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Abstract. We present an application of inductive concept learning and interactive visualization techniques to
a large-scale commercial data mining project. This paper focuses on design and configuration of high-level
optimization systems (wrappers) for relevance determination and constructive induction, and on integrating these
wrappers with elicited knowledge on attribute relevance and synthesis. In particular, we discuss decision support
issues for the application (cost prediction for automobile insurance markets in several states) and report experiments
using D2K, a Java-based visual programming system for data mining and information visualization, and several
commercial and research tools. We describe exploratory clustering, descriptive statistics, and supervised decision
tree learning in this application, focusing on a parallel genetic algorithm (GA) system, Jenesis, which is used to
implement relevance determination (attribute subset selection). Deployed on several high-performance network-of-
workstation systems (Beowulf clusters), Jenesis achieves a linear speedup, due to a high degree of task parallelism.
Its test set accuracy is significantly higher than that of decision tree inducers alone and is comparable to that of
the best extant search-space based wrappers.

Keywords: constructive induction, scalable high-performance computing, real-world decision support applica-
tions, relevance determination, genetic algorithms, software development environments for knowledge discovery
in databases (KDD)

1. Introduction

This paper discusses a commercial decision support project where data mining techniques
are applied to a large customer database. It presents these techniques—data cleaning, quanti-
zation, exploratory analysis (dimensionality reduction and descriptive statistics), supervised
inductive learning, attribute subset selection, and interactive visualization—in a survey of
the project life cycle. Concurrently, this survey presents components of a rapid application
development environment for high-performance knowledge discovery in databases (KDD),
called D2K. We describe a KDD process specification and its implementation using D2K
and several commercial and experimental data mining packages. Our focus is Jenesis, a
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parallel genetic algorithm (GA) that implements and calibrates a wrapper for attribute sub-
set selection, cf. Kohavi and John (1997). During the implementation of our experimental
data mining system for the decision support application, interactive (visualization-driven)
and automated methods for constructive induction were used, which drove the development
of the GA, and which provided prior knowledge for the optimization subproblem (se-
lecting and synthesizing relevant attributes). We report on the deployment of the GA in
high-performance network-of-workstation environments: its performance on two Beowulf
clusters is compared to that of the MLC++ wrapper for feature subset selection (Kohavi and
Sommerfield, 1996). Experimental evaluation uses the refined data set from the commercial
decision support problem. The paper concludes with an account of system deployment: the
methodology and process of its delivery to users, reuse issues in D2K, and the impact of
the project results as a decision support resource.

1.1. Framework: High-performance KDD for prediction and decision support

We begin with a description of the NCSA Data to Knowledge (D2K) system and the
research objectives that guide its development. D2K comprises a visual programming system
and a scalable framework for implementing wrappers for performance enhancement in
inductive learning. Written in Java, it uses JavaDoc for literate programming, and provides a
specification mechanism for data flow in a prototypical KDD process, as depicted in figure 1.

The key novel contributions of the system are:

1. The explicit organization of learning components into recombinable and reusable classes
2. An interactive approach to constructive induction based on visualization, descriptive

statistics, and preliminary data clustering
3. Trainable hyperparameters for bias optimization (change of representation, technique

selection for overfitting prevention and avoidance)

Figure 1. Data flow in a prototypical KDD application (adapted from Fayyad et al. (1996)).
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4. A hierarchical genetic algorithm (implemented using an efficient distributed, parallel
system) for attribute subset selection and reduced-error pruning that calibrates and uses
these hyperparameters

Control of model complexity to achieve higher test set accuracy (through control of over-
fitting) is the key design goal of D2K that is documented in this paper. Typical applications
for a system are decision support problems that are susceptible to overfitting due to many ir-
relevant attributes (John et al., 1994), or (usually worse) redundancy among attribute subsets
(Kohavi and John, 1997).

The rest of this section outlines the abstract application (decision support in uncertain
optimization domains), the isolation of a KDD problem (predictive classification) from the
representative project and several similar industrial projects at NCSA, and the role of D2K
and its high-performance computing platform.

1.1.1. KDD application: Risk prediction for decision support. The significance of data
mining in many decision support problems posed to NCSA through its Industrial Partners
Program is often due to the need for a predictive model for policy optimization. In some
cases, this requires a performance element that solves a constraint system (e.g., adaptive dy-
namic programming, or ADP, methods such as value iteration and policy iteration (Russell
and Norvig, 1995); in others, such as the auto insurance underwriting application described
in this paper, decisions are coarser-grained or more qualitative. The decision support ob-
jective of the auto insurance underwriting application is to answer the following questions,
formulated in order:

1. Do the attributes currently used to classify customers in the existing rule-based system
carry any predictive information for the analytical objective (prediction of paid loss)?

2. Can this objective be used to define a family of discrete supervised learning problems
(such that inductive learning can produce a model with discriminatory power among
classes)?

3. If so, what data integrity issues affect this learning problem with respect to the objective?
4. What subsets of attributes (selected and synthetic) are most relevant to the objective?
5. What level of accuracy in predicting the objective yields useful decision support power?

D2K has also been applied to decision support problems in text report mining (document
categorization and tracking for detection of emerging issues in quality control of truck en-
gines) and resource allocation (prediction and monitoring of home repair demand by service
category for short and long term ADP-based optimization) (Hsu and Welge, to appear).

1.1.2. Data management and exploration: Research objectives. Three issues motivate
the design of the D2K components that are documented in this paper: control of overfitting
through relevance determination, scalability, and validation methods for the performance
tuning wrappers themselves. First, we address control of overfitting by applying wrappers for
moderated attribute subset selection. The moderating criteria depend on the type of model
(hypothesis representation) used and its description length—e.g., decision trees and number
of decision nodes—and the importance of minimizing the subset of relevant attributes.
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Second, we address scalability through our configuration of high-performance platforms
for D2K and parallel, distributed implementations of the search criteria—namely, genetic
wrappers (Cherkauer and Shavlik, 1996; Raymer et al., 1997; Hsu et al., 1999) Third, we
address meta-learning, or bias optimization, through abstraction (variabilization) of the
wrapper “constants” and calibration of these variables, or hyperparameters, through further
statistical validation.

The role of high-performance computing is twofold: first, a distributed, shared memory
(DSM) system is ideal for the application, because of the high degree of functional (task-
level) parallelism in the genetic wrappers used. Since the experimental focus in D2K was
on attribute subset selection and high-level validation of the selection criteria, we found
that the symmetric multiprocessing (SMP) model also yielded performance gains and high
scalability. The high performance-to-price ratio of commodity off-the-shelf (COTS) sys-
tems, such as the multiprocessor Beowulf clusters we report on in this paper, makes them
an appropriate choice for implementing this DSM model.

