthesize attributes
4. Phase III: develop an efficient, flexible wrapper to find relevant attributes inALLVAR
5. Phase III: develop a model of loss to aid in evaluation and distribution of tiers

Note that constructive induction (data model-driven, knowledge-driven, and data driven)
is applied in each phase to transform the input specification for supervised learning.



2.2.1 Preprocessing: data cleaning and aggregation
Our data verification efforts focused on unifying standard units for dates and encoding

standards for discretized fields (e.g.,class codesthat captured multivariate demographic data
such as “single male, 25-29”). Data exploration focused on collection of descriptive statistics
from simulated classes (obtained using the rule-based classification system) and discovered
classes (obtained using self-organizing maps for dimensionality reduction). Visualization
techniques and relevance determination were applied to an early, preprocessed version of
ALLVARand submitted to the user. The purpose of these experiments was not only to assess
feasibility of constructing models fromALLVARbut as a prefilter for irrelevant and redundant
attributes, a guide to the data cleaning process (which went through 3 iterations), and a method
for establishing the baseline performance of the rule-based system.

Data preprocessing, the most computationally intensive step of the project, applied the
rule-based system as a specification for transforming rawALLVAR data into a reduced and
synthesized database suitable for direct KDD. It also led to discovery of additional data integrity
issues (e.g., ambiguity in normalization factors such as thenumber of exposures) that were
resolved through interactive elicitation sessions with the subject matter experts. Finally, it
applied the data dictionary to pre-filter redundant attributes. This first stage of constructive
induction was driven by prior knowledge represented as a data model for a very large database
(over 1 million records and 471 raw attributes).

Finally, data aggregation used arithmetic methods (summing, averaging, sparse coding
and counting) to combine hundreds or thousands of policy records into single training examples.
This step was driven by domain expertise (existing practices at Allstate) and preliminary
experiments using unaggregated data on a small, but representative, test market (1 line of
business out of 8 lines, in 4 states). These stages are represented asinput anddata preparation
modules in the itinerary shown in Figure 3.

2.2.2 Role of relevance determination in decision support
Relevance determination continued to serve a critical role in the direct KDD phases. Data

modeling limitations (specifically, the lack of prior relevance knowledge other than that captured
in the rule base during the data cleaning phase) necessarily forced most of the attribute synthesis
computations to take place early (before aggregation), even though this demanded much greater
computational work. Aggregation freed us to apply more computationally intensive methods
(such as the genetic wrapper) for attribute subset selection. This design choice was driven largely
by user requirements and by the stepwise refinement methodology we selected for constructive
induction. The wrapper is depicted as alearningmodule in the itinerary shown in Figure 3.

2.2.3 Computational considerations
The primary computational bottleneck, aside from data cleaning and preprocessing of

ALLVAR, was a “meta-wrapping” technique that we developed for overfitting control in the One
Company project. This design choice was motivated by our goal of greater autonomy in model
selection for KDD, and constrained by architectural limitations in the high-level wrapper and the
computational platform (the Linux and Irix clusters used). These scalability issues are coupled in
the D2K research program, and are of great interest because of the increase in accessibility to
users that greater autonomy and portability would provide.



3. Methodology
This section describes the design of the data mining itinerary shown in Figure 3 and the

implementation of the data preparation, constructive induction, supervised learning, and
visualization modules in this itinerary.

3.1 Exploratory Experiments
Exploratory experiments in the One Company project consisted of two categories: data

clustering and descriptive statistics on tiers formed using clustering and using the rule-based
system; and data characterization and visualization. Both types of experiments were interleaved
with the data verification and cleaning steps listed in Section 2.2. The first group occurred during
Phase I (development of a data model and data cleaning methodology) and used an early version
of ALLVAR; the second occurred during Phase II (refinement of the supervised learning problem)
and used the final preprocessed version ofALLVAR.

3.1.1 Data clustering and descriptive statistics
The objectives of the first type of exploratory experiment, data clustering, were to:

1. Help establish a supervised learning problem
2. Generate a model for comparison with the rule-based system
3. Guide (attribute) quantization and (example) aggregation later in the data flow model

We view cluster definition as a component ofknowledge-guided constructive induction
as proposed in [Do96] and other work. Ideally, this phase should work as a back end to feature
construction (synthesis of attributes using techniques such as FOIL [Qu90] or genetic
programming [Ko92]). We found, however, that the role of clustering in the One Company
project, was moredescriptivethan constructivewith respect to our objectives. For the first
objective, clustering primarily served to compare the discriminatory potential ofALLVARfor two
candidate learning targets (paid loss and loss ratio) and to indicate a large number of irrelevant
attributes. For the second objective, clustering provided an experimental class definition to
compare against the control (rule-based system), again in terms of discriminatory potential. For
the third objective, we used scalar quantization methods for sensitivity analysis, to evaluate the
feasibility of aggregating many examples.

We applied data clustering methods toALLVAR-1, our first preprocessed version of
ALLVAR, which was obtained by applying the preprocessing front end of the rule-based system.
ALLVAR-1contains a total of 254917 records (each a training example for unsupervised learning,
with 209 attributes). Because the existing OLAP codes forALLVAR were legacy codes and
therefore highly infeasible to port, a complete re-implementation in Java was developed through
intensive consultation with the Allstate underwriting division. This part of Phase I required about
25% of the overall project development time and represented about 10% of the overall effort.
Clustering methods used onALLVAR-1included Kohonen’s self-organizing feature map [Ko90]
(implemented inSOM-PAK[KHKL96]). Preprocessing for SOM consisted of normalization and
filtering of sentinel values (intermediate remnants of processing inALLVAR-1), which were
replaced with explicit “unknown value” indicators. These two steps each accounted for 3 degrees
of magnitude difference in quantization error, which indicates the sensitivity of this
implementation of SOM to data impurity (of which we encountered: spurious sentinels,
conventions on data delimiters that affect field alignment, and normalization). As in some
conventions for simple (naïve) Bayesian inference [KBS97] and by contrast with unsupervised



Bayesian learning methods such asAutoClass[CKS+88] that use expectation-maximization (EM)
[DLR77], SOM simply omits missing values from its distance metric computations [Ko90,
Ha99]. Different runs of SOM (ranging from 10-by-10 to 20-by-20 maps, the latter being
reported here) discovered between 6 and 11 clusters in the data, compared with 7 tiers generated
by the rule-based system.

