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SUMMARY

We present a compression technique for heterogeneous files, those files which contain multiple types of
data such as text, images, binary, audio, or animation. The system uses statistical methods to determine
the best algorithm to use in compressing each block of data in a file (possibly a different algorithm for
each block). The file is then compressed by applying the appropriate algorithm to each block. We obtain
better savings than possible by using a single algorithm for compressing the file. The implementation
of a working version of this heterogeneous compressor is described, along with examples of its value
toward improving compression both in theoretical and applied contexts. We compare our results with
those obtained using four commercially available compression programs, PKZIP, Unixompress, Stufflf
and Compact Pro and show that our system provides better space savings.
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INTRODUCTION

The primary motivation in studying compression is the savings in space that it provides.
Many compression algorithms have been implemented, and with the advent of new hard-
ware standards, more techniques are under development. Historically, research in data com-
pression has been devoted to the development of algorithms that exploit various types of
redundancy found in a file. The shortcoming of such algorithms is that they assume, often
inaccurately, that files are homogeneous throughout. Consequently, each exploits only a
subset of the redundancy found in the file.

Unfortunately, no algorithm is effective in compressing all filgSor example, dynamic
Huffman coding works best on data files with a high variance in the frequency of individ-
ual characters (including some graphics and audio data), achieves mediocre performance on
natural language text files, and performs poorly in general on high-redundancy binary data.
On the other hand, run length encoding works well on high-redundancy binary data, but
performs very poorly on text files. Textual substitution works best when multiple-character
strings tend to be repeated, as in English text, but this performance degrades as the average
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length of these strings decreases. These relative strengths and weaknesses become critical
when attempting to compresgterogeneoufiles. Heterogeneous files are those which con-

tain multiple types of data such as text, images, binary, audio, or animation. Consequently,
their constituent parts may have different degrees of compressibility. Because most com-
pression algorithms are either tailored to a few specific classes of data or are designed to
handle a single type of data at a time, they are not suited to the compression of heteroge-
neous files. In attempting to apply a single method to such files, they forfeit the possibility

of greater savings achievable by compressing various segments of the file with different
methods.

To overcome this inherent weakness found in compression algorithms, we have developed
a heterogeneous compresstirat automatically chooses the best compression algorithm to
use on a given variable-length block of a file, based on both the qualitative and quantita-
tive properties of that segment. The compressor determines and then applies the selected
algorithms to the blocks separately. Assembling compression procedures to create a specif-
ically tailored program for each file gives improved performance over using one program
for all files. This system produces better compression results than four commonly available
compression packages, PKZARJnix compress,® Stufflt* and Compact Pré for arbitrary
heterogeneous files.

The major contributions of this work are twofold. The first is an improved compression
system for heterogeneous files. The second is the development of a method of statisti-
cal analysis of the compressibility of a file (its redundancy types). Although the concept
of redundancy types is not néW,synthesis of compression techniques using redundancy
measurements is largely unprecedented. The approach presented in this paper uses a straight-
forward program synthesis techniquec@npression plarconsisting of instructions for each
block of input data, is generated, guided by the statistical properties of the input data. Be-
cause of its use of algorithms specifically suited to the types of redundancy exhibited by
the particular input file, the system achieves consistent average performance throughout the
file, as shown by experimental evidence.

As an example of the type of savings our system produces, consider compressing a
heterogeneous file (such as a small multimedia data file) consisting of 10K of low redun-
dancy (non-natural language) ASCII data, 10K of English text, and 25K of graphics. In
this case, a reasonably sophisticated compression program might recognize the increased
savings achievable by employing Huffman compression, to better take advantage of the fact
that the majority of the data is graphical. However, none of the general-purpose compres-
sion methods under consideration are optimal when used alone on this file. This is because
the text part of this file is best compressed by textual substitution methods (e.g., Lempel—
Ziv) rather than statistical methods, while the low-redundancy*datal graphics parts
are best compressed by alphabetic distribution-based methods (e.g., arithmetic or dynamic
Huffman coding) rather than Lempel-Ziv or run-length encoding. This particular file totals
45K in length before compression. A compressor using pure dynamic Huffman coding only
achieves about 7 per cent savings for a compressed file of length 42.2K. One of the best
general-purpose Lempel-Ziv compressors currently avaftaldehieves 18 per cent sav-
ings, producing a compressed file of length 37.4K. Our system uses arithmetic coding on
the first and last segments and Lempel-Ziv compression on the text segment in the middle,
achieving a 22 per cent savings and producing a compressed file of length 35.6K. This is
a 4 per cent improvement over the best commercial system.

* This denotes, in our system, a file with a low rate of repeated strings.
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The purpose of our experiments was to verify the conjecture that a selective system
for combining methods can improve savings on a significant range of heterogeneous files,
especially multimedia data. This combination differs from current adaptive methods in
that it switches among compression paradigms designed to remove very different types
of redundancy. By contrast, existing adaptive compression programs are sensitive only to
changes in particular types of redundancy, such as run-length, which do not require changing
the underlying algorithm used in compression. Thus they cannot adapt to changes in the
type of redundancy present, such as from high run-length to high character repetition. The
superiority of our approach is demonstrated in our experimental section.

This paper begins with a presentation of existing approaches to data compression, includ-
ing a discussion of hybrid and adaptive compression algorithms and a description of four
popular commercial compression packages. These are followed by documentation on the
design of the heterogeneous compression system, analysis of experimental results obtained
from test runs of the completed system, and comparison of the system’s performance against
that of commercial systems. Finally, implications of the results and possibilities for future
work are presented.

RELATED WORK

It is a fundamental result of information theory that there is no single algorithm that per-
forms optimally in compressing all fildsHowever, much work has been done to develop
algorithms and techniques that work nearly optimally on all classes of files. In this sec-
tion we discuss adaptive algorithms, composite algorithms, and four popular commercial
compression packages.

Adaptive compression algorithms and composite techniques

Exploiting the heterogeneity in a file has been addressed in two ways: the development
of adaptivecompression algorithms, and the composition of various algorithms. Adaptive
compression algorithms attune themselves gradually to changes in the redundancies within a
file by modifying parameters used by the algorithm, such as the dictionary, during execution.

For example, adaptive alphabetic distribution-based algorithms such as dynamic Huffman
coding® maintain a tree structure to minimize the encoded length of the most frequently
occurring characters. This property can be made to change continuously as a file is pro-
cessed.