1.2. Solution approach: D2K

Figure 2 illustrates the design of D2K (Auvil et al., 1999), a rapid application development
system for high-performance (parallel and distributed) KDD. D2K is a visual programming
system that manages multiple knowledge sources and provides a standardized application

Figure 2. D2K: A rapid application development system for KDD.
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programmer interface (API) for learning components. It implements the data mining life
cycle through persistence of model representations (e.g., serialization of trained inducers
for performance tuning wrappers and committee machines (Kohavi and Sommerfield, 1996;
Haykin, 1999). The KDD process is observed and controlled through a presentation layer
that acquires user specifications and delivers interactive visualization and output post-
processing functions. Benefits of the D2K system include reuse, modularity, task-level
parallelism, and distributivity, which are documented in Auvil et al. (1999) and surveyed
for this application.

1.2.1. Role of supervised learning, data clustering, and constructive induction wrappers.
Supervised learning for the auto insurance underwriting problem is formulated as a classi-
fication problem, but we also defined a data mining problem that uses inductive learning to
predict migration of instances (insurance policy records) between classes. The classification
model was used to audit an existing rule-based classification system over the same instance
space, and to calibrate an underwriting model (to guide pricing decisions for policies) for
an experimental market. The migration model was designed to track churn between the
user’s indemnity and non-indemnity divisions, and can be applied (through optimization
by ADP) to generate recommendations for distributing tiers (classes) in the experimental
market, subject to the objective of equalizing expected cost across classes. The inducer
(supervised inductive learning algorithm) used for this project was ID3 (Quinlan, 1985),
but other inducers are used in this same framework: simple (aka naı̈ve) Bayes for the text
mining (story report) project, feedforward artificial neural networks (ANNs) and hidden
Markov models (HMMs) for the demand prediction project (Hsu and Welge, to appear).

Unsupervised learning fills a twofold exploratory role in this project: first, as an technique
for dimensionality reduction, or vector quantization, in order to compute descriptive statis-
tics; second, as a mapping from raw data to synthetic classes to guide rule refinement in the
original knowledge-based classification system. This cluster definition step can also be used
to perform change of representation (Benjamin, 1990; Donoho, 1996) for the supervised
classifier learning stage.

Both cluster definition and feature extraction and construction (i.e., dimensionality-
reducing transforms, attribute subset selection, and synthesis of new attributes) were used
in this project. Finally, the constructive induction phase is implemented using an attribute
subset selection wrapper for overfitting control and a meta-learning (hyperparameter tuning)
system for model selection.

1.2.2. D2K itineraries and data mining process pipeline. Figure 3 illustrates a visual
specification and data flow model, called an itinerary (Auvil et al., 1999), for the KDD
steps in the underwriting project. The itinerary design is documented in the rest of this
paper, and the KDD operations in particular are documented in Section 3.

2. Problem

This section presents an overview of the commercial project, sponsored by Allstate Insur-
ance Company, which we will refer to as the One Company project through the rest of the
paper. We first describe the decision support objectives of the One Company project and
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Figure 3. D2K itinerary for the Allstate One Company project.

the purpose of KDD, then discuss project-specific issues surrounding the preprocessing of
raw data and its transformation into a usable form for KDD.

2.1. Allstate One Company project

The One Company project is an initiative of the Allstate Insurance Company’s underwriting
division. Its purpose is to reorganize its existing models for pricing of automobile insurance
policies in an experimental market, to reduce attrition (loss of customers to competitors) and
to control distribution of loss (paid losses due to damage or personal injury claims) across
pricing categories. The pricing model is primarily based on a classification problem: given
policy descriptors (demographic data about the policyholders, automobile-specific data,
driver accident and vehicle code violation history, etc.) identify the tier (pricing category)
to which a policy belongs. The Allstate underwriting division uses classification to achieve
two objectives:

– Develop a predictive model of churn (inter-tier migration) to reduce attrition
– Develop a predictive model of loss and use it to refine and formulate rules for decision

support in organizing tiers

The focus of this paper is the second objective, but a concurrent phase of the One Company
project addressed the first objective and used the same raw and intermediate data sets (with
different attributes being selected and synthesized for each).
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During initial consultation with the users—decision-makers at Allstate’s underwriting
division—we established these important characteristics and conjectures regarding the
problem:

1. Fact: Allstate currently uses a rule-based system to categorize policies. This system
was developed approximately 20 years ago using both knowledge elicited from subject
matter experts and basic techniques such as linear regression, and has been revised by
Allstate’s research center to account for concept drift (primarily demographic drift).
Conjecture: Because compilation of the original rule set was based in part on elicitation
and in part on statistical modeling, it is possible to define a KDD problem on recent
collections of this historical data.

2. Fact: While the rule-based system is the canonical method for placing new customers
into tiers and migrating them across tiers (based on updated demographics and accident
histories), it does not produce classes that predict loss accurately. Tiers are dissimilar
according to analysis of variance (see Section 3.1.1), but predictive accuracy is not
significantly better than random for single policies.
Conjecture: Prediction accuracy might be improved upon by using modern learning
methods, such as decision tree induction, on the data originally used for rule extraction,
but the prediction target is not necessarily the paid loss for a single policy.

3. Fact: The entities available for online analytical processing (OLAP) and KDD are ex-
pressed in a data set called ALLVAR produced by the Allstate research center and used
by the underwriting division. This data set contains 471 raw attributes collected by the
company from forms submitted by insurance agents and customers and from private
records (e.g., payment histories transmitted from the previous insurance company) and
public records (e.g., accident and driving violation histories).
Conjecture: Several data integrity problems affect ALLVAR, particularly ambiguities in
the definitional data model. There are many irrelevant attributes for predicting targets
that represent either of the decision support objectives (churn and loss).

4. Fact: The Allstate research center constructs decision trees using ALLVAR for evaluation
and calibration of the rule-based system. In these experiments, policies are aggregated,
and the prediction target is aggregate loss ratio (Jonske, 1999).
Conjecture: Aggregation of policies from the data set may be appropriate for control of
model size and attribute selection (both to reduce overfitting), and to make the learning
problem more computationally feasible. Aggregate loss ratio is an appropriate learning
target for the loss minimization objective.

5. Fact: The subset of attributes from ALLVAR that can be used to make pricing decisions is
constrained by current laws (e.g., exact age is prohibited even though exact age categories
such as “21–24” are used) and is revised based on continuing legislative decisions. Some
attributes in ALLVAR are accounted for in other knowledge-based models developed by
the Allstate underwriting division and do not belong in experiments involving learning
from data.
Conjecture: Subject matter expertise can be used here to reduce (select and constrain)
and synthesize attributes.
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The existence and role of the rule-based system established the One Company problem as
one of knowledge-based decision support, but the problem definition remained incomplete.
This definition was deferred to the descriptive statistics phase, in which the conjectures
regarding appropriateness of decision trees, data integrity, and irrelevance were borne out.
Related work at Allstate’s research center and our own exploratory experiments (using
data clustering, descriptive statistics, and pre- and post-visualizations) suggested the data
cleaning techniques and emphasis on attribute subset selection that were adopted.