1 2 3 4 5 6 7 8 9 10 11
1 −
2 36.5

±±±± 28.0
−

3 -64.6
±±±± 25.9

-100.1
±±±± 27.5

−

4 -157.8
±±±± 26.8

-194.3
±±±± 28.4

-94.2
±±±± 26.3

−

5 -104.0
±±±± 24.3

-140.5
±±±± 26.1

-40.4
±±±± 23.8

53.8
±±±± 24.8

−

6 80.3
±±±± 24.5

43.8
±±±± 26.3

143.9
±±±± 24.0

238.1
±±±± 25.0

184.3
±±±± 22.3

−

7 32.7
±±±± 22.6

-3.8
± 24.4

96.3
±±±± 22.0

190.5
±±±± 23.1

136.7
±±±± 20.2

-47.6
±±±± 20.4

−

8 164.3
±±±± 22.9

127.8
±±±± 24.8

227.9
±±±± 22.4

322.1
±±±± 23.5

268.3
±±±± 20.6

84.0
±±±± 20.8

131.6
±±±± 18.5

−

9 125.7
±±±± 23.6

89.2
±±±± 25.6

189.3
±±±± 23.1

283.5
±±±± 24.1

229.7
±±±± 21.3

45.4
±±±± 21.6

93.0
±±±± 19.3

-38.6
±±±± 19.7

−

10 -157.3
±±±± 23.0

-193.8
±±±± 24.8

-93.7
±±±± 22.4

0.5
± 23.5

-53.3
±±±± 20.6

-237.6
±±±± 20.9

190.0
±±±± 18.5

-321.6
±±±± 19.0

-283.0
±±±± 19.8

−

11 -310.7
±±±± 29.9

-347.2
±±±± 31.4

-247.2
±±±± 29.5

-152.9
±±±± 30.3

-206.7
±±±± 28.2

-391.0
±±±± 28.4

-343.4
±±±± 26.7

-475.0
±±±± 27.0

-463.4
±±±± 27.6

-153.4
±±±± 27.0

−

Table 1. Difference between means and 95% confidence interval, one-way ANOVA (general linear
model, Scheffe’s test) for pure premium, classes (clusters) from SOM forALLVAR-1

A B C D E G H
A −
B 46.6± 85.2 −
C 217.3±

249.6
170.7±
252.1

−

D 168.9±±±±
67.8

117.2±±±±
76.3

-53.5±
246.7

−

E -101.6±
516.88

-148.2±
518.1

-318.9±
568.7

-265.4±
515.5

−

G 321.5±±±±
114.7

274.8±±±±
120.0

104.1±
263.5

157.6±±±±
108.2

423.0±
523.7

−

H 270.6±±±±
226.7

224.0±
229.4

53.3±
328.2

106.8±
223.5

372.2±
559.1

-50.8±
241.9

−

Table 2. Same ANOVA results for pure premium, classes (tiers) from rule simulations onALLVAR-2

Descriptive statistics were ollected using the clusters produced by SOM. This required
another 10% of the development time and effort. We used these statistics to answer the following
queries about the discriminatory capability ofALLVAR-1and compare it to that of the rule based
system:

1. Q: Is there significant dissimilarity between clusters as discovered by SOM? Between tiers
as identified by the rule-based classification system?



Descriptive statistics: analysis of variance (ANOVA), which produced the output shown in
Tables 1 and 2 (differences between means and 95% confidence intervals) and Figure 4

2. Q: What is the distribution of premiums within clusters as discovered by SOM? Within tiers
as identified by the rule-based classification system?
Descriptive statistics: calculation of mean and variance of pure premium by cluster, which
produced the output shown in Tables 3 and 4 (the descriptive statistics module in our D2K
system produced similar statistics for all 208 attributes ofALLVAR-1)

Class (Cluster) Size Mean Stdev
1 17134 542.65 662.84
2 13683 579.13 652.76
3 18517 479.06 538.10
4 16026 384.82 414.91
5 24346 438.65 537.03
6 23316 662.96 659.70
7 36781 575.35 563.56
8 33225 706.92 669.99
9 28228 668.35 643.01
10 32827 385.34 383.80
11 10834 231.91 311.29

Table 3. Intra-cluster descriptive statistics for pure premium: SOM clusters (ALLVAR-1)

Class (Tier) Size Mean Stdev
A 86469 303.93 4422.35
B 61334 350.84 3594.63
C 4397 520.76 3018.57
D 165736 467.92 4398.46
E 997 200.89 1024.93
G 25683 625.26 7361.07
H 5384 574.35 4055.49

Table 4. Intra-cluster descriptive statistics for pure premium: rule simulation tiers (ALLVAR-2)

We found it useful to calculate both inter-category descriptive statistics (item 1) and
intra-category statistics (item 2). Inter-category statistics allow some comparison between
classification methods – here, data-based (SOM, a competitive clustering algorithm based on
Euclidean distance [Ko90]) and knowledge-based. We must be careful, however, to specify a
proper cluster definition method, including the clusterformation, segmentation, and labeling
algorithms.

1. Formation: we used an existing implementation of SOM [KHKL96] and data
preparation modules for normalization and integrity checking

2. Segmentation: we used a simplification of learning vector quantization (LVQ)
[GG92, Ha99], an instance-based learning (IBL) [AKA91, Mi97] algorithm that
computes the nearest-neighbor regions (Voronoi cells) about the cluster
representatives (or “centers”).i

3. Labeling: our IBL technique implicitly defines a labeling algorithm. First, assign
integer labels to each cluster representative; second, assign each new data point the
label of its nearest neighbor (found by querying the Voronoi diagram).