An example of an adaptive textual substitution algorithm is Lempel-Ziv compression,
a title which refers to two distinct variants of a basic textual substitution scheme. The
first variant, known as LZ77 or thsliding dictionary or sliding window method, selects
positional references from a constant range of preceding sfrihgthese ‘back-pointers’
literally encode position and length of a repeated string. The second variant, known as
LZ78 or thedynamic dictionarymethod, uses a dictionary structure witpaging heuristic.

When the dictionar — a table of strings from the file — is completely filled, the contents
are not discarded. Instead, an auxiliary dictionary is created and updated while compression
continues using the main dictionary. Each time this auxiliary table is filled, its contents are
‘swapped’ into the main dictionary and it is cleared. The maintenance of dictionaries for
textual substitution is analogous to the semi-space method of garbage collection, in which
two pages are used but only one is ‘active’ — these are exchanged when one fills beyond
a preset threshold. Another adaptive variant of this algorithm is the Lempel-Ziv—Welch
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(LZW) algorithm, a descendant of LZ78 used in Unrismpress.®'? Both LZW and LZ78
vary the length of strings used in compressiéh.

Yet another adaptive (alphabetic distribution-based) compression scheme, the Move-To-
Front (MTF) method, was developed by Bentleyyal’®* In MTF, the ‘word code’ for a
symbol is determined by the position of the word in a sequential list. The word list is ordered
so that frequently accessed words are near the front, thus shortening their encodings.

Adaptive compression algorithms are not appropriate to use with heterogeneous files
because they are sensitive only to changes in the particular redundancy type with which
they are associated, such as a change in the alphabetic distribution. They do not exploit
changes across different redundancy types in the files. Therefore a so-called adaptive method
typically cannot directly handle drastic changes in file properties, such as an abrupt transition
from text to graphics. For example, adaptive Huffman compressors specially optimized for
text achieve disproportionately poor performance on certain image files, and vice versa. As
the use of multimedia files increases, files exhibiting this sort of transition will become
more prevalent.

Our approach differs from adaptive compression because the system chooses each algo-
rithm (as well as the duration of its applicability) before compression begins, rather than
modifying the technique for each file during compression. In addition, while adaptive meth-
ods make modifications to their compression parameters on the basis of single bytes or fixed
length strings of input, our heterogeneous compressor bases its compression upon statistics
gathered from larger blocks of five kilobytes. This allows us to handle much larger changes
in file redundancy types. This makes our system less sensitive to residual statistical fluctu-
ations from different parts of a file. We note that it is possible to use an adaptive algorithm
as a primitive in the system.

Another approach to handling heterogeneous files is the composition of compression
algorithms. Composition can either be accomplished by running several algorithms in suc-
cession or by combining the basic algorithms and heuristics to create a new technique. For
example, recent implementations of ‘universal’ compression programs execute the Lempel—
Ziv algorithm and dynamic Huffman coding in succession, thus improving performance
by combining the string repetition-based compression of Lempel-Ziv with the frequency-
based compression strategy of dynamic Huffman coding. One commercial implementation
is LHarc.2**® Our system exploits the same savings since it uses-thezeimplementa-
tion of the Lempel-Ziv algorithm, which filters Lempel-Ziv compressed output through a
Huffman coder. An example of a truly composite technique is the compression achieved
by using Shannon—Fano triegh conjunction with the Fiala—Greene algorithm (a variant
of Lempel-Ziv}® in the PKZIP commercial package. Tries are used to optimally encode
strings by character frequen&yPKZIP was selected as the representative test program from
this group in our experiment due to its superior performance on industrial benchinarks.

Our approach generalizes the ideas of successively executing or combining different
compression algorithms by allowing any combination of basic algorithms within a file. This
includes switching from among algorithms an arbitrary number of times within a file. The
algorithms themselves may be simple or composite and may be adaptive. All are treated as
atomic commands to be applied to portions of a file.

* A trie is a tree of variable degree 2 such that (1) each edge is labelled with a character, and the depth of any node
represents one more than the number of characters required to identify it; (2) all internal nodes are intermediate and represent
prefixes of keys in the trie; (3) keys (strings) may be inserted as leaves using the minimum number of characters which
distinguish them uniquely. Thus a generic trie containing the stogsputerandcomparewould have keys at a depth of
five which share a common prefix of length four.
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The problem of heterogeneous files was addressed by®Tioah proposal for a naive
heterogeneous compression system similar to ours. In such a system, files would be seg-
mented into fixed-length encapsulated blocks; the optimal algorithm would be selected for
each block on the basis of their simple taxonomy (qualitative data type) only; and the blocks
would beindependentlycompressed. Our system, however, performs more in-depth statis-
tical analysis in order to make a more informed selection from the database of algorithms.
This entails not only the determination of qualitative data properties but the computation of
metrics for an entire block (as opposed to sporadic or random sampling from parts of each
block). Furthermore, normalization constants for selection parameters (i.e. the redundancy
metrics) are fitted to observed parameters for a test library. Finally, a straightforward but
crucial improvement to the naive encapsulated-block method is the implementation of a
multi-pass scheme. By determining the complete taxonomy (data type and dominant redun-
dancy type) in advance, any number of contiguous blocks which use the same compression
method will be treated as a single segment. Toal observed in preliminary experiments that
the overhead of changing compression schemes from one block to another dominated the
additional savings that resulted from selection of a superior compression niéthbi.
overhead is attributable to the fact that blocks compressed independently (even if the same
method is used) are essentially separate files and assume the same startup overhead of the
compression algorithm usédiWe have determined experimentally that merging contiguous
blocks whenever possible obviates the large majority of changes in compression method.
This eliminates a sufficient proportion of the overhead to make heterogeneous compression
worthwhile.

Commercial products

One of the goals of this research was to develop a compression system which is gener-
ally superior to commercially available systems. The four systems we studied are PKZIP,
developed for microcomputers running MS-D®$inix compress;® and Stufflt Classié
and Compact Pr¢® developed for the Apple Macintosh operating system. Each of these
products performs its compression in a single pass, with only one method selected per file.
Thus, the possibility of heterogeneous files is ignored.