Sources of data and knowledge for the One Company project comprised:

– The ALLVAR data set and data dictionary (a rudimentary ontology and data model)
– Subject matter expertise related in knowledge elicitation and engineering phases by the

Allstate underwriting personnel, the Allstate research center, and the authors
– KDD experiments using intensively preprocessed versions of ALLVAR

2.2. General issues

The One Company project consisted of three main phases: data verification, exploration,
and preprocessing; model development; and model refinement. These phases generated the
following project milestones:

1. Phase I: clean up ALLVAR for data mining; pre-select and pre-synthesize attributes
2. Phase II: find correct granularity level, representation for training examples
3. Phase II: generate decision trees, rules; generate and collect feedback with users of

rule-based system; interactively select and synthesize attributes
4. Phase III: develop an efficient, flexible wrapper to find relevant attributes in ALLVAR
5. Phase III: develop a model of loss to aid in evaluation and distribution of tiers

Note that constructive induction (data model-driven, knowledge-driven, and data driven)
is applied in each phase to transform the input specification for supervised learning.

2.2.1. Preprocessing: Data cleaning and aggregation. Our data verification efforts fo-
cused on unifying standard units for dates and encoding standards for discretized fields
(e.g., class codes that captured multivariate demographic data such as “single male, 25–
29”). Data exploration focused on collection of descriptive statistics from simulated classes
(obtained using the rule-based classification system) and discovered classes (obtained using
self-organizing maps for dimensionality reduction). Visualization techniques and relevance
determination were applied to an early, preprocessed version of ALLVAR and submitted to
the user. The purpose of these experiments was not only to assess feasibility of constructing
models from ALLVAR but as a prefilter for irrelevant and redundant attributes, a guide to
the data cleaning process (which went through 3 iterations), and a method for establishing
the baseline performance of the rule-based system.

Data preprocessing, the most computationally intensive step of the project, applied the
rule-based system as a specification for transforming raw ALLVAR data into a reduced and
synthesized database suitable for direct KDD. It also led to discovery of additional data
integrity issues (e.g., ambiguity in normalization factors such as the number of exposures)
that were resolved through interactive elicitation sessions with the subject matter experts.



HIGH-PERFORMANCE COMMERCIAL DATA MINING 369

Finally, it applied the data dictionary to pre-filter redundant attributes. This first stage of
constructive induction was driven by prior knowledge represented as a data model for a
very large database (over 1 million records and 471 raw attributes).

Finally, data aggregation used arithmetic methods (summing, averaging, sparse coding
and counting) to combine hundreds or thousands of policy records into single training
examples. This step was driven by domain expertise (existing practices at Allstate) and
preliminary experiments using unaggregated data on a small, but representative, test market
(1 line of business out of 8 lines, in 4 states). These stages are represented as input and data
preparation modules in the itinerary shown in figure 3.

2.2.2. Role of relevance determination in decision support. Relevance determination
continued to serve a critical role in the direct KDD phases. Data modeling limitations
(specifically, the lack of prior relevance knowledge other than that captured in the rule
base during the data cleaning phase) necessarily forced most of the attribute synthesis
computations to take place early (before aggregation), even though this demanded much
greater computational work. Aggregation freed us to apply more computationally intensive
methods (such as the genetic wrapper) for attribute subset selection. This design choice
was driven largely by user requirements and by the stepwise refinement methodology
we selected for constructive induction. The wrapper is depicted as a learning module in the
itinerary shown in figure 3.

2.2.3. Computational considerations. The primary computational bottleneck, aside from
data cleaning and preprocessing of ALLVAR, was a “meta-wrapping” technique that we
developed for overfitting control in the One Company project. This design choice was
motivated by our goal of greater autonomy in model selection for KDD, and constrained
by architectural limitations in the high-level wrapper and the computational platform (the
Linux and Irix clusters used). These scalability issues are coupled in the D2K research
program, and are of great interest because of the increase in accessibility to users that
greater autonomy and portability would provide.

3. Methodology

This section describes the design of the data mining itinerary shown in figure 3 and the
implementation of the data preparation, constructive induction, supervised learning, and
visualization modules in this itinerary.

3.1. Exploratory experiments

Exploratory experiments in the One Company project consisted of two categories: data
clustering and descriptive statistics on tiers formed using clustering and using the rule-
based system; and data characterization and visualization. Both types of experiments were
interleaved with the data verification and cleaning steps listed in Section 2.2. The first group
occurred during Phase I (development of a data model and data cleaning methodology) and
used an early version of ALLVAR; the second occurred during Phase II (refinement of the
supervised learning problem) and used the final preprocessed version of ALLVAR.
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3.1.1. Data clustering and descriptive statistics. The objectives of the first type of ex-
ploratory experiment, data clustering, were to:

1. Help establish a supervised learning problem
2. Generate a model for comparison with the rule-based system
3. Guide (attribute) quantization and (example) aggregation later in the data flow model

We view cluster definition as a component of knowledge-guided constructive induction
as proposed in Donoho (1996) and other work. Ideally, this phase should work as a back
end to feature construction (synthesis of attributes using techniques such as FOIL (Quinlan,
1990) or genetic programming (Koza, 1992). We found, however, that the role of clustering
in the One Company project, was more descriptive than constructive with respect to our
objectives. For the first objective, clustering primarily served to compare the discriminatory
potential of ALLVAR for two candidate learning targets (paid loss and loss ratio) and to
indicate a large number of irrelevant attributes. For the second objective, clustering provided
an experimental class definition to compare against the control (rule-based system), again
in terms of discriminatory potential. For the third objective, we used scalar quantization
methods for sensitivity analysis, to evaluate the feasibility of aggregating many examples.