Inter-category ANOVA (testing thedifference in mean pure premiumamong clusters)
indicated that there was significant dissimilarity among all of the 11 clusters output by SOM and
our simplified LVQ algorithm (applied toALLVAR-1), as shown in Table 1 and Figure 4. In all
but two of the paired tests in Table 1, the difference between estimators is significant at the 95%
level of confidence, indicating up to 11 equivalence classes of pure premium according to the
criterion defined using our simplified SOM/LVQ labeling algorithm. By contrast, the inter-
category ANOVA for tiers, output by the rule simulations (applied toALLVAR-2), showed only
sporadic dissimilarity.ii As shown in Table 2, only 6 pairwise tests show a difference that is
significant at the 95% level of confidence. This indicates at least 3 equivalence classes (e.g.,
{{A, B, C, E} {D} {G, H}}; {{A, B, C} {D, E} {G, H}}; etc.), but shows that tiers are not strong
discriminators of expected premium.

Figure 4. ANOVA similarity graph for tiers from rule simulations, ALLVAR-2 (dotted lines:
significant differences between tiers, at 95% level of confidence)

Intra-category statistics also helped us compare the conditional distribution of a
candidate learning target (loss) across categories. The cluster means and variances listed in Table
3 are from the data clusters produced by our SOM-based cluster definition (formation,
segmentation, and labeling) algorithm – the same output that generated Table 1. It was this result
that led us to consider aggregation methods (subsequently corroborated by the Allstate
underwriting division and research center) and to focus on loss ratio (the aggregate quantity to be
equalized in the performance element) as a classification target.

Our final quantization step was scalar quantization of attribute values inaggregateddata
points using the binning methods in SGIMineSet. This is described together with our
aggregation technique in Section 3.2.2.

3.1.2 Data characterization and visualization
Our exploratory experiments continued usingALLVAR-1and ALLVAR-2(a “cleaned”

data set described in Section 3.2.1 below). Our machine learning experiments in Phase II
required about 15% of development time and 20% of the overall effort, and the visualization and
data characterization steps accounted for about half of this. These were carried out using
MLC++ andMineSet, primarily using thecolumn importance(relevance determination using a



filter [Ko98, KJ97] based on a cross-entropy score), and theEvidence Visualizer. A summary of
output from column importance onALLVAR-2 is shown in Table 5. Many other experiments
were conducted onALLVAR-2prior to aggregation, but these are omitted for brevity due to our
subsequent choice to use aggregation for allMLC++ andD2K batch experiments.

The use ofMineSet Tree Visualizeron a variety of decision trees produced using different
exploratory aggregation and quantization methods (uniform-population binning, uniform-width
binning, and scalar quantization by hand) led us to decide on uniform aggregation and 1000
policy records as the appropriate aggregation granularity. The motivation for this was the severe
overfitting and qualitative tree complexity observed in theTree Visualizerusing smaller
aggregates, especially one example per policy record.

3.2 Data Cleaning
Our data cleaning stage consisted not only of preprocessing, integrity checks, and

normalization, but also aggregation, quantization, and histogramming. We have described (in
Sections 2.2.1 and 3.1.1) some of the elementary but consequential integrity issues – including
normalization and sentinel values – that arose during computation of descriptive statistics. In
developing our data model, we reviewed the data dictionary carefully to verify units, bounds, and
ontological consistency (especially for boundary cases) of attributes. This led to a rudimentary
abstract data type (ADT) definition and uncovered two data cleaning issues: the representation of
dates (we found 3 inconsistent formats to resolve) and the definition of “exposures” (a measure of
a customer’s coverage over time that was important in both the classification and migration
problems).

3.2.1 Preprocessing: rule simulations, attribute synthesis, and column importance
The ADT developed from the data dictionary generated two specifications: first, the

simple type definitions (integer-valued, continuous-valued, and enumerative attributes) used by
MLC++ and MineSet; second, a requirements specification forALLVAR-2. A second data
preprocessing code was developed in Java using this specification of requirements. The
development time was approximately 20% of the project total, the effort expended, over 15% of
the project total. We also estimate that over half of all the computational resources expended in
the One Company project were devoted to simulating the revised rule base, to transform data
from the original representation to that of the newly synthesized attributes.

ALLVAR contains 471 attributes that are reduced to 86 by these rule simulations, to
produceALLVAR-2. This process eliminated, using a trivial amount of computation, attributes
previously known to be irrelevant and those that were handled by components of Allstate’s
decision support system other than our performance element (e.g., geographic attributes such as
zip code). Through interactive elicitation, we also eliminated those that were beyond the scope of
our KDD problem even if relevant (e.g., insurance agent identity).

In addition, our preprocessing (data preparation) modules synthesized new attributes
based on combined domain expertise from the Allstate underwriting group and exploratory
experiments. For example, subset regression inSAS(using theMAX-R algorithm) frequently
resulted in the simultaneous selection of attributes that denoted the starting and ending dates of
intervals (e.g., a customer’s add and drop date, a policy’s termination and effective date). These
were not selected using single-variable regression orMineSet Column Importance(a mutual
information, i.e., cross-entropy, criterion), but simply synthesizinginterval durationattributes
resulted in their inclusion by both of these greedy algorithms. Finally, attribute synthesis also
applies known formulae and algorithms to condense many attributes (e.g,, those describing



coverages) into single historical attributes (e.g.,exposurecounts). Application of these functional
definitions to 2.7 million records ofALLVAR(across 2 lines of business, in 4 states) was by far
the most computationally intensive step of the One Company project.

Table 5 shows the results of applyingMineSet Column Importanceto a sample of 350000
records fromALLVAR-2. This was the largest subset that could be handled due to memory
limitations (and was the determinant of our sample size in subsequent experiments, for which we
refer to this sample as “ALLVAR-2”). Note that the increments in cumulative score do not
decrease monotonically, as the criterion is greedy. Note also that the top 30 attributes selected
include some that behave as decision lists (e.g., o1lic5, o1lic3, o1lic1), some correlated subsets
(e.g., leastlic, youngage, and o1lic1), and somecomposite attributesused in Allstate’s corporate
database systems. An example of a composite attribute and its semantic content are shown in
Table 6. We discuss the aggregation of examples by the 30 attributes of Table 5, and the further
selection of these attributes, in the rest of Section 3.

