
Ann Oper Res (2007) 156: 61–82
DOI 10.1007/s10479-007-0229-6

A machine learning approach to algorithm selection for
NP-hard optimization problems: a case study on the
MPE problem

Haipeng Guo · William H. Hsu

Published online: 7 August 2007
© Springer Science+Business Media, LLC 2007

Abstract Given one instance of an NP-hard optimization problem, can we tell in advance
whether it is exactly solvable or not? If it is not, can we predict which approximate algorithm
is the best to solve it? Since the behavior of most approximate, randomized, and heuristic
search algorithms for NP-hard problems is usually very difficult to characterize analyti-
cally, researchers have turned to experimental methods in order to answer these questions.
In this paper we present a machine learning-based approach to address the above questions.
Models induced from algorithmic performance data can represent the knowledge of how al-
gorithmic performance depends on some easy-to-compute problem instance characteristics.
Using these models, we can estimate approximately whether an input instance is exactly
solvable or not. Furthermore, when it is classified as exactly unsolvable, we can select the
best approximate algorithm for it among a list of candidates. In this paper we use the MPE
(most probable explanation) problem in probabilistic inference as a case study to validate
the proposed methodology. Our experimental results show that the machine learning-based
algorithm selection system can integrate both exact and inexact algorithms and provide the
best overall performance comparing to any single candidate algorithm.

1 Introduction

Given one instance of an NP-hard optimization problem, the algorithm selection problem
asks which exact or approximate algorithm is the best to solve it. It is important for both the-
oretical and practical reasons. Theoretically, computer scientists always want to seek a better
understanding of problem (instance) hardness and algorithm performance. Practically, it can
provide more efficient computations. This is especially helpful for some real-time applica-
tions that are under the pressure of some hard or soft computational deadlines.

H. Guo (�)
Computer Science and Techology Program, BNU-HKBU United International College, ZhuHai, China
e-mail: hpguo@uic.edu.hk

W.H. Hsu
Department of Computing and Information Sciences, Kansas State University, Manhattan, USA
e-mail: bhsu@cis.ksu.edu

62 Ann Oper Res (2007) 156: 61–82

In order to solve the algorithm selection problem, we need to have a good understanding
of the performance of various algorithms on different types of problem instances. Tradition-
ally, there are two complementary approaches to study algorithms: the analytical approach
and the experimental approach. Analytical approaches use purely mathematical methods to
analyze an algorithm’s asymptotic behavior, often applying to a worst case or an average
case scenario. Experimental approaches draw conclusions from algorithm performance data
collected from specially designed experiments.

Theoretical analysis has been the dominant method to the study of algorithms. It should
still be our first choice whenever possible. But it has several drawbacks when applying to
algorithm selection for NP-hard optimization problems. First, many worst case results do
not apply to typical instances in practice. Meanwhile, average case analysis is often very
difficult because it requires a reasonable estimate of all instances’ probabilities. Second,
worst case analysis treats all instances of the same size collectively as a whole although
these instances can be very different in terms of features other than size. Third, many
newly-developed approximate, randomized, and heuristic search algorithms for NP-hard
optimization problems, such as genetic algorithms, simulated annealing, and stochastic lo-
cal search, simply resist formal analysis. They usually have a large number of parameters
and create an extremely complex state space that is very difficult to analyze with existing
mathematical methods. Last but not the least, the analytical approach is generally not suit-
able to predict an algorithm’s performance on a single problem instance. To distinguish the
varying resource requirements of instances that have the same size but are different in other
features, we need to move from problem complexity to instance complexity. There are at
least three ways to deal with this analytically. The first one uses resource-bounded Kol-
mogorov complexity (Orponen et al. 1994) where the instance complexity of a string x, with
respect to a set A, is defined as the length of the shortest program of some time-bounded
Turing machine that correctly decides if x is in A. The goal here is to identify the hard
instances that make a language hard. It provides simple characterizations for many funda-
mental complexity-theoretic properties. The second method defines instance complexity by
restricting the allowed algorithms. For example, “Instance p1 is harder than p2 if it takes
more time for a specified algorithm A to solve p1". The third method considers instance
classes instead of single instances (Mannila 1985). It defines a subproblem of the original
problem by some intuitive criteria of instance hardness (or easiness)1 and then studies the
worst-case complexity of the subproblem. Algorithms are designed and analyzed on these
subproblems, with resource requirements increasing smoothly when moving to larger sub-
problems. The resulting algorithm is called optimal to the instance hardness measures used.
Although the first method using Kolmogorov complexity has produced some interesting re-
sults, these results are mainly along the line of complexity classes. They do not help much
on practical instance-based algorithm selection. The second method is not very attractive
because it depends on a particular algorithm. The third method has made some progresses
in designing adaptive sorting algorithms that are optimal to many measures of presortedness.
However, because of its analytical nature, this method is easy for simple problems like sort-
ing, but hard for arbitrary NP-hard optimization problems. Also, it is usually very difficult
to design one adaptive algorithm that is optimal for many instance hardness measures.

Because of the above drawbacks of the analytical approach, experimental algorith-
mics has drawn significant attention in the last decade (McGeoch 1986; Hooker 1994;
Johnson 2002; Moret 2002). The experimental approach has the advantage of focusing on

1For example in sorting, the presortedness of permutation, be it inversions, runs, or the length of the longest
ascending subsequence, can serve as instance hardness measure.

Ann Oper Res (2007) 156: 61–82 63

typical instances. It also allows us to conduct instance-based algorithm comparison and se-
lection. This is especially useful to the selection of NP-hard optimization algorithms that
are hard to analyze theoretically. With the progresses made in AI and machine learning,
more advanced data analysis techniques have been applied to experimental algorithmics. In
this paper, we propose a machine learning-based approach to build a practical algorithm se-
lection system for NP-hard optimization problems. We use the MPE problem in Bayesian
network inference as a case study to validate the proposed approach. The rest of this paper
is organized as follows. In Sect. 2 we describe our approach and review related works. In
Sect. 3 we introduce Bayesian networks and the MPE problem. In Sect. 4 we discuss ex-
perimental setups and training data collection. Section 5 presents results of model induction
and system evaluation. Finally in Sect. 6, we conclude with some discussions and future
directions.

2 A machine learning-based approach to algorithm selection for NP-hard
optimization problems and the related works

Our approach is fairly straightforward: first collect experimental data about problem charac-
teristics and algorithm performance, and then apply machine learning to induce predictive
algorithm selection models from the training data. We are partly motivated by the observa-
tion that some easy-to-compute instance features can be used as good indicators of some
algorithm’s performance on the specific class of instances. This knowledge can help us to
select the best algorithm for these instances. In NP-hard problem-solving, researchers have
long noticed that algorithms exploiting special problem instance features can perform on the
particular class of instances better than the worst-case scenario. In light of this, two of the
main directions of this work are to study different instance features in terms of their good-
ness as a predictive measure for some algorithm’s performance, and to utilize this knowledge
to build a practical algorithm selection system.