We applied data clustering methods to ALLVAR-1, our first preprocessed version of ALL-
VAR, which was obtained by applying the preprocessing front end of the rule-based system.
ALLVAR-1 contains a total of 254917 records (each a training example for unsupervised
learning, with 209 attributes). Because the existing OLAP codes for ALLVAR were legacy
codes and therefore highly infeasible to port, a complete re-implementation in Java was
developed through intensive consultation with the Allstate underwriting division. This part
of Phase I required about 25% of the overall project development time and represented
about 10% of the overall effort. Clustering methods used on ALLVAR-1 included Kohonen’s
self-organizing feature map (Kohonen, 1990) (implemented in SOM-PAK (Kohonen et al.,
1996)). Preprocessing for SOM consisted of normalization and filtering of sentinel values
(intermediate remnants of processing in ALLVAR-1), which were replaced with explicit “un-
known value” indicators. These two steps each accounted for 3 degrees of magnitude differ-
ence in quantization error, which indicates the sensitivity of this implementation of SOM to
data impurity (of which we encountered: spurious sentinels, conventions on data delimiters
that affect field alignment, and normalization). As in some conventions for simple (naı̈ve)
Bayesian inference (Kohavi et al., 1997) and by contrast with unsupervised Bayesian learn-
ing methods such as AutoClass (Cheeseman et al., 1988) that use expectation-maximization
(EM) (Dempster et al., 1977), SOM simply omits missing values from its distance met-
ric computations (Kohonen, 1990; Haykin, 1999). Different runs of SOM (ranging from
10-by-10 to 20-by-20 maps, the latter being reported here) discovered between 6 and 11
clusters in the data, compared with 7 tiers generated by the rule-based system.

Descriptive statistics were collected using the clusters produced by SOM. This required
another 10% of the development time and effort. We used these statistics to answer the
following queries about the discriminatory capability of ALLVAR-1 and compare it to that
of the rule based system:

1. Q: Is there significant dissimilarity between clusters as discovered by SOM? Between
tiers as identified by the rule-based classification system?
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Table 2. Same ANOVA results for pure premium, classes (tiers) from rule simulations on ALLVAR-2.

A B C D E G H

A –

B 46.6 ± 85.2 –

C 217.3 ± 249.6 170.7 ± 252.1 –

D 168.9 ± 67.8 117.2 ± 76.3 −53.5 ± 246.7 –

E −101.6 ± 516.88 −148.2 ± 518.1 −318.9 ± 568.7 −265.4 ± 515.5 –

G 321.5 ± 114.7 274.8 ± 120.0 104.1 ± 263.5 157.6 ± 108.2 423.0 ± 523.7 –

H 270.6 ± 226.7 224.0 ± 229.4 53.3 ± 328.2 106.8 ± 223.5 372.2 ± 559.1 −50.8 ± 241.9 –

Figure 4. ANOVA similarity graph for tiers from rule simulations, ALLVAR-2 (dotted lines: Significant differ-
ences between tiers, at 95% level of confidence).

Descriptive statistics: analysis of variance (ANOVA), which produced the output shown
in Tables 1 and 2 and figure 4.

2. Q: What is the distribution of premiums within clusters as discovered by SOM? Within
tiers as identified by the rule-based classification system?
Descriptive statistics: calculation of mean and variance of pure premium by cluster,
which produced the output shown in Tables 3 and 4 (the descriptive statistics module in
our D2K system produced similar statistics for all 208 attributes of ALLVAR-1)

We found it useful to calculate both inter-category descriptive statistics (item 1) and
intra-category statistics (item 2). Inter-category statistics allow some comparison between
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Table 3. Intra-cluster descriptive statistics for pure premium: SOM clusters (ALLVAR-1).

Class (Cluster) Size Mean Stdev

1 17134 542.65 662.84

2 13683 579.13 652.76

3 18517 479.06 538.10

4 16026 384.82 414.91

5 24346 438.65 537.03

6 23316 662.96 659.70

7 36781 575.35 563.56

8 33225 706.92 669.99

9 28228 668.35 643.01

10 32827 385.34 383.80

11 10834 231.91 311.29

Table 4. Intra-cluster descriptive statistics for pure premium: rule simulation tiers (ALLVAR-2).

Class (Tier) Size Mean Stdev

A 86469 303.93 4422.35

B 61334 350.84 3594.63

C 4397 520.76 3018.57

D 165736 467.92 4398.46

E 997 200.89 1024.93

G 25683 625.26 7361.07

H 5384 574.35 4055.49

classification methods—here, data-based (SOM, a competitive clustering algorithm based
on Euclidean distance (Kohonen, 1990) and knowledge-based. We must be careful, however,
to specify a proper cluster definition method, including the cluster formation, segmentation,
and labeling algorithms.

1. Formation: we used an existing implementation of SOM (Kohonen et al., 1996) and data
preparation modules for normalization and integrity checking

2. Segmentation: we used a simplification of learning vector quantization (LVQ) (Gersho
and Gray, 1992; Haykin, 1999), an instance-based learning (IBL) (Aha et al., 1991;
Mitchell, 1997) algorithm that computes the nearest-neighbor regions (Voronoi cells)
about the cluster representatives (or “centers”).1

3. Labeling: our IBL technique implicitly defines a labeling algorithm. First, assign integer
labels to each cluster representative; second, assign each new data point the label of its
nearest neighbor (found by querying the Voronoi diagram).

Inter-category ANOVA (testing the difference in mean pure premium among clusters)
indicated that there was significant dissimilarity among all of the 11 clusters output by
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SOM and our simplified LVQ algorithm (applied to ALLVAR-1), as shown in Table 1 and
figure 4. In all but two of the paired tests in Table 1, the difference between estimators
is significant at the 95% level of confidence, indicating up to 11 equivalence classes of
pure premium according to the criterion defined using our simplified SOM/LVQ labeling
algorithm. By contrast, the inter-category ANOVA for tiers, output by the rule simula-
tions (applied to ALLVAR-2), showed only sporadic dissimilarity.2 As shown in Table 2,
only 6 pairwise tests show a difference that is significant at the 95% level of confidence.
This indicates at least 3 equivalence classes (e.g., {{A, B, C, E} {D} {G, H}}; {{A, B,
C} {D, E} {G, H}}; etc.), but shows that tiers are not strong discriminators of expected
premium.

Intra-category statistics also helped us compare the conditional distribution of a can-
didate learning target (loss) across categories. The cluster means and variances listed in
Table 3 are from the data clusters produced by our SOM-based cluster definition (forma-
tion, segmentation, and labeling) algorithm—the same output that generated Table 1. It was
this result that led us to consider aggregation methods (subsequently corroborated by the
Allstate underwriting division and research center) and to focus on loss ratio (the aggregate
quantity to be equalized in the performance element) as a classification target.

Our final quantization step was scalar quantization of attribute values in aggregated data
points using the binning methods in SGI MineSet. This is described together with our
aggregation technique in Section 3.2.2.

3.1.2. Data characterization and visualization. Our exploratory experiments continued
using ALLVAR-1 and ALLVAR-2 (a “cleaned” data set described in Section 3.2.1 below).
Our machine learning experiments in Phase II required about 15% of development time and
20% of the overall effort, and the visualization and data characterization steps accounted
for about half of this. These were carried out using MLC++ and MineSet, primarily us-
ing the column importance (relevance determination using a filter (Kohavi, 1998; Kohavi
and John, 1997) based on a cross-entropy score), and the Evidence Visualizer. A sum-
mary of output from column importance on ALLVAR-2 is shown in Table 5. Many other
experiments were conducted on ALLVAR-2 prior to aggregation, but these are omitted for
brevity due to our subsequent choice to use aggregation for all MLC++ and D2K batch
experiments.