Rank Name Cumulative
Score

Meaning

1 numloss 85.59 Number of losses (in last 5 years) incurred on this policy
2 leastlic 75.45 Years most recent driver on policy has had license
3 youngage 75.45 Age of youngest driver on policy
4 tier 75.45 Classification assigned by rule based system (ALLVAR-2)
5 drivers 75.4 Drivers insured on this policy
6 cars 75.38 Vehicles insured on this policy
7 yda 75.35 Internal historical code
8 oldage 75.35 Age of oldest driver on policy
9 classcd1 75.33 Composite attribute: sex, age, marital status
10 mostlic 75.32 Years most experienced driver on policy has had license
11 classcd6 75.32 Composite attribute: driver-specific discounts
12 classcd7 75.32 Composite attribute: vehicle-specific discounts
13 prabdin5 75.31 Number of bodily injury, collision claims in last 5 years
14 o1lic5 75.3 Has the primary operator been licensed 5 years?
15 o1lic3 75.3 Has the primary operator been licensed 3 years?
16 classcd9 75.3 Composite attribute: geographically-specific discounts
17 kids 75.29 Number of children in household of policy holders
18 classcd2 75.29 Composite attribute: annual mileage
19 oldtier 75.28 Classification assigned by rule based system (ALLVAR-1)
20 classcd3 75.28 Composite attribute: usage (commuting, pleasure, etc.)
21 o1lic1 75.28 Has the primary operator been licensed 1 year?
22 add_drop 75.28 Difference between add, drop dates of policy
23 paycode 75.28 Payment status to current insurer (outstanding debts, etc.)
24 est_miles 75.28 Estimated mileage on odometer of primary vehicle
25 yrcurjob 75.27 Years primary policy holder has been at current job
26 mttable 75.27 Merit table (composite, internal predictor variable)
27 pricode 75.27 Historical field: prior insurance code
28 limded 75.27 Limited deductible
29 accsurch 75.27 Accumulated surcharge
30 term_eff 75.27 Difference between termination, effective dates of policy

Table 5. Attributes selected by applyingMineSetcolumn importance toALLVAR-2



3.2.2 Aggregation

Code Frequency Meaning 1-of-C Coding
1 230569 Adult 1 0 0 0 0 0 0 0 0
2 61945 Retired adult 0 1 0 0 0 0 0 0 0
3 21638 21-49, single female 0 0 1 0 0 0 0 0 0
4 5120 25-49, single male 0 0 0 1 0 0 0 0 0
5 8698 21-24, male 0 0 0 0 1 0 0 0 0
6 4671 20 and under, male 0 0 0 0 0 1 0 0 0
7 12643 30-49, single male 0 0 0 0 0 0 1 0 0
8 4715 20 and under, female 0 0 0 0 0 0 0 1 0
9 1 Unknown (spurious) 0 0 0 0 0 0 0 0 1

Table 6. A composite attribute and the aggregation method (histogrammed 1-of-C coding) used

Name Original Type Units Aggregation Method New Attributes
numloss integer count average 1
leastlic integer years average 1

youngage integer years average 1
tier nominal N/A 1-of-C coding, histogramming 7

drivers integer count average 1
cars integer count average 1
yda integer years NONE 0

oldage integer years average 1
classcd1 nominal N/A 1-of-C coding, histogramming 9
mostlic integer years average 1
classcd6 nominal N/A 1-of-C coding, histogramming 9
classcd7 nominal N/A 1-of-C coding, histogramming 10
prabdin5 binary N/A sum 1
o1lic5 binary N/A sum 1
o1lic3 binary N/A sum 1

classcd9 nominal N/A 1-of-C coding, histogramming 11
kids integer count average 1

classcd2 nominal N/A 1-of-C coding, histogramming 9
tier2 nominal N/A NONE 0

classcd3 nominal N/A 1-of-C coding, histogramming 10
o1lic1 binary N/A sum 1

add_drop integer days average 1
paycode nominal N/A 1-of-C coding, histogramming 6
est_miles integer miles average 1
yrcurjob integer years average 1
mttable nominal N/A NONE 0
pricode nominal N/A 1-of-C coding, histogramming 8
limded integer count average 1

accsurch integer count sum 1
term_eff integer days average 1

Table 7. Aggregation specification forALLVAR-2 data model



Aggregation, quantization, and histogramming methodology forALLVAR-2 was
developed after exploratory experiments, attempting to classify policy records individually,
resulted in severe overfitting. These produced decision trees with 2000-6000 nodes for 20000-
100000 training examples. Subsequent consultation with the Allstate research center confirmed
that aggregation was a standard practice for the KDD experiments used in their decision support
operations (such as rule refinement). This section documents and justifies the methodology used.

Table 6 shows the denotation of acomposite, nominal attribute called classcd1 (Class
Code 1), which encodes several well-known demographic categories that are hypothesized (and
have been demonstrated in some studies [Po98]) to be indicators of automobile insurance risk.
Note that these codes are exhaustive butnot mutually exclusive; among other reasons, this is
because multiple drivers can be covered per vehicle and per policy (e.g., the attribute value
“Adult” subsumes most multi-driver records). Generally, for composite attributes, the most
specific applicable category value is recorded. We use a 1-of-C encoding [Sa99] to encode
composite attributes, simply because it allows us to produce a histogram easily when aggregating
new attributes. This results in 27 “dense” attributes being coded as 97 “sparse” ones.