Unix compress uses an adaptive version of the Lempel-Ziv algoriththoperates by
substituting a fixed-length code for common substringsupress, like other adaptive
textual substitution algorithms, periodically tests its own performance and reinitializes its
string table if the amount of compression has decreased.

Stufflt makes use of two sets of algorithms: it first detects special-type files such as
image files and processes them with algorithms suited for high-resolution color data; for the
remaining files, it queries the operating system for the explicit file type given when the file
was created, and uses this information to choose either the LZW variant of Lemp&t-Ziv,
dynamic Huffman coding, or run-length encoding. This is a much more limited selection
process than what we have implemented. Additionally, no selection of compression methods
is attempted within a fileCompact Prauses the same methodology&tsifflitandcompress,
but incorporates an improved Lempel-Ziv derived directly from LZ7Vhe public-domain
version ofStuffltis derived from Unixcompress, as is evident from the similarity of their
performance results.

* For purposes of comparison, the block sizes tested by Toal were nearly identical to those used in our system (ranging
upwards from 4K).



1102 W. H. HSU AND A. E. ZWARICO

Compression systems such &auifflt perform simple selection among alternative com-
pression algorithms. The important problem is that they are underequipped for the task of
fitting a specific technique to each file (even when the uncompressed data is homogeneous).
Stuffltuses few heuristics, since its algorithms are intended to be ‘multipurpose’ . Further-
more, only the file type is considered in selecting the algorithm — that is, no measures of
redundancy are computed. Earlier versionSuffflt (which were extremely similar to Unix
compress) used composite alphabetic and textual compression, but made no selections on
the basis of data characteristics. The chief improvements of our heterogeneous compressor
over this approach are that it uses a two-dimensional lookup table, indexed by file proper-
ties and quantitative redundancy metrics, and — more important — that it treats the file as a
collection of heterogeneous data sets.

THE HETEROGENEOUS COMPRESSOR

Our heterogeneous compressor treats a file as a collection of fixed size blocks (5K in
the current implementation), each containing a potentially different type of data and thus
best compressed using different algorithms. The actual compression is accomplished in
two phases. In the first phase, the system determines the type and compressibility of each
block. The compressibility of each block of data is determined by the values of three
guantitative metrics representing the alphabetic distribution, the average run length and the
string repetition ratio in the file. If these metrics are all below a certain threshold, then the
block is considered fully compressed (uncompressible) and the program continues on to the
next block. Otherwise, using the block type and largest metric, the appropriate compression
algorithm (and possible heuristic) are chosen from the compression algorithm database. The
compression method for the current block is then recorded in a small array-based map of
the file, and the system continues.

The second phase comprises the actual compression and an optimization that maximizes
the size of a segment of data to be compressed using a particular algorithm. In this optimiza-
tion, which is interleaved with the actual compression, adjacent blocks for which exactly
the same method have been chosen are merged into a single block. This merge technique
maximizes the length of segments requiring a single compression method by greedily scan-
ning ahead until a change of method is detected. Scanning is performed using the array
map of the file generated when compression methods were selected from the database. A
compression history, needed for decompression, is automatically generated as part of this
phase.

The newly compressed segments are written to a buffer by the algorithm, which stores
the output data with the compression history. The system then writes out the compressed
file and exits with a signal to the operating system that compression was successful.

From this two-pass scheme it is straightforward to see why this system is less susceptible
than traditional adaptive systems to biases accrued when the data type changes abruptly
during compression. Adaptive compressors perform all operations myopically, sacrificing
the ability to see ahead in the file or data stream to detect future fluctuations in the type
of data. As a result, adaptive compressors retain the statistical vestiges of the old method
until these are ‘flushed out’ by new data (or balanced out, depending upon the process for
paging and aging internal data structures such as dictionaries). Thus adaptive compressors
may continue to suffer the effects of bias, achieving suboptimal compression. On the other
hand, by abruptly changing compression algorithms, our technique completely discards all
remnants of the ‘previous’ method (i.e. the algorithm used on the preceding segment). This
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allows us to immediately capitalize on changes in data. In addition, merging contiguous
blocks of the same data type acquires the advantage of incurring all the ovetheace

for switching to what will be the best compression method for an entire variable-length
segment. The primary advantage of adaptive compression techniques over our technique is
that the adaptive compression algorithms are ‘online’ (single-pass). This property increases
compression speed and, more important, gives the ability to compress a data stream (for
instance, incoming data packets in a network or modem transmission) in addition to files
in secondary storage or variable-length buffers.

The remainder of this section presents the system. We begin with a description of the
calculation of the block types and the redundancy metrics. We also explain the use of the
metrics as absolute indicators of compressibility, and then describe the compression algo-
rithms used and the structure of the database of algorithms. A discussion of implementation
details concludes the section.

Property analysis

The compressibility of a block of data and the appropriate algorithm to do so are determined
by the type of data contained in a block and the type of redundancy (if any) in the data.
These two properties are represented by four parametershltick type and the three
redundancy metricsThe block type describes the data in the block — text, binary, graphical,
etc. The three redundancy metrics are the degree of variation in character frequency, average
run length in the file, and the string repetition ratio of the file. They provide a quantitative
measure of how compressible the block is and which type of redundancy is most evident
in the block. The use of both quantitative redundancy measures (redundancy metrics) and
gualitative characteristics (block types) as indicators for data compressibility is advocated
by Held and Saltort® We have refined the process for computing those attributes referred
to asdatanalysis resultby Held’ and asstatistical language characteristidsy Saltor® to

obtain an actual guide for compression. The remainder of this section describes how these
four parameters are determined for each block.

Block types

Theblock typedescribes the nature of a segment of input data. There are ten classifications
of data in this system: ANSI text, non-natural language text (hexadecimal encodings of bi-
nary data), natural language text, computer source code, low redundancy binary, digitized
audio, low resolution graphics, high-resolution graphics, high-redundancy binary executable,
and binary object data. ANSI text is composed of characters from a superset of the ASCII
alphabet. Non-natural language text contains primarily ASCII text but does not follow a
distribution of characters like that of human languages. Examples are computer typesetting
data,uuencodedand BinHex encoded data (which has the same character distribution as
binary data but is converted to text for ease of transmission). Natural language text in-
cludes text written in English as well as other languages which are representable by the
Roman (ASCII) alphabet. Most European languages (including the ones using the Cyrillic
alphabet), special symbols excluded, fall into this category, as do the Pinyin and Katakana
romanizations of the Chinese and Japanese languages (as opposed to their digital encod-
ings). Computer source code uses the ASCII alphabet but characters are distributed with a
different frequency than in natural language text. Low-redundancy binaries usually contain
compressed data, but may also include data which is merely difficult to compress. Audio
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data are very high in redundancy; audio files (and audio segments of multimedia files)
are usually extremely large. Low-resolution graphics have long runs of contiguous repeated
bits but unlike high-resolution graphics are not suited to lossy compression. High-resolution
graphics include color and grayscale and may be compressed with lossy methods. Binary
executables, like low-resolution graphics, have long runs of contiguous repeated bits and
comprise all compiled programs on a computer system. Finally, object data has slightly
shorter runs but is similarly redundant.