The use of MineSet Tree Visualizer on a variety of decision trees produced using different
exploratory aggregation and quantization methods (uniform-population binning, uniform-
width binning, and scalar quantization by hand) led us to decide on uniform aggregation
and 1000 policy records as the appropriate aggregation granularity. The motivation for this
was the severe overfitting and qualitative tree complexity observed in the Tree Visualizer
using smaller aggregates, especially one example per policy record.

3.2. Data cleaning

Our data cleaning stage consisted not only of preprocessing, integrity checks, and normal-
ization, but also aggregation, quantization, and histogramming. We have described (in
Sections 2.2.1 and 3.1.1) some of the elementary but consequential integrity issues—
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Table 5. Attributes selected by applying MineSet column importance to ALLVAR-2.

Rank Name Cumulative score Meaning

1 numloss 85.59 Number of losses (in last 5 years) incurred on this policy

2 leastlic 75.45 Years most recent driver on policy has had license

3 youngage 75.45 Age of youngest driver on policy

4 tier 75.45 Classification assigned by rule based system (ALLVAR-2)

5 drivers 75.4 Drivers insured on this policy

6 cars 75.38 Vehicles insured on this policy

7 yda 75.35 Internal historical code

8 oldage 75.35 Age of oldest driver on policy

9 classcd1 75.33 Composite attribute: sex, age, marital status

10 mostlic 75.32 Years most experienced driver on policy has had license

11 classcd6 75.32 Composite attribute: driver-specific discounts

12 classcd7 75.32 Composite attribute: vehicle-specific discounts

13 prabdin5 75.31 Number of bodily injury, collision claims in last 5 years

14 o1lic5 75.3 Has the primary operator been licensed 5 years?

15 o1lic3 75.3 Has the primary operator been licensed 3 years?

16 classcd9 75.3 Composite attribute: geographically-specific discounts

17 kids 75.29 Number of children in household of policy holders

18 classcd2 75.29 Composite attribute: annual mileage

19 oldtier 75.28 Classification assigned by rule based system (ALLVAR-1)

20 classcd3 75.28 Composite attribute: usage (commuting, pleasure, etc.)

21 o1lic1 75.28 Has the primary operator been licensed 1 year?

22 add drop 75.28 Difference between add, drop dates of policy

23 paycode 75.28 Payment status to current insurer (outstanding debts, etc.)

24 est miles 75.28 Estimated mileage on odometer of primary vehicle

25 yrcurjob 75.27 Years primary policy holder has been at current job

26 mttable 75.27 Merit table (composite, internal predictor variable)

27 pricode 75.27 Historical field: prior insurance code

28 limded 75.27 Limited deductible

29 accsurch 75.27 Accumulated surcharge

30 term eff 75.27 Difference between termination, effective dates of policy

including normalization and sentinel values—that arose during computation of descriptive
statistics. In developing our data model, we reviewed the data dictionary carefully to verify
units, bounds, and ontological consistency (especially for boundary cases) of attributes. This
led to a rudimentary abstract data type (ADT) definition and uncovered two data cleaning
issues: the representation of dates (we found 3 inconsistent formats to resolve) and the
definition of “exposures” (a measure of a customer’s coverage over time that was important
in both the classification and migration problems).
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3.2.1. Preprocessing: Rule simulations, attribute synthesis, and column importance. The
ADT developed from the data dictionary generated two specifications: first, the simple
type definitions (integer-valued, continuous-valued, and enumerative attributes) used by
MLC++ and MineSet; second, a requirements specification for ALLVAR-2. A second data
preprocessing code was developed in Java using this specification of requirements. The
development time was approximately 20% of the project total, the effort expended, over
15% of the project total. We also estimate that over half of all the computational resources
expended in the One Company project were devoted to simulating the revised rule base, to
transform data from the original representation to that of the newly synthesized attributes.

ALLVAR contains 471 attributes that are reduced to 86 by these rule simulations, to
produce ALLVAR-2. This process eliminated, using a trivial amount of computation, at-
tributes previously known to be irrelevant and those that were handled by components of
Allstate’s decision support system other than our performance element (e.g., geographic
attributes such as zip code). Through interactive elicitation, we also eliminated those that
were beyond the scope of our KDD problem even if relevant (e.g., insurance agent identity).

In addition, our preprocessing (data preparation) modules synthesized new attributes
based on combined domain expertise from the Allstate underwriting group and exploratory
experiments. For example, subset regression in SAS (using the MAX-R algorithm) frequently
resulted in the simultaneous selection of attributes that denoted the starting and ending dates
of intervals (e.g., a customer’s add and drop date, a policy’s termination and effective date).
These were not selected using single-variable regression or MineSet Column Importance (a
mutual information, i.e., cross-entropy, criterion), but simply synthesizing interval duration
attributes resulted in their inclusion by both of these greedy algorithms. Finally, attribute
synthesis also applies known formulae and algorithms to condense many attributes (e.g.,
those describing coverages) into single historical attributes (e.g., exposure counts). Appli-
cation of these functional definitions to 2.7 million records of ALLVAR (across 2 lines of
business, in 4 states) was by far the most computationally intensive step of the One Company
project.

Table 5 shows the results of applying MineSet Column Importance to a sample of 350000
records from ALLVAR-2. This was the largest subset that could be handled due to memory
limitations (and was the determinant of our sample size in subsequent experiments, for
which we refer to this sample as “ALLVAR-2”). Note that the increments in cumulative
score do not decrease monotonically, as the criterion is greedy. Note also that the top 30
attributes selected include some that behave as decision lists (e.g., o1lic5, o1lic3, o1lic1),
some correlated subsets (e.g., leastlic, youngage, and o1lic1), and some composite attributes
used in Allstate’s corporate database systems. An example of a composite attribute and its
semantic content are shown in Table 6. We discuss the aggregation of examples by the 30
attributes of Table 5, and the further selection of these attributes, in the rest of Section 3.

3.2.2. Aggregation. Aggregation, quantization, and histogramming methodology for
ALLVAR-2 was developed after exploratory experiments, attempting to classify policy
records individually, resulted in severe overfitting. These produced decision trees with
2000–6000 nodes for 20000–100000 training examples. Subsequent consultation with the
Allstate research center confirmed that aggregation was a standard practice for the KDD
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Table 6. A composite attribute and the aggregation method (histogrammed 1-of-C coding) used.