Table 7 summarizes the entire aggregation specification for the 30 mostindividually
relevant attributes found using a filter (MineSet Column Importance) as a “quick rejection” test.
Note that the aggregation method depends on the context (the denotation of the attribute in the
data model) and not merely on the attribute type (including the units). For example, binary
attributes are summed to obtain totals. For variable-sized aggregates, such as stratified samples,
these must be divided by the aggregate size to obtain frequencies. We use constant-sized
aggregates forALLVAR-2, so this distinction is obviated, as is that between sums and average. It
is critical, however, to note the difference in user interpretation that results even if unweighted
(identical-sized) samples are used to produce one example each using the above specification. For
example, “cars” and “kids” are reported as averages for predicting a target that is aratio of
functions of sample size, while the number of operators licensed for less than one year is a sum.

Our overall methodology for relevance determination incorporates descriptive statistics,
data cleaning, column importance, aggregation and histogramming, and attribute subset selection
(an interleaved select-combine-select strategy) to “funnel” the 471 attributes into 23 as shown in
Figure 5. Three additional attributes (all internal fields used by other components of the Allstate
underwriting decision support system) were eliminated at the column importance stage.

Figure 5. Change of representation process



3.3 Scalable Supervised Learning for Large Databases
One important innovation of thisD2K system is the automation of our attribute subset

selection system using a genetic algorithm-based performance-tuning wrapper. We view relative
weights for validation set accuracy, input complexity (attributes selected), and model complexity
(tree size) ashyperparametersto be optimized over as well [Ne96]. The purpose of reducing the
attribute set is to increase the comprehensibility of the model (in this case, the decision tree and
resultant rules) through overfitting avoidance. Our choice of model is driven by the inherent
scalability of the model (the ability to construct decision trees that grow in complexity based on
the number of attributes) and lack thereof (sensitivity of these trees to overfitting due to irrelvant
and redundant attributesobserved over many training examples. We find that combining a
wrapped decision tree inducer [KS96] and aggregation produces a highly extendible classification
learning system for data sets such asALLVAR. This approach makes decision tree learning more
robust to mixed numerical and symbolic data, many irrelevant attributes, a data model with fields
at differing granularity, and medium to large data volume (hundreds of thousands to millions of
records). Our goal in developing intelligent data mining agents is to produce more configurable
yet more autonomous wrappers and more transparency to the user. As we shall discuss in Section
3.4, however, this autonomy is purchased at the cost of intensive computation.

The simple inducerphase, comprising experiments usingMineSetandMLC++ without
attribute subset selection filters [KR92, Ko94] and wrappers [KJ97], accounts for 15% of
development time and 20% of overall effort.

3.3.1 Decision tree induction
Initial results usingID3 as applied to aggregatedALLVAR-2(97 attributes) are shown in

Table 8. Test set accuracy is significantly better than random (uniform prediction over the
classes, or bin labels) in all cases except with 4 target bins. This is clearly a very weak criterion,
as the utility of prediction accuracy far under 50%, even as a coarse-grained recommender
system, is negligible. The Allstate underwriting team indicated, however, that even the weak 2-
bin predictor can be useful in generatingexplanationsfor high and low expected loss ratio. This
is because purity tends to be high at low depths of the tree (indicating a potential for pruning).
Overfitting control is indeed possible with reduced error pruning, even for unaggregated data, but
has limited effect because of relatively irrelevant and correlated attributes. Two things are
needed to truly improve generalization quality: aggregation, and an attribute subset evaluation
function that controls the balance between training set accuracy and generalization criteria (model
size, model input size). Aggregation improves generalization in decision trees forALLVAR-2:
none of the many exploratory decision trees we constructed using unaggregatedALLVAR-2had
test set accuracy significantly better than random. A constructive induction wrapper can also
improve generalization in decision trees if its objective is to reduce overfitting.

Target Bins Average Tree Size Test Set Accuracy
2 24 61.54± 4.52
3 36 43.59± 4.60
4 39 28.21± 4.18
5 36 39.71± 5.85
6 50 23.93± 3.96
7 52 25.64± 4.05
8 53 15.38± 3.35

Table 8. ID3 decision tree performance using aggregatedALLVAR-2



3.3.2 Visualization and interpretation
Visualizations generated during development of theD2K One Company system included:

1. The U-matrix plot (Kohonen map visualization) onALLVAR-1, using SOM-PAK
[KHKL96]

2. The ANOVA similarity graph of Figure 4 onALLVAR-2, usingSAS
3. The cross-entropy scores fromMineSet Column Importancefor the 30 attributes of

ALLVAR-2described in Table 5, usingMineSet Evidence Visualizer(EviViz) [Ko98]
4. About 20 sets of decision trees usingALLVAR-1andALLVAR-2,usingMineSet Tree

Visualizer(TreeViz) [Ko98], a 3-D decision tree visualization and navigation system,
and AT&T GraphViz[Kr95], a 2-D display package for whichMLC++ generates
output.

These visualizations were conducted during the first 9 months of the 10-month project,
and delivered to the user on a biweekly to weekly basis.

3.4 Meta-Learning: Adaptive Wrappers
We use a constructive induction wrapper to control three factors:

1. Overfitting as detected through validation set accuracy
2. Tree size
3. Selected attribute subset size

Kohavi et al have conducted extensive research in formulating attribute subset selection
as a state space search [Ko95, KJ97]. In recent experiments by Cherkauer and Shavlik [CS96],
Raymeret al [RPG+97], and Dejong [DSG93], the efficiency of using genetic algorithms as
wrappers for performance tuning in supervised inductive learning and has been demonstrated.
We observed, however, that moreautonomyis needed in allowing the user to indirectly specify
the balance among the three factors above. That is, the weights given to these factors in the
fitness evaluation function of the genetic wrapper should themselves be hyperparameters. This is
a topic of continuing research; in this paper, we outline a procedure for specifying these
hyperparameters and our findings using a genetic wrapper implemented inD2K. This wrapper
accounts for 10% of amortized development time (over projects in which it has been used – 2 at
the present time) and 10% of the overall effort.