To determine the block type we use a proceduwe-file which is our extension of the
Unix file command?® £ile works by examining the first 512 bytes of a file and comparing
the pattern of data contained in it to a collection of known data patterns from Unix and
other operating systemaew-file works in a similar fashion, with two modifications.
First, it examines and compares not only the first 512 bytes of a data set, but also 512
bytes in the middle of the set and the 512 bytes at the end (if they exist). This provides
a better indication of th@rimary data type of a file by taking into account the possibility
that the properties may change anywhere within the file. Thas;file decides on the
‘most applicable’ data type by a majority vote (or the first data type detected in the case of
a three-way tie). The other change is that the known patterns of data have been increased
by adding three graphics patterns.

Redundancy metrics

The redundancy metrics are quantitative measures that are used to determine the com-
pressibility of a block of data. They are: tlegree of variation in character frequenoy
alphabetic distribution Map; the average run lengthof the block, Mg, ; and thestring
repetition ratio of the block,Msgr. In general, these three manifestations of redundancy are
independent. Each of the redundancy types is exploited by different compression algorithms.
Frequency of characterss exploited by arithmetic or alphabetic encoding algorithms. In
arithmetic coding data is represented by an interval that is calculated from the probability
distribution of data. With alphabetic coding algorithms such as the Huffhaard Shannon-—

Fang? algorithms, more frequently occurring characters are replaced by shorter units than
the less frequently occurring characteBantiguous stringslong strings of identical units
occurring next to one another, are exploited by run length encoding algoritnhmshese
algorithms, contiguous strings are replaced by a single occurrence of the string, called a
run, plus a count of the number of identical strings following. Both alphabetic distribu-
tion and average run length are sometimes characterized as statistical redundancy“metrics.
Recurrent stringswhich occur repeatedly in the input stream with any number of inter-
leaved symbols, are exploited bgxtual substitution algorithmsuch as Lempel-Zzi¢!t12

In these algorithms, recurrent instances are replaced with positional references (pointers) to
the original instance.

Experimental evidence for the efficacy of quantitative redundancy measures is described
in texts by Storerand Shanno® Shannon provided an estimate of the entropy of English
text, approximately bounding it to be between one and two bits per chafadteis was
determined experimentally by presenting fragments of (unfamiliar) English text to human
subjects and recording the frequency with which they guessed unknown letters. The frag-
ments were revealed character by character, so that letters at the end of long or uncommon
words were easiest to guess and letters at the beginnings of words were hardest. The ob-
servation that binary executables are known to possess high average run lengths is found
in Storer! However, this property is rarely exploited or measured.
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Each redundancy metric is calculated by a separate statistical sampling routine and nor-
malized using a gamma distribution functiéh to be a number between 0 and 10 so as
to simplify comparison among the different metrics. The gamma distribution was chosen
because the graph of each of the unscaled redundancy metrics for a test set of 50 files, when
plotted on a histogram, approximated a gamma distribution. Normahdrdistributions
were also considered, but these proved to be too specific for the application (since they
are both specific parametric cases of the gamma distribution). The gamma distribution is
defined as follows (cf R0o$3y:

G (x:) = /OxT fr(z)dzx
Ae (N x)tr L
PO =

r(t,) = /Ooe—y 14
T) = 0 Y Y

where f is the density functionl) is the gamma functions is the unnormalized measure,

t. is the shape parameter for the gamma distribution, &nds the scale parameter for

the gamma distribution. The subscript simply represents the redundancy type under con-
sideration, i.e. AD, RL, or SR, respectively. The shape and scaling parametensg A\,
respectively, were determined by fitting the best gamma distribution curve to the data set.
This was done by performing the preferred compression method for each file and tabulating
the induced ratio among normalized metrics to yield the desired parameter values for each
segment. These were then averaged to obtain the empirical scaling parameters.

The alphabetic distribution metridthe degree of variation in character frequency) of a
block is calculated by taking the population (root-mean-square) standard deviation of the
ordinal values of characters in the block and dividing it by the block length (in bytes). The
Map metric is calculated by the following formulas:

MAD = lO*GAD(:ﬁAD)
(0%

block length in bytes

o = Zcecharse(c - M)z
256 ’

IaD =

wherec is the ordinal value of a character ands the average ordinal value of all characters
in a block. The normalization useégp = 1.70 andA\ap = 53.0 as parameters.

The average run length metriés obtained by dividing the number of bits in a block
by the number of runs. A run is defined to be a repetition of symbols (either bits or
bytes). Our implementation takes both bitwise and bytewise run lengths. For example, if
f=0001111001110000 is a file of 16 bits, then the number of bit runs is 5, and the number
of byte runs is 2. The scaled metridr, is obtained by:

MRL = 10* GRL($RL)
file length in bits
number of runs

ITRL =
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with gamma distribution parametetg. = 0.50 andAr_. = 12.0.

The string repetition ratio metrids the total number of-bit strings in the block divided
by the number of distinct-bit strings (up to 100K). In our implementation,is 32, the
word size of our machine. The normalized methitsg is obtained by:

MSR = 10* GSR(ZL‘SR)
number ofn bit strings
number of distinct: bit strings

Isr =

with gamma distribution parametetsg = 0.18 andAsg = 0.2.

The alphabetic distribution and average run length metrics can be calculated in linear
time. The string repetition ratio can be computed im®@g»n) time using a dictionary data
structure. For simplicity, and because a (small) constant amount of data is scanned, we use
an O@?) version. New strings are stored in an array rather than a binary tree, which would
require more insertion overhead (and is not worth while for the 5K block length used in
the current system). Our routine integrafe$x) by Simpson’s Rule witlh = 10 intervals.