Code Frequency Meaning 1-of-C coding

1 230569 Adult 1 0 0 0 0 0 0 0 0

2 61945 Retired adult 0 1 0 0 0 0 0 0 0

3 21638 21–49, single female 0 0 1 0 0 0 0 0 0

4 5120 25–49, single male 0 0 0 1 0 0 0 0 0

5 8698 21–24, male 0 0 0 0 1 0 0 0 0

6 4671 20 and under, male 0 0 0 0 0 1 0 0 0

7 12643 30–49, single male 0 0 0 0 0 0 1 0 0

8 4715 20 and under, female 0 0 0 0 0 0 0 1 0

9 1 Unknown (spurious) 0 0 0 0 0 0 0 0 1

experiments used in their decision support operations (such as rule refinement). This section
documents and justifies the methodology used.

Table 6 shows the denotation of a composite, nominal attribute called classcd1 (Class
Code 1), which encodes several well-known demographic categories that are hypothesized
(and have been demonstrated in some studies (Porter, 1998) to be indicators of automobile
insurance risk. Note that these codes are exhaustive but not mutually exclusive; among other
reasons, this is because multiple drivers can be covered per vehicle and per policy (e.g.,
the attribute value “Adult” subsumes most multi-driver records). Generally, for composite
attributes, the most specific applicable category value is recorded. We use a 1-of-C encoding
(Sarle, 1999) to encode composite attributes, simply because it allows us to produce a
histogram easily when aggregating new attributes. This results in 27 “dense” attributes
being coded as 97 “sparse” ones.

Table 7 summarizes the entire aggregation specification for the 30 most individually
relevant attributes found using a filter (MineSet Column Importance) as a “quick rejection”
test. Note that the aggregation method depends on the context (the denotation of the attribute
in the data model) and not merely on the attribute type (including the units). For example,
binary attributes are summed to obtain totals. For variable-sized aggregates, such as stratified
samples, these must be divided by the aggregate size to obtain frequencies. We use constant-
sized aggregates for ALLVAR-2, so this distinction is obviated, as is that between sums and
average. It is critical, however, to note the difference in user interpretation that results even
if unweighted (identical-sized) samples are used to produce one example each using the
above specification. For example, “cars” and “kids” are reported as averages for predicting
a target that is a ratio of functions of sample size, while the number of operators licensed
for less than one year is a sum.

Our overall methodology for relevance determination incorporates descriptive statistics,
data cleaning, column importance, aggregation and histogramming, and attribute subset
selection (an interleaved select-combine-select strategy) to “funnel” the 471 attributes into
23 as shown in figure 5. Three additional attributes (all internal fields used by other compo-
nents of the Allstate underwriting decision support system) were eliminated at the column
importance stage.
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Table 7. Aggregation specification for ALLVAR-2 data model.

Name Original type Units Aggregation method New attributes

numloss Integer Count Average 1

leastlic Integer Years Average 1

youngage Integer Years Average 1

tier Nominal N/A 1-of-C coding, histogramming 7

drivers Integer Count Average 1

cars Integer Count Average 1

yda Integer Years NONE 0

oldage Integer Years Average 1

classcd1 Nominal N/A 1-of-C coding, histogramming 9

mostlic Integer Years Average 1

classcd6 Nominal N/A 1-of-C coding, histogramming 9

classcd7 Nominal N/A 1-of-C coding, histogramming 10

prabdin5 Binary N/A Sum 1

o1lic5 Binary N/A Sum 1

o1lic3 Binary N/A Sum 1

classcd9 Nominal N/A 1-of-C coding, histogramming 11

kids Integer Count Average 1

classcd2 Nominal N/A 1-of-C coding, histogramming 9

tier2 Nominal N/A NONE 0

classcd3 Nominal N/A 1-of-C coding, histogramming 10

o1lic1 Binary N/A Sum 1

add drop Integer Days Average 1

paycode Nominal N/A 1-of-C coding, histogramming 6

est miles Integer Miles Average 1

yrcurjob Integer Years Average 1

mttable Nominal N/A NONE 0

pricode Nominal N/A 1-of-C coding, histogramming 8

limded Integer Count Average 1

accsurch Integer Count Sum 1

term eff Integer Days Average 1

3.3. Scalable supervised learning for large databases

One important innovation of this D2K system is the automation of our attribute subset selec-
tion system using a genetic algorithm-based performance-tuning wrapper. We view relative
weights for validation set accuracy, input complexity (attributes selected), and model com-
plexity (tree size) as hyperparameters to be optimized over as well (Neal, 1996). The purpose
of reducing the attribute set is to increase the comprehensibility of the model (in this case,
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Figure 5. Change of representation process.

the decision tree and resultant rules) through overfitting avoidance. Our choice of model is
driven by the inherent scalability of the model (the ability to construct decision trees that
grow in complexity based on the number of attributes) and lack thereof (sensitivity of these
trees to overfitting due to irrelvant and redundant attributes observed over many training ex-
amples. We find that combining a wrapped decision tree inducer (Kohavi and Sommerfield,
1996) and aggregation produces a highly extendible classification learning system for data
sets such as ALLVAR. This approach makes decision tree learning more robust to mixed
numerical and symbolic data, many irrelevant attributes, a data model with fields at differ-
ing granularity, and medium to large data volume (hundreds of thousands to millions of
records). Our goal in developing intelligent data mining agents is to produce more config-
urable yet more autonomous wrappers and more transparency to the user. As we shall discuss
in Section 3.4, however, this autonomy is purchased at the cost of intensive computation.

The simple inducer phase, comprising experiments using MineSet and MLC++ without
attribute subset selection filters (Kira and Rendell, 1992; Kononenko, 1994) and wrappers
(Kohavi and John, 1997), accounts for 15% of development time and 20% of overall effort.

3.3.1. Decision tree induction. Initial results using ID3 as applied to aggregated ALLVAR-2
(97 attributes) are shown in Table 8. Test set accuracy is significantly better than random
(uniform prediction over the classes, or bin labels) in all cases except with 4 target bins.
This is clearly a very weak criterion, as the utility of prediction accuracy far under 50%,
even as a coarse-grained recommender system, is negligible. The Allstate underwriting
team indicated, however, that even the weak 2-bin predictor can be useful in generating
explanations for high and low expected loss ratio. This is because purity tends to be high
at low depths of the tree (indicating a potential for pruning). Overfitting control is indeed
possible with reduced error pruning, even for unaggregated data, but has limited effect
because of relatively irrelevant and correlated attributes. Two things are needed to truly
improve generalization quality: aggregation, and an attribute subset evaluation function that
controls the balance between training set accuracy and generalization criteria (model size,
model input size). Aggregation improves generalization in decision trees for ALLVAR-2:
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Table 8. ID3 decision tree performance using aggregated ALLVAR-2.