3.4.1 Tunable attribute subset selection
The frequency of irrelevant attributes, and especially correlated attributes, is high, as

described in Section 3.2. Figure 5 illustrates this “column-wise” sparseness of information. Some
shortcomings of single-variable and subset regression (MAX-R) and score-based ranking (Column
Importance) can also be seen in retrospect. Namely, they act as attributefilters (which evaluate
attributes, singly or in tuples, according to a criterion external to the inducer used) rather than
wrappers (which treat the input specification of the supervised learning problem as a trainable
hyperparameter, and optimize this in an “outer loop”) [Ko95, KJ97]. We hypothesized that a
simple wrapper for attribute subset selection would improve performance, while a full
constructive induction wrapper (as implemented using the entireD2K itinerary shown in Figure
3) would yield even greater benefits.

3.4.2 D2K itinerary
Figure 6 shows a screen shot depicting the nested sub-itinerary of theD2K itinerary

shown in Figure 3 (the fragment in the circle). A noteworthy property of this design is its



autonomy for development of improved (reduced and synthetic) input attributes. We designed
D2K as an interactive, flexible, and efficient system for adapting data representations to suit
decision support objectives of KDD such as the business objectives of the Allstate underwriting
division. For example, theD2K master itinerary contains reused modules (imported, stand-alone
Perl and high-performance Java modules for data preparation); newly constructed modules (the
GA of Figure 6); integrated research and commercial codes in offline mode (SAS, MLC++, and
MineSetvia batch mode scripts); and a new communications mechanism (Beowulf).

3.4.3 Genetic algorithm (Jenesis)
A GA is ideal for implementing a constructive induction wrapper, attribute subset

selection in particular, and a tunable CI wrapper as well (even as an inner loop only). We used a
reimplementation in Java of theGenesispackage of Grefenstette [Gr90], which we calledJenesis.
We note that theJenesiswrapper is an advance over the work of Raymeret al [RPG+97] and
Cherkauer and Shavlik [CS96] in that it adjusts “empirically determined” constants dynamically
rather than assuming that a single optimum exists for a large set of KDD problems. This is
preferable to empirically calibrating hyperparameters as if a single “best mixture” existed. Even
if a very large and representative corpus of data sets were used for this purpose, there is no reason
to believe that there is a singlea posteriori optimum for hyperparameters such as weight
allocation to model size, input complexity, and training set accuracy in the constructive induction
wrapper.

The design of theJenesiswrapper illustrated in Figure 6 is as follows.

1. The master controllerfor the itinerary runs in a Java virtual machine. We have
tested this controller using desktop and portable PCs runningWindows, Linux,
SunOS, andMacOS. The master controller implementsJenesis(shown in the screen
shot) and manages slaves that concurrently evaluate members of its population (size
100 in our One Company experiment). Each individual is encoded as a bit mask
denoting inclusion or exclusion of an attribute (i.e., the parallel search in attribute
subset space is conducted using a masking GA [RPG+97]).

2. 8 slave processes distributed across 2-6 cluster hypernodes (documented in Section
3.4.4) run identical copies of anMLC++ -based application. Each evaluates the
attribute subset it is given by training on a segment of the data (1/3 to 3/5 of all
examples) and returns the number of attributes correctly classified in the validation
set (a hold-out set, containing 1/5 to 1/3 of the data).

3. The master GA collects the fitness components for all members of its population and
then computes the weighted function:
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wherea, b, andc are coefficients, summing to 1.0, for percent validation set accuracy
percent maximum tree size, and percent saturation of the attribute subset.cv is the
number of correctly classified validation cases,nv is the total number of validation
cases,t is the decision tree size in nodes,s is the number of attributes selected in the
current specification (the number of 1 bits in the mask string), and m is the total
number of attributes. In [CS96],a = 0.75,b = 0.125, andc = 0.125.

4. The “inner loop” iterates until termination (300 generations in our One Company
experiment; fewer for the other “toy” experiments listed in Section 4). The weights
a, b, andc are then validated using the test set (another hold-out set, containing 1/5 to
1/3 of the data) and we select the “best of the outer loop” by inspecting the test set
accuracy.



Figure 6. Portion of Jenesisnested itinerary within D2K

3.4.4 Clusters (NCSA, KSU)
We use aBeowulfcluster to implement theJenesiswrapper. Beowulfs are commodity-

off-the-shelf (COTS) networks of personal computers and single-user workstations running open-
source operating system software (typicallyLinux) and communicating using message-passing
protocols (typically MPI, PVM, or direct sockets-based communication). [SSBS99] Beowulfs
have become increasingly popular for compute-intensive applications because they provide a
relatively inexpensive way to implement distributed and parallel processing for functionally
(task-level) parallel problems. As we describe below, this property holds true for high-
performance KDD applications such as performance tuning wrappers.

Table 9 summarizes the technical specifications for the experimental platforms at NCSA
and Kansas State University. The primary design rationale for these network-of-workstation
clusters is the minimization of price-to-performance ratio, but this measure must also be
amortized across the expected platform size. That is, due to the economy of scale in building
mid-sized (32 to 128-node at the present time) to large-sized (over 128 nodes) clusters, we must
consider:

1. The amortized cost of the cluster (networking, memory, supporting infrastructure –
operating system software, commercial KDD and information visualization codes,
etc.)

2. The size of a hypernode.
3. The performance gain in using large versus small hypernodes. Our general finding is

that scalability improves with larger hypernodes, but there is a narrow economy of
scale due to the nonlinear cost of symmetric multiprocessor (SMP) systems.

To illustrate the third point, consider that the One CompanyJenesiswrapper required just
under 1 hour to complete 300 generations (300⋅ 100 = 30000 decision trees on 350 aggregate



training examples with an average of over 25 attributes) onValinor, the larger of our two
Beowulf clusters. OnBeoworld, it required over 4 hours. On a single-processor, 400MHz
Pentium II workstation runningLinux, it would require well over 30 hours. The current price
ratio of a typical 400MHz Pentium II workstation toValinor (a new system) is 20:1.