The largest of the three metrics is assumed to represent the most significant type of
redundancy present in the block. It is expected that compression will decrease at least
one of the metrics, and experiments conducted on a wide variety of files have proven this
convention to be reliable. Experiments have also shown that if all the normalized metrics are
smaller than 2.5, the file is considered not compressible, and the system records a verdict of
‘uncompressible’ on the current block. If at least one of the parameters is greater than 2.5,
the file is considered compressible. The maximum of the normalized metrics is then selected
and used in conjunction with the file type to select the appropriate compression algorithm
from the lookup table described in the following section. A negative compressibility test
does not always imply that all three metrics are below the threshold. In some cases, the
only redundancy type for which a metric is above the threshold accesses a null entry in the
database of compression algorithms. This is interpreted as a decision that the (poor) potential
for compression is outweighed by the overhead of executing the compression algorithm.

The algorithm and heuristic database

The compression algorithms and attendant heuristics are organized into the 10 by 3 table
illustrated by Tabld. The 10 file descriptors are the row indices and the 3 metrics are the
column indices. Each entry of the table contains descriptors which are used to access the
code for an algorithm-heuristic pair. It should be noted that four of the entries are blank
(indicated by an *). A blank entry indicates that the combination of block type and highest
metric are very unusual. In this case, the next highest metric is used instead, provided that
it is above the threshold. As an example of using this table, consider a high-redundancy
binary executable file whose highest metric is the string repetition m&fgg. Together,

this pair indicates that the Lempel-Ziv compression algorithm with the Freeze heuristic will
be used.

The algorithms

There are four basic algorithms used by the system: arithmetic c&tirempel-Ziv® run
length encoding (RLE}® and JPEG for image/graphics compression.
Arithmetic coding algorithms compress data by representing that data by an interval of
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Table I. Database of compression algoritﬁms

Map MgrL Msr

ANSI arithmetic coding run-length encoding Lempel-Ziv
* byte-wise encoding  freeze

hexadecimal arithmetic coding run-length encoding  Lempel-Ziv
* n-bit run count freeze

natural language arithmetic coding * Lempel-Ziv
* * freeze

source code arithmetic coding run-length encoding Lempel-Ziv
* n-bit run count freeze

low redundancy  * run-length encoding  Lempel-Ziv

binary * n-bit run count *

audio * run-length encoding Lempel-Ziv
* byte-wise encoding  freeze

low resolution * run-length encoding Lempel-Ziv

graphic * n-bit run count freeze

high resolution JPEG run-length encoding JPEG

color graphic improved Huffman n-bit run count improved Huffman

high redundancy arithmetic coding run-length encoding Lempel-Ziv

binary * n-bit run count freeze

object arithmetic coding run-length encoding Lempel-Ziv
* byte-wise encoding  freeze

T Note: the first line of each entry is the basic algorithm and the second line is the heuristic. An * as the heuristic indicates
that no heuristic is used. Two * indicates no entry.

real numbers between zero and one. The width of this interval is inversely proportional
to the number of symbols encoded, and the decrease in width is directly proportional to
the frequency of the original symbols. Thus the interval specifies the encoded message via
its bounds, with the precision (distance) of these bounds reflecting the information content
of the message. The end result is that arithmetic coding achieves, in practice, much better
space savings than Huffman coding and its dynamic implementations because of its higher
likelihood of actually achieving the theoretical lower boufitf. Although early arithmetic
coding algorithms performed too slowly to be of practical tisee implementation of the
Witten—Neal—Cleary algorithm used hé&rés optimized for speed — at some cost in space
savings, but without giving up its advantage over dynamic Huffman coding. The reader is
referred to Bellet aP* for a thorough overview of arithmetic coding. We should note that

in earlier implementation of the heterogeneous compressor we used a dynamic Huffman
algorithm instead of arithmetic coding. We changed our implementation when we found
that then Witten—Neal-Cleary algoritBtoutperformed our implementation of dynamic
Huffman coding®® in both space savings and execution time.

Run length encoding (RLE) algorithms compress data by replacing contiguous occur-
rences of a single-unit symbol (either bit or byte) by an efficiently coded count of these
runs, usually a single occurrence of the symbol and the number of occurrences. We have
implemented a straightforward RLE algorithm for our database, based on the description in
Sedgewick? In addition, bitwise and bytewise encoding are available as heuristics and the
parameters of bitwise RLE are based on the RL metric.

Files with a high degree of string repetition are compressed using the Lempel-Ziv com-
pression algorithm. It compresses data by replacing frequently occurring strings (with min-
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imal regard of how far apart they occur) with compact pointers to the position of the first
occurrence. Our implementation is a straightforward array-based encoding with constant-
length codes. The algorithm maintains a dictionary of recurring strings in order to do the
compression. In our system, the Lempel-Ziv algorithm is augmented witfréezeheuris-
tic. This heuristic suppresses paging of strings in the dictionary after it has been filled; that
is, it prevents the replacement of previously encountered strings, regardless of how long
ago or how infrequently the string has been encountdfezkzeis primarily a speed op-
timization, since it requires less computation than paging heuristics such as least recently
used (LRU) or least frequently used (LFU), but it has been shown to work well for all but
the least string-redundant files (including both binary executables and most text files). For
files with extremely low string-repetition, our system usually selects Huffman compression.
The compression of high-resolution graphics and audio files udessg compression
scheme. Appropriately used, lossy algorithms guarantee that the decompressed file is simi-
lar enough to the original as to be nearly indistinguishable by human perception, and that
repeated compression and decompression leads to limited cumulative ‘damage’ . The pri-
mary benefit of lossy compression is that it guarantees much higher compression ratios at
a minimal tradeoff. For instance, a very-high-resolution color image can be compressed
with much higher savings (possibly 95 per cent) if the user allows a small amount of noise,
always less than 1 per cent per compression, to be introduced during each compression. Our
system uses the JPEG systéfior compressing high-resolution color and grayscale images.
JPEG, which is divided into lossy and lossless parts, typically achieves compression ratios
of between 15-to-1 and 25-to-1. Thp®tential for this substantial savings is obtained by
the Discrete Cosine Transform portion of the algorithm, a lossy method. This determines a
limit on the amount of savings that can then be achieved by any lossless compressor. The
actual savings are realized by a lossless portion, known abatle endwhich is applied
to the preprocessed image data. The implementation of this module used in our?$ystem
is a Huffman coder. It is independent of the lossy front end and can be replaced with a
run-length or textual-substitution based algorithm, to be selected by the synthesis system.
In our implementation, we chose to retain the original Huffman back end, a different al-
gorithm from the general-purpose dynamic Huffman coder which we also sttfdfetihis
is because the JPEG Huffman coder is especially suited to the redundancy remaining after
lossy preprocessing. It is worthy of mention that the JPEG developers have investigated the
use of arithmetic coding back ends, which were found to be experimentally superior but
were not used because of proprietary considerafibns.