2.1 The proposed machine learning approach

The questions raised in the beginning of this paper can be formulated as two machine learn-
ing tasks. The first one is to learn the concept of “exactly solvable”. The second one is to
learn “which approximate algorithm is the best”. Both are classification tasks. In the first
task, there are two classes, “yes” or “no”. In the second task, the number of classes is equal
to the number of candidate algorithms.

Both tasks can be handled in a similar manner by the procedure shown in Fig. 1. The
first two steps, instance generation and algorithm performance data collection, prepare the
training data. The next two steps, feature selection and discretization, preprocess the data.
Next in the learning step, machine learning algorithms are applied to induce the algorithm
selection classifiers. Also, some meta-learning methods—such as bagging, boosting, and
stacking (Witten and Frank 1999)—can be used to improve learning. Finally, the best learned
model is chosen and evaluated on test data.

Each of the above steps has some important research problems to solve. In data prepara-
tion, we need to identify a list of candidate algorithms and a set of good problem features
that can differentiate the algorithm space. Here domain knowledge plays an important role.
In instance generation, we want to generate problem instances with controlled parameter
values uniformly at random, which is a challenging problem itself. In data preprocessing,
we want to preselect the most relevant feature subset to reduce the complexity of learning.

64 Ann Oper Res (2007) 156: 61–82

Fig. 1 A machine
learning-based approach to
algorithm selection

In the step of learning, we need to compare multiple models and decide which is the best. In
evaluation, the task is to verify that the learned models can indeed select the right algorithm
and provide a better overall performance.

2.2 Related works

Related works can be roughly classified into three categories: experimental algorithmics,
algorithm selection, and the application of machine learning to study of algorithms.

During the last decade experimental algorithmics has drawn significant attention in the
algorithm community (Hooker 1994; Sanders 2002; Ramakrishnan and Valdes-perez 2000;
Moret 2002; Johnson 2002). The experimental method is especially useful to study algo-
rithms for NP-hard optimization problems: Gent and Walsh (1993) presents an empirical
analysis of search in GSAT; Hoos and Stutzle (2000) gives an experimental study to sto-
chastic local search for SAT; Rardin and Uzsoy (2001) discusses methodological issues on
experimental evaluations of heuristics. Most of these researchers only use some simple sta-
tistical methods to analyze experimental data.

The algorithm selection problem was first formulated in (Rice 1976). The goal is to se-
lect one among a set of algorithms that solves the input instance the best in some sense.
An abstract model of algorithm selection is shown in Fig. 2, where x is the input instance
in the problem space and w is the performance criteria. The input problem instance is rep-
resented as the feature(s) f in the feature space by a feature extraction procedure F(x).
The task is to build a selection mapping between the problem space S and the algorithm
space A that provides a good (measured by w) algorithm to solve x subject to the con-
strains that algorithm performance is optimized. Works in this direction include the fol-
lowings: Lucks and Gladwell (1992) discusses automated selection of mathematical soft-
wares; Houstis et al. (2000) discusses a knowledge-based system to select scientific algo-
rithms; Fink (1998) describes a statistical technique for the automated selection of problem-
solving methods; Lobjois and Lema (1998) studies the selection of branch and bound al-
gorithms; Lagoudakis et al. (2001) applies reinforcement learning to dynamic selection of

Ann Oper Res (2007) 156: 61–82 65

Fig. 2 The abstract model of
algorithm selection

sorting algorithms in which the algorithm selection problem is modeled as a Markov De-
cision Process. His work demonstrates that learning and optimization methods can be ef-
fectively used to cope with uncertainty in computation. He also applied machine learning
to select branching rules in the DPLL procedure for SAT (Lagoudakis and Littman 2001;
Leyton-Brown et al. 2003a) presents a portfolio approach to algorithm selection. Comparing
to these works, our research is the first that applies machine learning to algorithm selection
to integrate both exact and approximate algorithms for NP-hard optimization problems.

Our work has been developed from the study of uncertain reasoning under bounded re-
sources, which is crucial for many real-time AI applications. Examples of these include
online diagnosis, crisis monitoring, and real-time decision support systems. In these tasks
the correctness of a computation depends not only on its accuracy but also on its timeli-
ness. Some mission-critical applications require a hard computation deadline to be strictly
enforced where the utility drops to zero instantly if the answer to the query is not returned
and a control is not produced. Other soft real-time domains only admit a soft deadline where
the utility degrades gradually after the deadline is passed.

In the past 20 years Bayesian networks have become the most popular models for un-
certain reasoning. Researchers have broadly developed two types of methods to address
real-time inference in Bayesian networks. The first method is to use anytime algorithms
(Zilberstein 1993), or flexible computation (Horvitz 1990). These are iterative refinement
algorithms that can be interrupted at “any” time and still produce results of some guaranteed
quality. Most stochastic simulation, heuristic search, and partial evaluation inference algo-
rithms belong to this category. The second method is to combine multiple different inference
algorithms where each of these may be more or less appropriate for different characteristics
of the problems. The architecture unifying various algorithms often contains a key meta-
reasoning component that partitions resources between meta-reasoning and reasoning in
order to gain a better overall performance of problem solving. Works in this category in-
clude intelligent reformulation (Breese and Horvitz 1990), algorithm portfolio (Gomes and
Selman 1997), cooperative inference (Santos et al. 1995), etc. This paper is concerned with
a specific type of meta-reasoning, namely algorithm selection, for the real-time MPE prob-
lem with a soft deadline. We use a learning-based approach to induce an MPE algorithm
selection model from the training data. The learning needs to be done only once and it takes
only about thirty minutes. Then the learned models are available to anyone as an MPE al-
gorithm selection meta-reasoner. For an input MPE instance, it can inspect the instance’s
features and select the best algorithm in only a few seconds, and achieve the best overall
performance of reasoning.

66 Ann Oper Res (2007) 156: 61–82

Our work is partly motivated by Santos et al. (1995) and Horvitz et al. (2001). In San-
tos et al. (1995), all algorithms to be included into the system must have both anytime and
anywhere characteristics. In our approach, candidate algorithms do not have to have the any-
where property. Horvitz et al. (2001) applies a Bayesian method to induce a meta-reasoning
model to help decision-making in hard problem solving. We compare various machine learn-
ing techniques to learn an algorithm selection meta-reasoner that can integrate various algo-
rithms and gain a better overall performance of reasoning. Another motivation of this work
is to automate and mimic human expert’s algorithm selection process. The difficulty of au-
tomatic algorithm selection is largely due to the uncertainty in the input problem space and
the lack of understanding of the algorithms’ working mechanism. This is especially true for
NP-hard problems and complex, randomized algorithms. From the viewpoint of expert sys-
tems and machine learning, the automatic algorithm selection system acts as an intelligent
meta-reasoner that can learn the uncertain knowledge of algorithm selection from its past
experiences of problem solving, and can use this learned knowledge (models) to reason on
algorithm selection for the input instance in order to make the right decision.