Target bins Average tree size Test set accuracy

2 24 61.54 ± 4.52

3 36 43.59 ± 4.60

4 39 28.21 ± 4.18

5 36 39.71 ± 5.85

6 50 23.93 ± 3.96

7 52 25.64 ± 4.05

8 53 15.38 ± 3.35

none of the many exploratory decision trees we constructed using unaggregated ALLVAR-2
had test set accuracy significantly better than random. A constructive induction wrapper
can also improve generalization in decision trees if its objective is to reduce overfitting.

3.3.2. Visualization and interpretation. Visualizations generated during development of
the D2K One Company system included:

1. The U-matrix plot (Kohonen map visualization) on ALLVAR-1, using SOM-PAK
(Kohonen et al., 1996)

2. The ANOVA similarity graph of figure 4 on ALLVAR-2, using SAS
3. The cross-entropy scores from MineSet Column Importance for the 30 attributes of

ALLVAR-2 described in Table 5, using MineSet Evidence Visualizer (EviViz) (Kohavi,
1998)

4. About 20 sets of decision trees using ALLVAR-1 and ALLVAR-2, using MineSet Tree
Visualizer (TreeViz) (Kohavi, 1998), a 3-D decision tree visualization and navigation
system, and AT&T GraphViz (Krishnamurthy, 1995), a 2-D display package for which
MLC++ generates output.

These visualizations were conducted during the first 9 months of the 10-month project,
and delivered to the user on a biweekly to weekly basis.

3.4. Meta-learning: Adaptive wrappers

We use a constructive induction wrapper to control three factors:

1. Overfitting as detected through validation set accuracy
2. Tree size
3. Selected attribute subset size

Kohavi et al. have conducted extensive research in formulating attribute subset selection
as a state space search (Kohavi, 1995; Kohavi and John, 1997). In recent experiments by
Cherkauer and Shavlik (1996), Raymer et al. (1997), and Dejong et al. (1993), the efficiency
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of using genetic algorithms as wrappers for performance tuning in supervised inductive
learning and has been demonstrated. We observed, however, that more autonomy is needed in
allowing the user to indirectly specify the balance among the three factors above. That is, the
weights given to these factors in the fitness evaluation function of the genetic wrapper should
themselves be hyperparameters. This is a topic of continuing research; in this paper, we out-
line a procedure for specifying these hyperparameters and our findings using a genetic wrap-
per implemented in D2K. This wrapper accounts for 10% of amortized development time
(over projects in which it has been used—2 at the present time) and 10% of the overall effort.

3.4.1. Tunable attribute subset selection. The frequency of irrelevant attributes, and es-
pecially correlated attributes, is high, as described in Section 3.2. Figure 5 illustrates this
“column-wise” sparseness of information. Some shortcomings of single-variable and sub-
set regression (MAX-R) and score-based ranking (Column Importance) can also be seen in
retrospect. Namely, they act as attribute filters (which evaluate attributes, singly or in tuples,
according to a criterion external to the inducer used) rather than wrappers (which treat the
input specification of the supervised learning problem as a trainable hyperparameter, and
optimize this in an “outer loop”) (Kohavi, 1995; Kohavi and John, 1997). We hypothesized
that a simple wrapper for attribute subset selection would improve performance, while a
full constructive induction wrapper (as implemented using the entire D2K itinerary shown
in figure 3) would yield even greater benefits.

3.4.2. D2K itinerary. Figure 6 shows a screen shot depicting the nested sub-itinerary of
the D2K itinerary shown in figure 3 (the fragment in the circle). A noteworthy property
of this design is its autonomy for development of improved (reduced and synthetic) input

Figure 6. Portion of Jenesis nested itinerary within D2K.
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attributes. We designed D2K as an interactive, flexible, and efficient system for adapting
data representations to suit decision support objectives of KDD such as the business objec-
tives of the Allstate underwriting division. For example, the D2K master itinerary contains
reused modules (imported, stand-alone Perl and high-performance Java modules for data
preparation); newly constructed modules (the GA of figure 6); integrated research and com-
mercial codes in offline mode (SAS, MLC++, and MineSet via batch mode scripts); and a
new communications mechanism (Beowulf ).

3.4.3. Genetic algorithm (Jenesis). A GA is ideal for implementing a constructive in-
duction wrapper, attribute subset selection in particular, and a tunable CI wrapper as well
(even as an inner loop only). We used a reimplementation in Java of the Genesis package
of Grefenstette (1990), which we called Jenesis. We note that the Jenesis wrapper is an
advance over the work of Raymer et al. (1997) and Cherkauer and Shavlik (1996) in that it
adjusts “empirically determined” constants dynamically rather than assuming that a single
optimum exists for a large set of KDD problems. This is preferable to empirically calibrating
hyperparameters as if a single “best mixture” existed. Even if a very large and representative
corpus of data sets were used for this purpose, there is no reason to believe that there is a
single a posteriori optimum for hyperparameters such as weight allocation to model size,
input complexity, and training set accuracy in the constructive induction wrapper.

The design of the Jenesis wrapper illustrated in figure 6 is as follows.

1. The master controller for the itinerary runs in a Java virtual machine. We have tested this
controller using desktop and portable PCs running Windows, Linux, SunOS, and MacOS.
The master controller implements Jenesis (shown in the screen shot) and manages slaves
that concurrently evaluate members of its population (size 100 in our One Company
experiment). Each individual is encoded as a bit mask denoting inclusion or exclusion
of an attribute (i.e., the parallel search in attribute subset space is conducted using a
masking GA (Raymer et al., 1997).

2. 8 slave processes distributed across 2–6 cluster hypernodes (documented in Section 3.4.4)
run identical copies of an MLC++ -based application. Each evaluates the attribute subset
it is given by training on a segment of the data (1/3 to 3/5 of all examples) and returns the
number of attributes correctly classified in the validation set (a hold-out set, containing
1/5 to 1/3 of the data).

3. The master GA collects the fitness components for all members of its population and
then computes the weighted function:

a · cv

nv

+ b · t

s
+ c · s

m

where a, b, and c are coefficients, summing to 1.0, for percent validation set accuracy
percent maximum tree size, and percent saturation of the attribute subset. cv is the number
of correctly classified validation cases, nv is the total number of validation cases, t is
the decision tree size in nodes, s is the number of attributes selected in the current
specification (the number of 1 bits in the mask string), and m is the total number of
attributes. In Cherkauer and Shavlik (1996), a = 0.75, b = 0.125, and c = 0.125.
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4. The “inner loop” iterates until termination (300 generations in our One Company exper-
iment; fewer for the other “toy” experiments listed in Section 4). The weights a, b, and
c are then validated using the test set (another hold-out set, containing 1/5 to 1/3 of the
data) and we select the “best of the outer loop” by inspecting the test set accuracy.