Implementation

The system consists of a driver module, four block analysis modules, and the synthesis
module, which includes the database of compression algorithms. All modules are written in
C and were tested on a Unix platform. The program uses a data directed style of implemen-
tation for choosing the compression algorithm to apply to a block. Thus, additional block
types, compression algorithms and heuristics, and redundancy metrics can be added to the
system with minimal modification of the source code. Only the database would have to be
updated and the block analysis routines extended; the rest of the program would remain the
same.

The driver performs two iterative passes through the file. It first performs block analysis
on the file one 5K block at a time. This block size was chosen after experimentation showed
that the response of the system to changes in block type became roughly stable as block
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size exceeded 5K (i.e., did not significantly increase as block size did), and that a block size
of 5K yielded highly accurate metrics (in only 1 of the 20 test files did the heterogeneous
compressor select a suboptimal algorithm for any block). Finally, we found that the highest
level of adaptivity without a noticeabldecreasen accuracy was achieved at 5K, hence
our choice of 5K as the block size.

For each block, the system invokes the four analysis modules — three for metric compu-
tation and normalization and one to determine the file properties — and stores their output.
It then performs the metric comparison and combines the results with the file property to
complete the table lookup for the current block. An identifying tag for the selected algo-
rithm is written to the ‘compression plan’, an array which stores one complete compression
instruction per block (if the current block is deemed uncompressible, a ‘skip’ instruction is
recorded).

We pause here to discuss the normalization of the metrics. Originally, we used a naive
normalization method: direct algebraic scaling with experimentally determined constants
for each metric. This did not, however, accurately reflect the statistical relationship between
variance in character frequency and alphabetic redundancy. Also, the behavior of these func-
tions at asymptotes led to poor approximation of the overall distribution of data segments
in the test files. The result was that arithmetic coding was too often incorrectly chosen, re-
sulting in inferior compression; and selection approached randomness as metric values for
both string repetition and alphabetic distribution tended toward extreme values. Using the
gamma normalization method described above resulted in an improvement in the selection
of arithmetic coding. Among the 20 benchmark files, arithmetic coding was selected as the
compression method in exactly those cases where the other methods performed worse.

The second pass performs the compression of each block. In order to improve perfor-
mance, this pass includes a simple optimization step which circumvents the overhead of
restarting compression after each fixed length block by merging contiguous blocks that are
to be compressed using the same compression algorithms.

On this same pass through the file, the system compresses each of the newly merged blocks
using the algorithm recorded in the compression plan. The compressed data is written to an
output buffer, while the compressed length (which indicates where in the compressed file
a compressed block begins and ends) and compression method are recorded in a separate
history for reference at decompression time. If negative compression or no compression is
achieved, or if the block was already marked uncompressible, then the data is copied directly
to the output buffer (the full block length and a code for ‘no compression’ are recorded in
the compression history). Upon reaching the end of the blocks, the system writes out the
compressed data from the output buffers and prepends the encoded compression history to
produce the final output file.

When decompression is invoked, the driver module opens the compressed file, interprets
the history tag and performs the necessary operations. The tags are a stored version of the
compression history in compact, encoded form. Since the heterogeneous system generates
different compression sequences for each file, and since the length of a compressed block
varies with both the length of the original block and the compression method used, these tags
are necessary to guide the decompression process. Currently only the compressed lengths
of each block and the method of compression are stored, but a checksum for the original
(decompressed) block length can be added with negligible overhead. When executed in
reverse order on each compressed block, the instructions in the history tags result in the
original file. For simplicity and security, they are prepended to the compressed file (and
can easily be encrypted).
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EXPERIMENTAL RESULTS
Design and construction of the test files

To test the overall performance, the system was run on a set of 20 test files. These files
range in length from approximately 39K to 366K, with representative files from each of the
ten block types included in the test corpus.

The test files are designed to model certain types of heterogeneous files, including utilities
for image viewing, business, or audio processing, and hypothetical multimedia databases and
programs. To construct these files, a collection of 30 files from the Unix, Apple Macintosh,
and MS-DOS (IBM PC) operating systems was created. These files are listed inlTable
To create the test corpus, they were concatenated in groups of 2 or 3. The resultant series
of test files is listed in Tablél. All of the source files were used. The goal was to generate
as broad a range of permutations as possible (while restricting the generated files to those
which are likely to exist in a typical user environment). This was performed manually with
consideration toward combinatorial constraints and the criteria of realistic data modeling.
Since all of the files in the source collection originate from common commercial sources
or from public archives (with the exception of the source and object files, which are from
the code for the heterogeneous compressor itself), the latter constraint was considerably
simplified.

The assembled files were then ported to the test sites (a Sun workstation for Unix
compress and our heterogeneous compressor; a Macintoststofflt and Compact Pro
and an IBM 80486 machine for PKZIP). Binary file transfer mode was used to ensure that
the file lengths agreed exactly among all platforms.

Performance

In this section, we review and analyze the performance of the heterogeneous compressor
with respect to compression savings, as compared with four of the commercial systems
previously discussed; and execution time. Finally, we briefly note the implications of running
the experiments and compiling performance data on several different architectures.

Compression savings

The total length of the uncompressed benchmark suite is just under three megabytes. Table
IV shows the compressed length achieved by Usixpress, PKZIP, Stuffl, Compact

Pro and the heterogeneous compression system. The heterogeneous compressor achieved
the greatest compression, with a total compressed length of 1828K. This represents an
additional savings of 162K (more than eight per cent) over the best commercial system
(Compact Pro v1.3R and 339K (nearly 16 per cent) over the average. Compressed lengths
for the commercial methods ranged from 1990K to 2375K.