A similar method has been independently developed in Leyton-Brown et al. (2002,
2003a, 2003b). The differences of their work and this work are analyzed in the following.
First, their work has been developed from studying the empirical hardness of the WDP prob-
lem, while ours has been developed from the investigation of using algorithm selection as
a meta-reasoning strategy for the real time MPE problem. Second, they consider only exact
algorithm and focus on how to predict the running time of the algorithm. We consider both
exact and inexact algorithms and emphasize on how to integrate these algorithms to build
a practical algorithm selection system. Third, they investigate regression models, while we
mainly study classifiers. In Leyton-Brown et al. (2003b), the authors argue that regression
models are more suitable for algorithm selection than classifiers because of the following
reason:

. . . Any standard classification algorithm (e.g., a decision tree) could be used to learn
which algorithm to choose given features of the instance and labelled training exam-
ples. The problem is that such classification algorithms use the wrong metric: they
penalize misclassifications equally regardless of their cost. We want to minimize a
portfolio’s average runtime, not its accuracy in choosing the optimal algorithm. Thus
we should penalize misclassifications more when the difference between the running
times of the chosen and fastest algorithm is large than when it is small. . .

The above argument is not very convincing for the following reasons. First, classifiers can
also penalize misclassifications differently if being used properly. Second, when misclassi-
fication happens in selection of competing approximate algorithms, often times the perfor-
mance difference between the incorrectly selected algorithm and the actual best algorithm
is small. We will revisit this point later in Sect. 5.5. Also, although regression models might
be a better choice than classifiers for running time prediction of exact algorithms, it is still
open whether this is also true to algorithm selection for both exact and inexact algorithms.
In the MPE problem, the most popular exact algorithm not only has an exponential time
complexity, but also an exponential space complexity. Often times when the exact algorithm
fails, it stops and throws out an “out of memory” error. We need to capture this using the
first classifier, and then start another selection of approximate algorithms using the second
classifier. Also when comparing two inexact algorithms, one needs to consider both the run-
ning time and the solution quality. These may cause some trouble for a regression model
of running-time prediction. In summary, Leyton-Brown’s work and this work belong to the

Ann Oper Res (2007) 156: 61–82 67

Fig. 3 The Sprinkler network

same research trend of applying machine learning to experimental algorithmics for NP-
hard problems. In the future it is necessary to conduct a thorough experimental compari-
son between regression models and classifiers for algorithm selection. Other related works
include (Gomes and Selman 1997; Jitnah and Nicholson 1998; Hoos and Stutzle 1998;
Ruan et al. 2004).

3 Bayesian networks and the MPE problem

A Bayesian network (BN) is a Directed Acyclic Graph (DAG) where nodes represent ran-
dom variables and edges represent conditional dependencies between variables (Pearl 1988).
Each node has a Conditional Probability Table (CPT) that describes the conditional proba-
bility distribution of that node given its parents’ states. The distributions can be discrete or
continuous. For simplicity we only consider discrete ones. BNs represent joint probability
distributions in a compact manner. Let {X1, . . . ,Xn} be the random variables in a network.
Every entry in the joint distribution P (X1, . . . ,Xn) can be calculated using the following
chain rule:

P (X1, . . . ,Xn) =
n∏

i=1

P (Xi |π(Xi)), (1)

where π(Xi) denotes the parents of node Xi . Figure 3 shows a simple BN with 4 nodes, the
Sprinkler network (Russell and Norvig 2003).

Let (G,P) be a Bayesian network where G is a DAG and P is a set of CPTs, one for each
node in G. Evidence E is a set of instantiated nodes with observed value e. An explanation
is a complete assignment of all nodes’ values consistent with the observed evidence. Each
explanation’s probability can be computed in linear time using (1).

68 Ann Oper Res (2007) 156: 61–82

MPE is an explanation with the highest probability. It provides the most likely state of
the world given the observed evidence. The MPE problem has a number of applications
in diagnosis, abduction and explanation. Unfortunately, it is NP-Complete (Littman 1999).
Approximating the MPE is also NP-hard (Abdelbar and Hedetniemi 1998). So approximate
algorithms must be applied to large, densely connected networks.

Clique-tree propagation is the most popular exact algorithm to compute the MPE (Lau-
ritzen and Spiegelhalter 1988; Jensen et al. 1990; Shafer and Shenoy 1990). It exploits the
factorization of the joint distribution that the Bayesian networks provide to reduce the com-
putation needed in probabilistic inference. Clique-tree propagation is efficient for sparse net-
works but can be very slow if the network is dense and complex. In fact, both its worst-case
time complexity and space complexity are exponential in the induced width (also known as
the largest clique size) of the underlying undirected graph.

Approximate MPE algorithms trade accuracy for efficiency so that they can at least find
a near-optimal explanation in a reasonable amount of time on intractable networks. There are
two basic categories of approximate algorithms: stochastic sampling algorithms and search-
based algorithms. Stochastic sampling algorithms can be divided into importance sampling
algorithms (Fung and Chang 1989) and Markov Chain Monte Carlo (MCMC) methods
(Pearl 1988). They differ from each other in whether samples are independent from each
other or not. Both algorithms can be applied on a large range of network sizes. But when the
network is large and evidence very unlikely, the most probable explanation will also be very
unlikely. Thus the probability of it being hit by any sampling schemes will be rather low.
This is the main weakness of sampling algorithms. Search algorithms have been studied
extensively in combinatorial optimization. Researchers have applied various optimization
algorithms to solve MPE, for example, the best first search (Shimony and Charniak 1999),
linear programming (Santos 1991), stochastic local search (Kask and Dechter 1999), ge-
netic algorithms (Mengshoel 1999), etc. More recently, Park (2002) tried to convert MPE to
MAX-SAT, and then use an MAX-SAT solver to solve it indirectly. Other search algorithms
often use some heuristics to guide search in order to avoid getting stuck into local optimal.
The most popular heuristics include Stochastic HillClimbing, Simulated Annealing (Kirk-
patrick et al. 1983), Tabu Search (Glover and Laguna 1997), etc. Each of these may work
well on some but poorly on other MPE instances. Under real-time constraints, it would be
very helpful if we could know in advance which algorithm is the best for what instances.

4 Experimental setup and data preparation

In the following we present experimental results of applying our proposed method to algo-
rithm selection for the MPE problem. This section discusses experimental setup and data
preparation.

4.1 The algorithm space

Our candidate MPE algorithms include one exact algorithm: Clique-Tree Propagation (CTP)
(Lauritzen and Spiegelhalter 1988); two sampling algorithms: Gibbs Sampling (Pearl 1988)
and Forward Sampling (also called Likelihood Weighting) (Fung and Chang 1989); two lo-
cal search-based algorithms: Multi-start HillClimbing and Tabu Search (Glover and Laguna
1997); and one hybrid algorithm combining both sampling and search: Ant Colony Opti-
mization (ACO). These algorithms are chosen because currently they are among the most
commonly used MPE algorithms. A classification of these algorithms is shown in Fig. 4.
Because of the lack of space, we refer interested readers to (Guo 2003) for detailed descrip-
tions.