Cluster Nodes Processors Network
Type

Processor
Type/Speed

Configuration Memory
Per Processor

Beoworld
(NCSA)

6 8 100-mbps
Ethernet

400 MHz
Pentium II

2 2-way SMP
4 uniprocessor

128Mb RAM,
512K cache

Valinor
(Kansas
State)

2 8 Gigabit
Ethernet

500 MHz
Pentium III-
Xeon

2 4-way SMP
1Gb RAM,
1Mb cache

Table 9. Technical specifications for KDD clusters

We observed a linear speedup with the use of multiple processors, but this is improved
further through efficient I/O management. Each slave process receives a bit string and performs
an on-line, in-memory query of a copy of the data set that is loaded in once per hypernode and
memory-mapped. This provides a speedup over time (due to the amortized cost benefit) and as a
linear function of the number of processors per hypernode (1 or 2 in Beoworld, 4 in Valinor).

4. Results

4.1 Performance
Table 10 summarizes the performance of theID3 decision tree induction algorithm

[Qu85] and the state-space search-based feature subset selection (FSS) wrapper inMLC++
[KSD96] compared to that ofJenesis. We used a version ofALLVAR-2with 5 bins of loss ratio.
Wall clock time for theJenesisandFSS-ID3wrappers was comparable. As the table shows, both
the Jenesiswrapper and theMLC++ wrapper (usingID3 as the wrapped inducer) produce
significant improvements over unwrappedID3 in classification accuracy and very large
reductions in the number of attributes used. The test set accuracy, and the number of selected
attributes, are averaged over 5 cross validation folds (70 aggregate test cases each). Results for 2
data sets from the Irvine database repository that are known to contain irrelevant attributes are
also positive.

ID3 FSS-ID3Wrapper JenesisWrapper
Data Set Test Set

Accuracy
Attributes
Selected

Test Set
Accuracy

Attributes
Selected

Test Set
Accuracy

Attributes
Selected

ALLVAR-2,
5 bins

39.71% 36.40 ±
1.96

44.00% 10.60 ±
4.32

44.86% 20.8 ±
1.47

Mushroom 99.82% 6/22 99.89% 5/22 99.89% 5/22
Iris 94.00% 4/4 98.00% 1/4 98.00% ¼

Table 10. Results fromJenesisfor One Company (5-way cross validation), representative data sets

Table 11 presents more descriptive statistics on the 5-way cross-validated performance of
ID3, FSS-ID3 (theMLC++ implementation ofID3 with its feature subset selection wrapper), and
Jenesis. Severe overfitting is quite evident forID3, based on the difference between training and
test set error (perfect purity is achieved in all 5 folds) and the larger number of attributes actually
used compared to the wrappers.JenesisandFSS-ID3perform comparably in terms of test set
error, thoughFSS-ID3has less difference between training and test set error andJenesisis less
likely to overprune the attribute subset. Note thatFSS-ID3 consistently selects the fewest
attributes, but still overfits (Jenesisachieves lower test set error in 3 of 5 cross validation cases).



The test set errors ofJenesisandFSS-ID3are not significantly different, so generalization quality
is not conclusively distinguishable in this case. We note, however, that excessively shrinking the
subset indicates a significant tradeoff regarding generalization quality.

Cross Validation Segment
0 1 2 3 4 Mean Stdev

ID3 100.0 100.0 100.0 100.0 100.0 100.00.00
FSS-ID3 55.00 54.29 67.86 50.36 60.71 57.64 6.08

Training Set
Accuracy (%)

Jenesis 65.71 67.14 71.43 71.43 55.71 66.29 5.76
ID3 41.43 42.86 28.57 41.43 44.29 39.71 5.67
FSS-ID3 48.57 35.71 34.29 47.14 54.29 44.00 7.74

Test Set
Accuracy (%)

Jenesis 41.43 42.86 31.43 52.86 55.71 44.86 8.69
ID3 35 35 37 40 35 36.40 1.96
FSS-ID3 7 8 7 13 18 10.60 4.32

Attributes
Selected

Jenesis 20 19 22 20 23 20.80 1.47

Figure 7 shows the learning curve forALLVAR-2 using theJenesiswrapper. We
observed total domination by a single individual within 250 to 400 generations, but it is likely,
based on the suboptimality of at least some of the subsets found, that niching methods (e.g.,
sharing [Go89]) can preserve necessary diversity among nondominated (Pareto-optimal) subsets.
We are incorporating such features into later versions ofJenesis. Furthermore, we observed that
for any pair of cross-validation folds, the resulting subsets produced byJenesishad only about
half of their approximately 20 attributes in common. This instability indicates the need for more
systematic validation experiments and possibly for Bayesian integration methods [Ne96], for
which the GA and other Markov chain Monte Carlo methods may be suitable.

Fitness curves for Jenesis applied to ALLVAR-2
(5-way cross validation)
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Figure 7. Learning curves (fitness)

The classification model was used to audit an existing rule-based classification system
over the same instance space, and to calibrate an underwriting model (to guide pricing decisions
for policies) for an experimental market.



4.2 Lessons learned
The Allstate underwriting division’s foremost objective was to answer the question

“What are the primary determinants of the targets (pure premium, total loss, and loss ratio)
among attributes defined overALLVARfields?” Answering this question was not, however, as
straightforward a matter as runningMineSet Column Importanceafter determining the target and
cleaning up the data model. To successfully produce a simple and comprehensible classification
model, we had to consider joint relevance and be able toexplain whyan attribute was important
(in rule-based and visual terms). To this end, we developed a generic pipeline for attribute
synthesis, reduction (pre-filtering), transformation, and subset selection as shown in Figure 5.
This pipeline is implemented using theD2K itinerary shown in Figure 3, and its core novel
component is the genetic wrapper shown in Figure 6.

We have observed that the aggregation method scales well across lines of business (the
indemnity and non-indemnity companies) and states. This was demonstrated using many of our
decision tree experiments and visualizations usingALLVAR-2samples and subsamples by state.

Our current and future work includes the following extensions and experiments with the
One Company itinerary:

1. Controlling solution (subset) diversity using niching and crowding methods [Go89]
2. Using Bayesian learning methodsto integrate over subsets [Ne96], e.g., combining

solutions from the Pareto-optimal front [Go89]
3. Extension of Jenesis to bias optimization problemswith more degrees of freedom

(e.g., continuous weights; full constructive induction including feature construction
and extraction [Do96]).