TableV compares the percentage savings obtained by our system to the savings obtained
by the commercial programs and the heterogeneous system. The last two columns show the
difference in per cent saved between the synthesis system and the best and average of the
four commercial packages. The best commercial compressor is marked for each of the files.
Note that the heterogeneous compressor does better than all commercial programs in 19 of
20 cases and better than three of the four commercial systems in this one case (file 15).
The difference in compression for this file is only 0.02 per cent, whereas for all the other
files, the heterogeneous compressor has at least a 1.3 per cent improvement over the best
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Table Il. Files used to compose the test suite and their respective origins

File File File

designation name type

audiol cosby.snd SoundMaster Macintosh audio file
lowrdl ticker.txt ASCII characters from stock ticker
lowrd2 exsound compressed World Builder sound library
lowrd3 huff compressed Unix executable
lowrd4 appnote.uue uuencoded text

textl phrack.txt English text

text3 techbook.txt Unix news article

text4 quantal.txt English text

texts attilla.fluff English text

text6 shadow.fluff English text

text7 quanta2.txt English text

execul ad Unix executable

execu2 sh Unix executable

execu3 blob Silicon Graphics executable
execu4 zero Silicon Graphics executable
execu5 network2.exe IBM PC executable

execu6 hostname Unix executable

graphl compmisc.drw  Lotus Freelance line drawing
graph2 compperi.drw  Lotus Freelance line drawing
graph3 computer.drw  Lotus Freelance line drawing
graph4 lowres.mpt MacPaint file

graph5 3dbar.drw Lotus Freelance 3-D bar chart
graph6 image.ppm PPM (high-resolution image) file
graph7 grp4 MacPaint file

objecl testl.o Unix object file

objec2 test2.0 Unix object file

objec3 test3.o Unix object file

sourcel table.c C source code

source2 freeze.c C source code

commercial compressor. The average of each column appears in the bottom row; note that
the ‘percent difference’ averages are not weighted by file length, as each file is considered
a separate experiment.

Because the quality of compression by the synthesis system depends on that of the algo-
rithms and heuristics used, improvement of the implementations that we use should yield
higher performance. This is evidenced by comparing the results of compressing a file dom-
inated by string repetitions by Unixompress andCompact ProBoth are implementations
of the Lempel-Ziv algorithm. Unixompress has no heuristics, where&ompact Prois
a better implementation of LZ7! Compact Proconsistently outperformsompress. It
should be noted that the performance of Breezevariant of Lempel-Zi¥ used in our sys-
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Table I1ll. Combinations of the test files and the resultant simulated data types

File File Classification of

number composition data modeled

1 textl — lowrd1 news or stock report

2 graph7 — objecl object file for a graphics viewer

3 lowrdl — text3 — graph4 multimedia application (text/graphics)
4 graph7 — execu3 graphics viewer

5 audiol — graphl multimedia data file (sound/graphics)
6 text2 — lowrd1l — graph3 multimedia data file (text/graphics)

7 lowrd3 — execul commercial utility

8 graph2 — lowrd2 — execu2  multimedia application

(graphics/sound/executable)

9 sourcel — lowrd3 — graph6 multimedia data or source file
(source/compressed binary/image)

10 audiol — text4 multimedia data file (sound/text)

11 lowrd1l — execu4 statistical application with data

12 graph7 — text5 multimedia data file (text/graphics)

13 lowrd2 — text6 multimedia data file (sound/text)

14 text3 — audiol — graph5 multimedia data file (text/sound/graphics)

15 lowrd1l — text4 — source2 source file for multimedia program
(text/source code)

16 text7 — lowrd2 — graph3 multimedia data file
(text/compressed audio/graphics)

17 graph4 — audiol — execu5  multimedia application (sound/graphics)

18 execu4 — graph7 — text4 multimedia application (graphics/text)

19 objec3 — lowrd3 — execu6  commercial utility

20 objec2 — audiol — execu2  audio application

tem does consistently better thasmpress and is comparable tGompact Proon standard
industrial benchmark$.Improving algorithms and adding or substituting new heuristics
would also yield more savings.

Execution times and speed optimizations

In this section we compare, i@pproximate unitsthe running time of the heterogeneous
compressor against those of the four commercial systems the savings rates of which for our
test files are documented above. The units are approximate for two reasons. First, because
the four test systems are commercial the source code for three of them is not publicly
availablé, which renders an exact measureuskr time infeasible. This concern is in part
assuaged by the non-multitasked, single-user nature of the microcomputer operating systems
on which three ¢ompress for Linux notwithstanding) of the commercial systems reside.
Second, however, the drastic architectural and organizational differences among the various
native machines renders uniform comparisons unreliable. This applies even to normalized
execution times because the host machines differ not merely in clock cycle speed, but
in instruction set architecture and dynamic instruction frequencies for similar compression
algorithms. Theexactrunning times reported in this section is only that of the heterogeneous

* As noted, however, the Lempel-Ziv implementation employe8tufflt Classids nearly identical to that of Unixompress.
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compressor. These comprise the non-commer@ampression systems for which source
code is available for profiling. For the commercial systems we report the observed wall
clock time to provide a standard of comparison, but note that the host machines vary in
computational power.

Table IV. Results of the four popular commercial programs and the heterogeneous compression system,
applied to the 20 test files

File Original Unix PKZIP Stufflt Compact Heterogeneous
number length compress v1.10 Classic  Prov1.32 compressor

1 39,348 20,578 17,119 20,575 16,831 16,315
2 44,202 44,202 39,813 40,412 41,112 37,388
3 46,629 46,629 46,629 43,261 40,367 36,477
4 59,254 52,076 40,571 45,202 41,607 38,007
5 169,108 168,903 151,478 149,701 148,917 134,524
6 100,476 69,771 53,043 65,417 52,349 50,906
7 131,663 131,663 103,544 106,643 109,979 96,429
8 220,644 190,971 137,886 173,677 137,401 127,384
9 301,805 145,993 112,503 137,685 115,096 103,730
10 255,306 204,457 191,378 206,193 183,313 168,675
11 59,305 30,178 22,782 29,701 22,858 21,774
12 51,715 51,715 43,032 46,462 44,107 40,229
13 63,189 63,189 58,247 59,569 59,934 54,481
14 196,789 176,276 196,789 172,486 151,057 137,052
15 148,908 73,555 63,748 75,595 64,618 63,778
16 164,535 141,067 132,992 135,245 110,093 104,175
17 203,912 203,912 184,657 189,398 202,821 170,564
18 200,640 128,675 107,728 125,461 104,711 101,674
19 366,557 265,114 198,727 265,027 198,756 187,659
20 278,152 223,277 193,980 224,943 191,763 181,030
Total 3,102,137 2,432,201 2,096,646 2,312,653 2,037,690 1,872,251

The running times for the commercial systems on the entire test suite documented above
appear in Tablé/I. All of the execution times are measured in wall clock units except for
the heterogeneous compressor’s, which is a total of user times as reponpedyythe C
profiler under Unix. The wall clock time was empirically observed not to differ noticeably
from this total on an unloaded Unix machine. The commercial systems were similarly tested
on unloaded (or single-task) systems.