Ann Oper Res (2007) 156: 61–82 69

Fig. 4 Candidate MPE algorithms

4.2 The instance feature space

An MPE instance 〈G,P,E〉 consists of three components: the network structure G, the
CPTs P , and the evidence E. Correspondingly, we will consider three different kinds of
instance features: network characteristics, CPT characteristics, and evidence characteristics.

Network characteristics include topological type and network connectedness. We distin-
guish three topological types: polytrees, two-level networks (Noisy-OR), and multiply con-
nected networks. Network connectedness, or conn, is simply calculated as conn = n_arcs

n_nodes
.

These two characteristics have a direct influence on the exact inference algorithm’s perfor-
mance. In contrast, none of them affects sampling algorithms.

CPT characteristics include CPT size and CPT skewness. Since we only consider binary
nodes, the maximum number of parents of a node, max_parents, can be used to bound the
CPT size. The skewness of the CPTs is computed as follows (Jitnah and Nicholson 1998):
for a vector (a column of the CPT table), v = (v1, v2, . . . , vm), of conditional probabilities,

skew(v) =
∑m

i=1 | 1
m

− vi |
1 − 1

m
+ ∑m

i=2
1
m

, (2)

where the denominator scales the skewness from 0 to 1. The skewness of a CPT is the
average of the skewness of all columns, whereas the skewness of the network is the average
of the skewnesses of all CPTs. We will see that CPT skewness has the most significant
influence on the relative performance of sampling and search-based algorithms.

Evidence characteristics include the proportion and the distribution type of evidence
nodes. Evidence proportion is simply the number of evidence nodes, n_evid, divided by
n_nodes: n_evid

n_nodes . Usually, more evidence nodes implies less likely evidence. Hence, the
MPE will also be quite unlikely and the probability of it being hit by any sampling scheme
can not be very high. The distribution of evidence nodes in the network also affects the
hardness of MPE instances. If most evidence nodes are “cause” nodes, the problem is called

70 Ann Oper Res (2007) 156: 61–82

Fig. 5 The algorithm selection meta-reasoner

predictive reasoning. If most evidence nodes are “effect” nodes, it is called diagnostic rea-
soning. It has been proven that predictive reasoning is easier than diagnostic reasoning (Shi-
mony and Domshlak 2003). In our experiments, we will consider three different types of
evidence distributions: strictly predictive, strictly diagnostic, and randomly distributed. An
inference problem is called “strictly predictive” if all evidence nodes have no non-evidence
parents; it is called “strictly diagnostic” if all evidence nodes have no non-evidence children.

We are aware that there might exist some other features that could work as well or even
better. These particular features were chosen according to the domain knowledge, previous
literature (Jitnah and Nicholson 1998; Ide and Cozman 2002; Shimony and Domshlak 2003),
and our initial experimental results. Another practical reason is because they can all be
calculated in polynomial time.

4.3 The algorithm selection meta-reasoner to be learned

Our first goal is to identify the class of MPE instances for which the exact inference algo-
rithm is applicable. When the exact algorithm is not applicable (most probably due to an
out-of-memory error in practice), we need to look at various approximate algorithms. So
our second goal is to learn the predictive model that can determine which approximate algo-
rithm is the best. Therefore, the algorithm selection meta-reasoner to be learned will consist
of two classifiers as shown in Fig. 5: the ExactMPESelector for exact algorithm selection,
and the ApproxMPESelector for approximate algorithm selection.

4.4 Data preparation

In data preparation, we need to first generate MPE instances with different characteris-
tics. The random generation of MPE instances with controlled parameter values is based
on a Markov chain method (Ide and Cozman 2002). It is reasonable and necessary to con-
sider only a subset of all possible MPE instances, i.e., the set of “Real World Problems”

Ann Oper Res (2007) 156: 61–82 71

(RWP). In order to simulate RWP BNs, we first extract the ranges of all characteristic pa-
rameter values from a collection of 13 real world samples, call it DRWBN , and then gener-
ate networks and MPE instances based on the extracted distributions. These networks are
quite different from each other and they are representatives of what BNs are used for in the
real world. The ranges of their characteristic values are as follows: 30 ≤ n_nodes ≤ 1,000;
conn ∈ [1.0,2.0]; maxParents < 10; 0.25 < skewness < 0.87. These characteristics infor-
mation will be used to guide the generation of our training datasets.

The first training dataset, DMPE1, will be used to learn ExactMPESelector. It is generated
as follows: we first randomly generate networks with varying connectedness from 1.0 to
2.0 and maximum number of parents varying from 3 to 10. The number of nodes used are
{30,50,80,100,120,150,200}. We then run exact algorithm CTP on these networks and
record the performance. To perform inference, CTP first compiles the network into a clique
tree, and then passes messages(probability functions) between nodes of the clique tree. We
first record the maximum clique size if the compilation phase is successful. Otherwise, if it
fails with an out-of-memory error, we label the network as “no” instance. If the compila-
tion can be completed but takes longer than 5 minutes, we also label the instance as “no”.
According to our experimental results on a Pentium III 1 GHz machine with 512 MB of
RAM, the largest clique size that the exact algorithm could handle was around 22. When
the largest clique size was less than or equal to 20, the construction of the clique tree could
be completed within 5 minutes. When it was 21 or 22, it took quiet a long time to construct
the clique tree and sometimes failed. So we decided to use a conservative cutoff (5 minutes)
to avoid a “no” instance being misclassified as “yes”. DMPE1 has four numeric attributes:
n_node, topology, connectedness, and maxParents. The target class, ifUseExactAlgorithm,
takes boolean values representing whether an exact algorithm is applicable or not. The final
DMPE1 contains a total of 1,893 instances.

The second training dataset for learning ApproxMPESelector, DMPE2, only contains two-
level and multiply networks. We generate a set of networks with different characteristic
values and then run all approximate algorithms on them with different evidence settings. We
allow each algorithm to run for a fixed number of samples (for random sampling algorithms)
or a fixed number of search points (for search algorithms), i.e. the number of times that the
search space is visited or (1) is called. In our implementations of all search and sampling
algorithms, the same subroutine is used to evaluate each search point or sample so that all
algorithms can roughly spend the same amount of time generating each sample or evaluating
each search point. We label the instance using the best algorithm that returns the best MPE
value. If the returned MPE probabilities of two algorithms are equal, we select the one uses
less number of samples to find the MPE as the better one. The total number of samples or
search points used was 300, 1000, or 3,000. The resulting training dataset contains 5,184
instances generated from 192 networks.2 It has 8 predictive attributes: n_node, topology,
connectedness, maxParents, skewness, evidPercent, evidDistri, and n_samples. The target
class is the best algorithm for this instance. The format of DMPE2 is shown in Table 1. The
statistics of DMPE2 are listed in Table 2. We can see that Gibbs sampling has never been the
winner while ant colony optimization algorithm is the best for nearly half of the instances.