4. Comparison with parallel, stochastic (non-GA-based) state space search [Ko95,
Hs98]

5. Using our data clustering techniques on the prediction problem (inter-tier migration)
and to track concept drift

6. Comparing SOM/LVQ to dimensionality reduction methods such as factor analysis
(FA), principal components analysis (PCA), andAutoClass

7. Adapting incremental clustering methods such as LVQ to take user-specified
hyperparameters

8. (Manual, interactive) rule refinement using the SOM output
9. Automating validation experiments inD2K
10. Experimentation with different histogramming methods as data preparation modules

in D2K



5. System Deployment and Impact

5.1 Interaction with users
We consulted with the Allstate underwriting division biweekly through the third through

fifth months of the nine-month project and weekly through the sixth through ninth month. These
consultations and preparation of the visualizations constitute 15% of development time and 25%
of overall effort. They were critical in two respects:

1. Assisting the users to understand the exploratory experiments, the classification
models, the use of these models in the performance element (interactive decision
support tools based onMineSet, Clementine, andD2K), and the data mining process

2. Elicitation of subject matter expertise in Phase I (the first 3 months) on attribute
synthesis, data clustering, and semantics of the data model (especially the data
dictionary forALLVARand ambiguities in the classification rule base)

3. Elicitation of user feedback in Phases II and III (the last 4 months) on attribute
relevance, selection criteria (comprehensibility of the decision trees, appropriate
overfitting tradeoffs, and utility of decision trees with various test set accuracies for
different quantization, or bin, granularities)

Most important, it was critical to understand the business objective of the underwriting
team: development of an experimental pricing strategy based on several data-driven performance
elements (classification models for populations of policies in different lines of business; churn
prediction models; interactive query and visualization; and human-readable rules). We found that
a flexible, diagrammatic work flow model leading up to visualization and interactive
interpretation, as is used inMineSet[Ko98], NeuroSolutions[PL98], andD2K [ARTW99], was
most useful to the underwriting team. This allowed us to develop asustainabledata mining
system that our research group could transfer to theirs.

5.2 Software reuse
Task Development Time Overall Effort Computational Resources

ALLVAR-1rule
simulations

25%
(1 FTE)

10% 30%

Descriptive
statistics

10%
(2.5 FTE)

10% 1%

ALLVAR-2rule
simulations

20%
(2 FTE)

15% 50%

MineSet/MLC++
experiments

15%
(3 FTE)

20% 5%

D2K development
and experiments

10% amortized
(2.5 FTE)

10% 10%

Collecting and
interpreting results

15%
(4 FTE)

25% 0%

Generalization of
D2K modules

5% amortized
(5 FTE)

10% 4%

Table 11. Distribution of resources for One Company project



Table 11 lists, in roughly chronological order, the tasks completed during the One
Company project over a period of 10 months; the time investment in each phase in terms of
development weeks and full-time employee equivalents (FTE); overall effort; and computational
resources. Following Brooks’s cautions [Br95], we added personnel to the project only when a
task could be clearly delineated as new module development (e.g., Java data preparation modules,
MineSetbatch scripts, or the Jenesis component ofD2K). It is also important to distinguish the
effort investmentin each task as opposed to thedurationof each task (development time).

We note especially the amortization of effort due to reuse ofD2K modules. Data
preparation modules achieve the highest rate of reuse (up to 6:1 across projects managed by the
NCSA Automated Learning Group), but even machine learning modules average 2:1. This reuse
actually reduced the amount of time spent on preprocessing and the efficiency of interpreting
results (and developing the infrastructure of the performance element), so that 30% of the time
and 40% of the effort could be devoted to inductive learning research and development. In our
experience, this rate is atypically high.

5.3 Deployed decision support applications

The One Company itinerary was delivered to the Allstate underwriting division over the
10-month development phase (August, 1998 – May, 1999) of a project that ran for about 1.5
years. Early consultations on development ofALLVAR-1occurred during summer, 1998; final
delivery of the performance element and its deployment occurred in mid-September, 1999. The
system is currently being used by a new data mining research group in the Allstate underwriting
division; furthermore, this “model-driven pricing” group is implementing the pipeline and
abstract itinerary described in this paper for related decision support applications, using
commodity off-the-shelf KDD packages.

Other NCSA Industrial Partners besides Allstate are currently utilizing theD2K rapid
application development environment for data mining. Currently, Caterpillar has multiple
projects implemented inD2K. For one of the projects, Caterpillar is training 300 engineers to use
the system by the end of the 1999 calendar year. The Sears Home Service Division is in the
process of building a data mining application inD2K. When completed, they plan to use this
system to deliver decision support to their service sites. D2K is also currently being used to build
prototype applications by the Illinois State Government Agencies and by academic organizations,
such as Kansas State University, for education and research.
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i In our simplified IBL algorithm, we computed Voronoi cells using the following steps:
1. Compute relative maxima of cluster density on the map (by histogramming the output ofSOM-PAK,

which gives the winning map coordinate for each training example), thresholded by auser-specified
value (the minimum number of representative examples – in our case, insurance policies). This
technique was also successful for a project on text document categorization described in Section 5.2.

2. Set the cluster representatives to be these “thresholded peaks”.
3. Compute a Voronoi diagram in one offline pass, using the cluster representatives. By contrast, LVQ

[Ko90] computes this diagram, and the centers of the classifier decision regions, dynamically.
Our simplification allows users to determine the desired number of clusters indirectly, by specifying a
runtime parameter that, as we have found, is often intuitive to the domain specialist: thenumber of
representative data points needed to constitute a cluster.

ii The simulations were conducted onALLVAR-2, a second preprocessed data set, only because certain
ambiguities in the rule set resulted from the incomplete data model definition inALLVAR-1. There is every
indication that the trends seen in both the cluster and tier-based classifiers hold over both data sets.