For Unix compress, the mean running time was 26 s, where the average was taken
over runs on different Sun workstations of comparable power (documented below). A Unix
implementation of PKZIP was also tested on one of these Sun workstations, and achieved
an execution time of & s — only slightly better than the personal computer version. The
running time of 856 s placed the heterogeneous compressor in the middle to high end of
the commercial compressors in terms of running time.

* For this purpose we continue to consider Unbmpress commercial, due to its wide range of versions.
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Table V. Percent savings for the test compression systems

File Unix PKZIP Stufflt Compact Heterogeneous Best Average
number compress Vv1.10 Classic Prov1.32 compressor win win
(% saved) (% saved) (% saved) (% saved) (% saved) (% diff.) (% diff.)
1 4770 5649 4771 5723« 5854 131 625
2 0-00 993« 857 699 1542 549 904
3 0-00 000 722 1343« 21.77 834 1661
4 1211 3153« 2371 2978 3586 433 11.57
5 012 1043 1148 11.94« 2045 851 11.96
6 3056 4721 3489 47.90« 4934 144 920
7 0-00 2136+ 1900 1647 2676 540 1255
8 1345 3751 2129 3773« 42.27 454 1477
9 51:63 6272« 54.38 6186 6563 291 798
10 1992 2504 1924 2820« 3393 573 1083
11 4911 6159« 49.92 6146 6328 170 777
12 000 1679« 1016 1471 2221 542 1180
13 000 782« 5.73 515 1378 596 911
14 1042 000 1235 2324« 30-36 712 1885
15 5060 5719« 4923 5661 5717 —0-02 376
16 1426 1917 1780 3309+« 3669 360 1560
17 000 944« 7-12 054 1635 691 1208
18 3587 4631 3747 47.81x 4933 151 746
19 2767 4579 2770 4578 4880 302 1207
20 1973 3026 1913 3106« 34.92 386 987
Average 1916 2983 2421 3155« 3714 435 1096

* The starred entry in each row is the best commercial system.

CONCLUSIONS
Analysis of results

This project was successful on several levels. First, the feasibility of synthesizing compres-
sion plans from encapsulated primitives for heterogeneous files was illustrated. The use of
property analysis and redundancy metrics was experimentally successful, the latter verifying
the applicability of statistical data analysis to automatic programming in this domain. The
positive test results obtained with the primitive database currently available would probably
be even better with improved implementations of the algorithms and heuristics. The statisti-
cal foundations of the heterogeneous system proved strong enough to be of definite relevance
to the operating systems community, and might be useful in an information theoretic con-
text. The benefits of data compression are ubiquitous in that savings through compression
are independent of hardware and storage capabilities; selective techniques increase these
savings by a significant factor for heterogeneous files.

Future work

The sampling method may be improved in future implementations by randomization. The
increase in analysis accuracy that this would bring would demand more primitives and
heuristics — such need would arise in any case with the continuing development of new
files types, such as high-resolution animation and three-dimensional images.
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Table VI. Execution times of the heterogeneous and commercial compressors

Compression system Execution time  Execution time
(s) (min)

Unix compress ~ 26 0:26

PKZIP v1.10 67 1:07

Stufflt Classic 1152 19:12

Compact Pro v1.32 1594 26:34

Heterogeneous compressor 856 14:56

In the current system, lossy compression methods can be applied only if an entire file
is found to be of a lossily compressible data type. Typically, these include high-resolution
images (for JPEG) and speech, general high-definition audio, and high-resolution animation
files. A special case could be implemented specifying that when an entire file matching a
single lossily compressible data type (i.e. a homogeneous loss-permissible file) is found,
the lossy algorithm may be applied.

The difficulty is that without explicit information on where loss-permissible portions of
a heterogeneous (e.g. multimedia) file begin and end, the compressor cannot absolutely
guarantee that no data will be distorted which the user is not willing to have distorted.
Thus no lossy methods can be safely applied to seymentin the block-based system.

Thus a heterogeneous system would require either full interactive guidance from a user
who could inspect the file or knew its contents, or would require improved magic numbers
which encoded the lengths of loss-permissible segments. The heterogeneous system could
then scan for these codes during the property analysis phase and preempt or modify metric-
based selection if a lossy algorithm is warranted. The latter approach seems far superior
to interactive compression, which places an intolerable burden of responsibility on users
(consider a multimedia file with hundreds of interspersed digitized photographs).

Another improvement worth considering is the use of a ratings system for specialized
(especially lossy) compression algorithms such as JPEG and MPEG. For example, by des-
ignating RLE compression ‘0 per cent alphabetic distribution, 100 per cent run length, 0
per cent string repetition’ and by defining its single-type counterparts similarly, a standard
can be established. Unixompress, for instancemight rate ‘40 per cent AD, O per cent
RL, 60 per cent SR’ and a hypothetical algorithm X might rate ‘25 per cent AD, 50 per cent
RL, 25 per cent SR’ . The rating standard would correspond to the metric rating system for
files which our system uses, and would help in analysis of the performance of composite
compression techniques (which handle multiple redundancy types). Non-synthesized com-
posite techniques exist, both adaptive and non-adaptive, though results are not as promising
as those of automatically generated techniques.

Finally, it is clear from the frequency of duplicate entries in the algorithm lookup table
that the database of primitives used in this heterogeneous system may not be as well-stocked
as it optimally could be. Storetists a plethora of optional heuristics which are applicable
to Lempel-Ziv compression, specifically in augmenting and deleting from the dictionary.
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