25184 = 192 × 3 × 3 × 3. These 3s are for three different evidence proportions, evidence distribution types,
and number of samples allowed on each network.

72 Ann Oper Res (2007) 156: 61–82

Table 1 Format of training dataset DMPE2

#nodes topology conn maxParents skewness evid% evidDist #samples bestAlgo

50 multiply 4.56 9 0.1 10 predictive 300 multi_hc

50 multiply 4.56 9 0.1 10 random 300 aco

. .

100 multiply 3.80 8 0.5 30 diagnostic 3,000 aco

100 multiply 3.80 8 0.5 30 random 3,000 aco

Table 2 Statistics of attribute values in DMPE2

#nodes conn maxParents skewness evid% #samples

Minimum 50 1.19 3 0.09 10 300

Maximum 100 4.88 10 0.90 30 3,000

Mean 75 2.49 5.64 0.50 20 1,433

StdDev 25 1.26 2.43 0.33 10 1,144

label topology evidDist

multiply twolevel predictive diagnostic random

count 3,240 1,944 1,728 1,728 1,728

bestAlgorithm

gibbs_sampling forward_sampling multiHC tabu aco

count 0 862 1,077 578 2,667

percentage 0% 16.62% 20.78% 11.15% 51.45%

5 Experimental results: model induction and evaluation

We now apply various machine learning algorithms to induce the predictive algorithm selec-
tion models. We consider three different kinds of models: decision tree learning (C4.5), naive
Bayes classifier, and Bayesian network learning (K2) (Cooper and Herskovits 1992). We
also consider three meta-learning methods: bagging, boosting and stacking, which all use
C4.5 as the base learner. So totally we have six different learning schemes. Before learning,
we also conduct necessary data preprocessing such as feature selection and/or discretization.

5.1 Experiment 1: learning ExactMPESelector

In experiment 1, we run all 6 learning schemes on DMPE1 to learn the exact algorithm selector
ExactMPESelector. Table 3 shows the classification accuracies of each learned model. The
first two columns show the classification accuracy (c.a.) and its standard deviation (s.d.) of
each learned model on the training data. It is computed by 10 ten-fold cross validations.

Ann Oper Res (2007) 156: 61–82 73

Table 3 Experiment 1: learning ExactMPESelector

C45 NaiveBayes BayesNet Bagging Boosting Stacking

c.a. (%) 94.80 82.79 90.06 94.75 94.81 94.56

s.d. (%) 0.27 0.36 0.24 0.25 0.23 0.45

c.a. (%) 98.8 88.8 92.2 98.8 98.8 98.8

In a k-fold cross validation, the training data is randomly divided into k mutually exclusive
subsets of approximately equal size. In each subset, the class is represented in approximately
the same proportions as in the whole data set. The learning algorithm is executed and the
learned model tested k times. For each iteration, one subset is held out as test set and the
remaining k − 1 subsets are used for training. Finally, the k estimates are averaged to yield
the overall classification accuracy.3 We also compute the classification accuracy of each
learned model on a separated test dataset of 1,000 instances. The results are shown in the
third column of Table 3. This dataset is generated from 500 different networks independent
of the training data. The random generation method is analog to procedure described in
Sect. 4.4, but different distributions of feature values are used.

We choose the best model out of these 6, i.e. the one that has both high classification
accuracy and efficient reasoning mechanism. We can see that C4.5, bagging, boosting, and
stacking all have a high classification accuracy. We also notice that NaiveBayes has the
worst performance, which verifies that the features in DMPE1 are not independent of each
other. Since C4.5 is much simpler and more efficient on reasoning, we use the decision tree
learned by C4.5 as the best model for ExactMPESelector.

The learned decision tree is shown in Fig. 6. We can see that the basic rule for exact al-
gorithm selection is that exact clique-tree propagation algorithm is applicable if the network
is small or sparse.

5.2 Experiment 2: algorithm space reduction & feature selection

In the following experiments, we will look at approximate MPE algorithm selection. The
training dataset used is DMPE2. Each instance of DMPE2 has 9 attributes. The first 8 are
predictive attributes and the last one is the target class attribute which labels the best ap-
proximate algorithm for this instance.

Because Gibbs sampling has never been the best algorithm in the training dataset DMPE2

(see Table 2), we can remove it from the candidate algorithms. We then apply a GA-wrapped
C4.5 feature selection classifier to see which feature subset is the best (Witten and Frank
1999). The wrapper uses C4.5 as the evaluation classifier to evaluate the fitness of feature
subsets. A simple genetic algorithm is used to search the attribute space. Both the population
size and number of generations are 20. The crossover probability is 0.6 and the mutation
probability is 0.033. The features selected by the GA are: {n_node, skewness, evidPercent,
evidDistri, n_samples}. In the following experiments, we will use this selected feature subset
to learn ApproxMPESelector.

3Often times, a single stratified k-fold cross-validation might not produce a reliable estimate, so we typi-
cally run cross-validation many times and average the results. In this experiment we run the ten-fold cross
validation for 10 times.

74 Ann Oper Res (2007) 156: 61–82

Fig. 6 ExactMPESelector: the learned decision tree for exact MPE algorithm selection

5.3 Experiment 3: learning ApproxMPESelector

In experiment 3, we run the same 6 learning schemes on the selected subset of DMPE2 to
see which learns the best model. The experimental results are shown in Table 4. Again, the
first two columns show the classification accuracy and its standard deviation of each learned
model on the training dataset, and the third column shows the classification accuracy on
an independently generated testing dataset of 1,000 instances. We can see that the model
induced by C4.5 has the highest classification accuracy of 77.75%, Naive Bayes classifier

Ann Oper Res (2007) 156: 61–82 75

Table 4 Experiment 3: learning ApproxMPESelector

C4.5 NaiveBayes BayesNet Bagging Boosting Stacking

c.a. (%) 77.75 72.77 76.08 75.44 77.16 77.36

s.d. (%) 0.23 0.03 0.01 0.27 0.26 0.32

c.a. (%) 74.2 70.8 65.6 68.6 68.8 72.6

has the worst performance, and the classification accuracy of Bayesian networks learning
is 76.08%. According to these results, we choose the decision tree as the best model for
ApproxMPESelector.

The learned decision tree is shown in Fig. 7 in which “sk” represents “skewness”, “ns”
represents “number of samples”, “nn” represents “number of nodes”, “ed” represents “evi-
dence distribution”, and “ep” represents “evidence percentage”. We can see that skewness is
an important feature because it differentiate the algorithm space most significantly. In gen-
eral, on unskewed networks search-based algorithms outperform ACO and sampling-based
algorithms; on medium skewed networks ACO basically dominates; and on highly skewed
networks ACO generally outperforms other algorithms, but forward sampling is competi-
tive.

This interesting finding reveals ACO’s nature as a combination of sampling and search.
The sampling part is that each individual ant can use CPTs as heuristic functions to ex-
plore new trails. The search part is that a colony of ants can exchange information through
pheromone trails so as to cooperatively “learn” the best solution. Basically, if we set the
pheromone weight α to 0, then ACO becomes forward sampling, because it only uses CPTs
as the heuristic functions when generating ant trails (samples). With the use of pheromone
trails (α �= 0), ACO manages to outperform forward sampling on both skewed and medium
networks. As the skewness decreases, the number of local optima increases and the instance
becomes more difficult for sampling algorithms, while simple search heuristic like random
restart will have more chances to explore new areas in the solution space. That is why search
algorithms outperform ACO on unskewed networks. This result implies that as a combina-
tion of sampling and search, ACO’s search aspect is weaker than its sampling aspect. It also
suggests a possible way to improve ACO. If we can detect that the skewness is low in ad-
vance, then we can change ants’ strategy to favor exploration more than exploitation in order
to gain a better performance. For more detailed descriptions of ACO for the MPE problem,
see (Guo et al. 2004).

5.4 Experiment 4: influences of each individual feature

Experiment 4 studies the influences of each individual feature on the relative performance
of these algorithms. We partition the training dataset by each feature’s values and record the
number of times of each algorithm being the best at each feature value level (Table 5). The
results are summarized as follows:

1. Number of nodes n_nodes affects the relative performance of two search algorithms more
significantly. When n_nodes increases from 50 to 100, Multi-start HillClimbing becomes
the best algorithm more frequently and the chances for tabu search being the best drops.
This can be explained by the constant size of the tabu list used. When network becomes
larger while the tabu list remains the same, the tabu list’s influence becomes weaker. This
makes it loses to multi-start HillClimbing more times.

76 Ann Oper Res (2007) 156: 61–82

Fig. 7 ApproxMPESelector: the learned decision tree for approximate MPE algorithm selection

2. Number of samples Again, the relative performances of two search algorithms are af-
fected significantly, but forward sampling and ACO’s are not. When the given number of
samples increases from 300 to 1,000 to 3,000, Tabu search becomes the best algorithm
more often and Multi-start HillClimbing loses its top rank. It seems that Tabu search can
utilize available search points better than Multi-start HillClimbing.

3. CPT skewness Skewness has the most significant influence on the relative performance
of these algorithms as shown in Table 5. When the skewness is low, search algorithms
(Multi-start HillClimbing & Tabu search) perform much better than sampling algorithms.
Most times Multi-start Hillclimbing wins, and forward sampling never wins. When the
skewness is around 0.5, ACO outperforms all other algorithms almost all the time. When

Ann Oper Res (2007) 156: 61–82 77

the skewness increases to 0.9, forward sampling and ACO are the winners and perform
equally well. We also notice that forward sampling works well only for highly skewed
networks and ACO works for both highly-skewed networks and medium-skewed net-
works.

4. Evidence proportion The result shows that changing evidence percentage does not affect
two search algorithms’ relative performance, but it affects forward sampling and ACO.
ACO is outperformed by forward sampling as the percentage of evidence nodes increases
from 10% to 30%. This can be explained as follows. When the evidence proportion in-
creases, the likelihood of the evidence becomes smaller. Thus the probability of the MPE
being hit by any sampling schemes is low. ACO performs better than forward sampling
become it has a search component. We should also note that evidence percentage’s influ-
ence is much weaker than that of skewness.

5. Evidence distribution The relative performance of Multi-start HillClimbing is not af-
fected. Tabu search is only slightly affected. It shows that diagnostic inference is rel-
atively hard for forward sampling but easy for ACO. In contrast, random distributed
evidence is relatively hard for ACO but easy for forward sampling.

5.5 Experiment 5: evaluating the MPE algorithm selection system

In this experiment, we evaluate the learned models on both synthetic and real world net-
works. The two synthetic test datasets, DMPETest1 and DMPETest2, are randomly generated
from different networks independent of the training datasets. The random generation method
used is the same as that of the training datasets, but the distributions of the parameter values
are different. Larger networks, different connectedness and skewness values, and different
number of samples have been used.

System evaluation on synthetic networks DMPETest1 contains 1,000 instances for exactM-
PESelector randomly generated from 500 different synthetic networks. The learned exact
algorithm selector exactMPESelector’s classification accuracy on DMPETest1 is 99.8%. It only
misclassifies two “yes" instances as “no”.

DMPETest2 contains 1,000 approximate MPE instances generated from another set of 500
synthetic networks. The learned approximate MPE algorithm selector ApproxMPESelector’s
classification accuracy on DMPETest2 is 69.4%. The confusion matrix4 is as follows:

⎛

⎜⎜⎜⎜⎝

a b c d < −− classified as
56 0 0 90 | a = forward_sampling
0 94 20 1 | b = multi_hc
6 6 36 7 | c = tabu
172 0 4 508 | d = aco

⎞

⎟⎟⎟⎟⎠
.

From the confusion matrix we can see that the majority of misclassifications hap-
pens between forward_sampling and aco. By carefully examining the experimental results

4In the confusion matrix, all of the columns represent the predicted classes, and thus a piece of data belongs
to the column if it is classified as belonging to this class. The rows represent the actual classes, and a piece
of data is thus represented in a particular row if it belongs to the corresponding class. A perfect classification
results in a matrix with 0’s everywhere but on the diagonal. A cell which is not on the diagonal but has a high
count signifies that the class of the row is somewhat confused with the class of the column by the classification
system.

78 Ann Oper Res (2007) 156: 61–82

Table 5 Partitioning DMPE2 by each feature’s value

n_Nodes Number of times of being best algorithm

forward_sampling multiHC tabu aco

50 496 9.57% 380 7.33% 439 8.47% 1,277 24.63%

100 366 7.06% 697 13.45% 139 2.68% 1,390 26.81%

n_Samples Number of times of being best algorithm

forward_sampling multiHC tabu aco

300 274 5.28% 505 9.74% 7 0.14% 942 18.17%

1000 286 5.52% 372 7.18% 174 3.36% 896 17.28%

3000 302 5.83% 200 3.86% 397 7.66% 829 15.99%

skewness Number of times of being best algorithm

forward_sampling multiHC tabu aco

0.1 0 0.00% 1059 20.43% 512 9.88% 157 3.03%

0.5 4 0.08% 9 0.17% 38 0.73% 1677 32.35%

0.9 858 16.55% 9 0.17% 28 0.54% 833 16.07%

evidPercentage Number of times of being best algorithm

forward_sampling multiHC tabu aco

10% 248 4.78% 358 6.91% 165 3.18% 957 18.46%

20% 281 5.42% 348 6.71% 208 4.01% 891 17.19%

30% 333 6.42% 371 7.16% 205 3.95% 819 15.80%

evidDistribution Number of times of being best algorithm

forward_sampling multiHC tabu aco

predictive 303 5.85% 356 6.87% 195 3.76% 874 16.86%

random 357 6.89% 357 6.87% 219 4.25% 795 15.34%

diagnostic 202 3.90% 364 7.02% 164 3.16% 998 19.25%

we find that most of the misclassification happen on highly skewed networks where for-
ward_sampling and aco are competing. For all of these misclassified instances, the nor-
malized average MPE error ratio between the predict best algorithm and the actual best
algorithm is 1.98%. It implies that the actual influence of these misclassifications is minor.

In order to show that ApproxMPESelector outperforms any single approximate algo-
rithm, we conduct a ranking test between all approximate algorithms and ApproxMPES-
elector as if it is another MPE algorithm. We first collect the ranking information of all
algorithms for all instances in DMPETest2, and then compute the average rank of each single

Ann Oper Res (2007) 156: 61–82 79

Fig. 8 The average rank of each
algorithm along with the learned
approximate algorithm selector
and an oracle that could make
perfect selection of the best
algorithm

algorithm and ApproxMPESelector. We make the distribution of the test data different from
the distribution of the training data because we want to see how the learned model performs
on a different set of instances. The average rank of an algorithm is the sum of its ranks on
all instance divided by the number of all instances. A perfect algorithm selector with 100%
classification accuracy should have an average rank of 1. If an algorithm out of k candidates
is always the worst, then its average rank should be k. Figure 8 shows the average ranks
of all algorithms along with ApproxMPESelector and an oracle that could make the perfect
selection. In Fig. 8, k = 5. We can see that ApproxMPESelector ranks higher than any sin-
gle algorithm. In Fig. 8 ApproxMPESelector is only slightly better than ACO, it is because
there are more skewed instances in DMPETest2. We can expect that if we increase the number
of unskewed instances ApproxMPESelector would rank much higher than the second best
algorithm.

System evaluation on real world networks Here we test the system on 13 real world net-
works. All networks can be correctly classified by exactMPESelector. There are 11 “yes”
networks. We also run approxMPESelector on these 11 networks. All predicted best ap-
proximate algorithms agree with the actual best algorithms. These two “no” networks are
link and munin1 and ApproMPESelector selects ACO as the best approximate algorithm for
both. This also agrees with the actual experimental results.

In summary, the test results on both synthetic and real world networks illustrate that
the proposed machine learning-based approach can be used to solve the MPE algorithm
selection problem. As a meta-reasoner, the learned models can make reasonable decision
on selecting both exact and best approximate MPE algorithms for the input instance. The
algorithm selection system can integrate exact and approximate algorithms to provide the
best overall performance of probabilistic inference.

6 Concluding remarks

We have reported an approach combining experimental algorithmics and machine learning
to build a practical algorithm selection system for NP-hard optimization problems. The
system consists of two learned classifiers as predictive models. The first classifier decides if
exact algorithm is applicable to solve the given instance. The second one determines which
approximate algorithm is the best. Our experimental results on the MPE problem show that
the learned algorithm selection meta-reasoner can use some polynomial time computable

80 Ann Oper Res (2007) 156: 61–82

instance characteristics to select the best algorithm for NP-hard problems. The system gives
the best overall performance comparing to any single algorithm. The learning procedure
needs to be done only once and it takes only a few minutes. Then the learned model is
available to anyone as an MPE algorithm selection meta-reasoner. The time of computing
features and selecting the best algorithm are negligible comparing to the actual problem
solving time.

Our results on the MPE problem also reveal that CPT skewness is the most important
feature for approximate MPE algorithm selection. In general, search-based algorithms work
better on unskewed networks and sampling algorithms work better on skewed networks.
Other features, such as n_nodes, n_samples, evidPercent and evidDistri, all affect these al-
gorithms’ relative performance to some degree, although not as strong as skewness does.

In the proposed method, one important and difficult task is to identify the set of candi-
date features. This depends largely on domain knowledges and expert experiences. Another
limitation of our method is that the size of training data grows exponentially in the number
of features used. Actually this is true for any experimental methods. The fact that our train-
ing data are generated from a specific set of real world instances may also limit the learned
system’s applicable range.

Future work can be done in at least the following three directions. First, as mentioned
before, it is worthwhile to compare regression models with classifiers on the problem ad-
dressed in this paper. Second, the proposed approach could be applied to algorithm selection
of other NP-hard problems to build more efficient computation systems. Third, some newly
developed heuristic search algorithm for the MPE problem, such as stochastic local search
(Hutter 2005), can be included to build a better approxMPESelector. These algorithms might
perform better on low skewness networks than Tabu search and Multi-Restart HillClimbing.

References

Abdelbar, A. M., & Hedetniemi, S. M. (1998). Approximating MAPs for belief networks is NP-hard and
other theorems. Artificial Intelligence, 102, 21–38.

Breese, J. S., & Horvitz, E. (1990). Ideal reformulation of belief networks. In UAI90 (pp. 129–144).
Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from

data. Machine Learning, 9(4), 309–347.
Fink, E. (1998). How to solve it automatically: selection among problem-solving methods. In Proceedings of

the fourth international conference on artificial intelligence planning systems (pp. 128–136).
Fung, R., & Chang, K. C. (1989). Weighting and integrating evidence for stochastic simulation in Bayesian

networks. Uncertainty in Artificial Intelligence, 5, 209–219.
Gent, I. P., & Walsh, T. (1993). An empirical analysis of search in GSAT. Journal of Artificial Intelligence

Research, 1, 47–59.
Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic.
Gomes, C. P., & Selman, B. (1997). Algorithm portfolio design: theory vs. practice. In UAI97 (pp. 190–197).
Guo, H. (2003). Algorithm selection for sorting and probabilistic inference: a machine learning-based ap-

proach. PhD thesis, Kansas State University.
Guo, H., Boddhireddy, P., & Hsu, W. (2004). Using Ant algorithm to solve MPE. In The 17th Australian joint

conference on artificial intelligence, Dec. 2004, Cairns, Australia.
Hooker, J. (1994). Needed: an empirical science of algorithms. Operations Research, 42, 201–212.
Hoos, H., & Stutzle, T. (1998). Evaluating Las Vegas algorithms—pitfalls and remedies. In UAI98.
Hoos, H., & Stutzle, T. (2000). Local search algorithms for SAT: an empirical evaluation. Journal of Auto-

mated Reasoning, 24(4), 421–481.
Horvitz, E. (1990). Computation and action under bounded resources. PhD thesis, Stanford University.
Horvitz, E., Ruan, Y., Kautz, H., Selman, B., & Chickering, D. M. (2001). A Bayesian approach to tackling

hard computational problems. In UAI01 (pp. 235–244).
Houstis, E. N., Catlin, A. C., Rice, J. R., Verykios, V. S., Ramakrishnan, N., & Houstis, C. (2000). PYTHIA-

II: a knowledge/database system for managing performance data and recommending scientific software.
ACM Transactions on Mathematical Software, 26(2), 227–253.

Ann Oper Res (2007) 156: 61–82 81

Hutter, F. (2005). Stochastic local search for solving the most probable explanation problem in Bayesian
networks. M.S. thesis, Intellectics Group, Darmstadt University of Technology.

Ide, J. S., & Cozman, F. G. (2002). Random generation of Bayesian networks. In Brazilian symposium on
artificial intelligence, Pernambuco, Brazil.

Jensen, F. V., Olesen, K. G., & Anderson, K. (1990). An algebra of Bayesian belief universes for knowledge-
based systems. Networks, 20, 637–659.

Jitnah, N., & Nicholson, A. E. (1998). Belief network algorithms: a study of performance based on domain
characterization. In Learning and reasoning with complex representations (Vol. 1359, pp. 169–188).
New York: Springer.

Johnson, D. S. (2002). A theoretician’s guide to the experimental analysis of algorithms. In M. H. Goldwasser,
D. S. Johnson & C. C. McGeoch (Eds.), Data structures, near neighbor searches, and methodology: fifth
and sixth DIMACS implementation challenges (pp. 215–250).

Kask, K., & Dechter, R. (1999). Stochastic local search for Bayesian networks. In Workshop on AI and
statistics 99 (pp. 113–122).

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science,
220(4598), 671–680.

Lagoudakis, M., & Littman, M. (2001). Learning to select branching rules in the DPLL procedure for satis-
fiability. Electronic notes in discrete mathematics (ENDM): Vol. 9. LICS 2001 workshop on theory and
applications of satisfiability testing (SAT 2001), Boston, MA, June 2001.

Lagoudakis, M., Littman, M., & Parr, R. (2001). Selection the right algorithm. In Proceedings of the 2001
AAAI fall symposium series: using uncertainty within computation, Cape Cod, MA, November 2001.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures
and their application to expert systems (with discussion). Journal of the Royal Statistical Society Series
B, 50, 157–224.

Leyton-Brown, K., Nudelman, E., & Shoham, Y. (2002). Learning the empirical hardness of optimization
problems: the case of combinatorial auctions. In Constraint programming 2002 (CP-02).

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., & Shoham, Y. (2003a). A portfolio approach
to algorithm selection. In IJCAI.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., & Shoham, Y. (2003b). Boosting as a metaphor
for algorithm design. Preprint.

Littman, M. (1999). Initial experiments in stochastic search for Bayesian networks. In Proceedings of the
sixteenth national conference on artificial intelligence (pp. 667–672).

Lobjois, L., & Lema, M. (1998). Branch and bound algorithm selection by performance prediction. In Pro-
ceedings of the fifteenth national/tenth conference on AI/innovative applications of AI (pp. 353–358).

Lucks, M., & Gladwell, I. (1992). Automated selection of mathematical software. ACM Transactions on
Mathematical Software, 18(1), 11–34.

Mannila, H. (1985). Instance complexity for sorting and NP-complete problems. PhD thesis, Department of
Computer Science, University of Helsinki.

McGeoch, C. C. (1986). Experimental analysis of algorithms. PhD thesis, Carnegie-Mellon University.
Mengshoel, O. J. (1999). Efficient Bayesian network inference: genetic algorithms, stochastic local search,

and abstraction. Computer Science Department, University of Illinois at Urbana-Champaign.
Moret, B. M. E. (2002). Towards a discipline of experimental algorithmics. In Data structures, near neighbor

searches, and methodology: fifth and sixth DIMACS implementation challenges. DIMACS monographs
(Vol. 59, pp. 197–213).

Orponen, P., Ko, K., Schoning, U., & Watanabe, O. (1994). Instance complexity. Journal of the ACM, 41(1),
96–121.

Park, J. D. (2002). Using weighted MAX-SAT engines to solve MPE. In Proceedings of the 18th national
conference on artificial intelligence (AAAI) (pp. 682–687).

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo:
Morgan Kaufmann.

Ramakrishnan, N., & Valdes-perez, R. E. (2000). Note on generalization in experimental algorithmics. ACM
Transactions on Mathematical Software, 26(4), 568–580.

Rardin, R. L., & Uzsoy, R. (2001). Experimental evaluation of heuristic optimization algorithms: a tutorial.
Journal of Heuristics, 7(3), 261–304.

Rice, J. R. (1976). The algorithm selection problem. In M. V. Zelkowitz (Ed.), Advances in computers (Vol.
15, pp. 65–118).

Ruan, Y., Kautz, H., & Horvitz, E. (2004). The backdoor key: a path to understanding problem hardness. In
Nineteenth national conference on artificial intelligence, San Jose, CA, 2004.

Russell, S., & Norvig, P. (2003). Artificial intelligence: a modern approach. Englewood Cliffs: Prentice-Hall.
Sanders, P. (2002). Presenting data from experiments in algorithmics. In Experimental algorithmics: from

algorithm design to robust and efficient software (pp. 181–196). New York: Springer.

82 Ann Oper Res (2007) 156: 61–82

Santos, E. (1991). On the generation of alternative explanations with implications for belief revision. In UAI
91 (pp. 339–347).

Santos, E., Shimony, S. E., & Williams, E. (1995). On a distributed anytime architecture for probabilistic
reasoning (Technique report AFIT/EN/TR94-06). Department of Electrical and Computer Engineering,
Air Force Institute of Technology.

Shafer, G., & Shenoy, P. (1990). Probability propagation. Annals of Mathematics and Artificial Intelligence,
2, 327–352.

Shimony, S. E., & Charniak, E. (1999). A new algorithm for finding MAP assignments to belief network. In
UAI 99 (pp. 185–193).

Shimony, S. E., & Domshlak, C. (2003). Complexity of probabilistic reasoning in directed-path singly con-
nected Bayes networks. Artificial Intelligence, 151, 213–225.

Witten, I. H., & Frank, E. (1999). Data mining: practical machine learning tools and techniques with Java
implementations. Los Altos: Morgan Kaufmann.

Zilberstein, S. (1993). Operational rationality through compilation of anytime algorithms. PhD thesis, Uni-
versity of California at Berkeley.

	A machine learning approach to algorithm selection for NP-hard optimization problems: a case study on the MPE problem
	Abstract
	Introduction
	A machine learning-based approach to algorithm selection for NP-hard optimization problems and the related works
	The proposed machine learning approach
	Related works

	Bayesian networks and the MPE problem
	Experimental setup and data preparation
	The algorithm space
	The instance feature space
	The algorithm selection meta-reasoner to be learned
	Data preparation

	Experimental results: model induction and evaluation
	Experiment 1: learning ExactMPESelector
	Experiment 2: algorithm space reduction & feature selection
	Experiment 3: learning ApproxMPESelector
	Experiment 4: influences of each individual feature
	Experiment 5: evaluating the MPE algorithm selection system
	System evaluation on synthetic networks
	System evaluation on real world networks

	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