3.4.4. Clusters (NCSA, KSU). We use a Beowulf cluster to implement the Jenesis wrapper.
Beowulfs are commodity-off-the-shelf (COTS) networks of personal computers and single-
user workstations running open-source operating system software (typically Linux) and
communicating using message-passing protocols (typically MPI, PVM, or direct sockets-
based communication) (Sterling et al., 1999). Beowulfs have become increasingly popular
for compute-intensive applications because they provide a relatively inexpensive way to
implement distributed and parallel processing for functionally (task-level) parallel problems.
As we describe below, this property holds true for high-performance KDD applications such
as performance tuning wrappers.

Table 9 summarizes the technical specifications for the experimental platforms at NCSA
and Kansas State University. The primary design rationale for these network-of-workstation
clusters is the minimization of price-to-performance ratio, but this measure must also be
amortized across the expected platform size. That is, due to the economy of scale in building
mid-sized (32 to 128-node at the present time) to large-sized (over 128 nodes) clusters, we
must consider:

1. The amortized cost of the cluster (networking, memory, supporting infrastructure—
operating system software, commercial KDD and information visualization codes, etc.)

2. The size of a hypernode.
3. The performance gain in using large versus small hypernodes. Our general finding is

that scalability improves with larger hypernodes, but there is a narrow economy of scale
due to the nonlinear cost of symmetric multiprocessor (SMP) systems.

To illustrate the third point, consider that the One Company Jenesis wrapper required
just under 1 hour to complete 300 generations (300 × 100 = 30000 decision trees on 350
aggregate training examples with an average of over 25 attributes) on Valinor, the larger of
our two Beowulf clusters. On Beoworld, it required over 4 hours. On a single-processor,
400M Hz Pentium II workstation running Linux, it would require well over 30 hours. The
current price ratio of a typical 400 MHz Pentium II workstation to Valinor (a new system)
is 20:1.

Table 9. Technical specifications for KDD clusters.

Network Processor Memory
Cluster Nodes Processors type type/speed Configuration per processor

Beoworld 6 8 100-mbps Ethernet 400 MHz 2 2-way SMP 128 Mb RAM,
(NCSA) Pentium II 4 uniprocessor 512 K cache

Valinor 2 8 Gigabit Ethernet 500 MHz Pentium 2 4-way SMP 1 Gb RAM,
(Kansas state) III-Xeon 1 Mb cache
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Table 10. Results from Jenesis for One Company (5-way cross validation), representative data sets.

ID3 FSS-ID3 wrapper Jenesis wrapper

Test set Attributes Test set Attributes Test set Attributes
Data set accuracy (%) selected accuracy (%) selected accuracy (%) selected

ALLVAR-2, 5 bins 39.71 36.40 ± 1.96 44.00 10.60 ± 4.32 44.86 20.8 ± 1.47

Mushroom 99.82 6/22 99.89 5/22 99.89 5/22

Iris 94.00 4/4 98.00 1/4 98.00 1/4

We observed a linear speedup with the use of multiple processors, but this is improved
further through efficient I/O management. Each slave process receives a bit string and
performs an on-line, in-memory query of a copy of the data set that is loaded in once per
hypernode and memory-mapped. This provides a speedup over time (due to the amortized
cost benefit) and as a linear function of the number of processors per hypernode (1 or 2 in
Beoworld, 4 in Valinor).

4. Results

4.1. Performance

Table 10 summarizes the performance of the ID3 decision tree induction algorithm (Quinlan,
1985) and the state-space search-based feature subset selection (FSS) wrapper in MLC++
(Kohavi and Sommerfield, 1996) compared to that of Jenesis. We used a version of ALLVAR-
2 with 5 bins of loss ratio. Wall clock time for the Jenesis and FSS-ID3 wrappers was
comparable. As the table shows, both the Jenesis wrapper and the MLC++ wrapper (using
ID3 as the wrapped inducer) produce significant improvements over unwrapped ID3 in
classification accuracy and very large reductions in the number of attributes used. The test
set accuracy, and the number of selected attributes, are averaged over 5 cross validation folds
(70 aggregate test cases each). Results for 2 data sets from the Irvine database repository
that are known to contain irrelevant attributes are also positive.

Table 11 presents more descriptive statistics on the 5-way cross-validated performance
of ID3, FSS-ID3 (the MLC++ implementation of ID3 with its feature subset selection
wrapper), and Jenesis. Severe overfitting is quite evident for ID3, based on the difference
between training and test set error (perfect purity is achieved in all 5 folds) and the larger
number of attributes actually used compared to the wrappers. Jenesis and FSS-ID3 perform
comparably in terms of test set error, though FSS-ID3 has less difference between training
and test set error and Jenesis is less likely to overprune the attribute subset. Note that FSS-
ID3 consistently selects the fewest attributes, but still overfits (Jenesis achieves lower test
set error in 3 of 5 cross validation cases). The test set errors of Jenesis and FSS-ID3 are not
significantly different, so generalization quality is not conclusively distinguishable in this
case. We note, however, that excessively shrinking the subset indicates a significant tradeoff
regarding generalization quality.
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Cross validation segment

0 1 2 3 4 Mean Stdev

Training set ID3 100.0 100.0 100.0 100.0 100.0 100.0 0.00
accuracy (%) FSS-ID3 55.00 54.29 67.86 50.36 60.71 57.64 6.08

Jenesis 65.71 67.14 71.43 71.43 55.71 66.29 5.76

Test set ID3 41.43 42.86 28.57 41.43 44.29 39.71 5.67
accuracy (%) FSS-ID3 48.57 35.71 34.29 47.14 54.29 44.00 7.74

Jenesis 41.43 42.86 31.43 52.86 55.71 44.86 8.69

Attributes ID3 35 35 37 40 35 36.40 1.96
selected FSS-ID3 7 8 7 13 18 10.60 4.32

Jenesis 20 19 22 20 23 20.80 1.47

Figure 7 shows the learning curve for ALLVAR-2 using the Jenesis wrapper. We observed
total domination by a single individual within 250 to 400 generations, but it is likely, based
on the suboptimality of at least some of the subsets found, that niching methods (e.g., sharing
(Goldberg, 1989) can preserve necessary diversity among nondominated (Pareto-optimal)
subsets. We are incorporating such features into later versions of Jenesis. Furthermore,
we observed that for any pair of cross-validation folds, the resulting subsets produced by
Jenesis had only about half of their approximately 20 attributes in common. This instability
indicates the need for more systematic validation experiments and possibly for Bayesian
integration methods (Neal, 1996), for which the GA and other Markov chain Monte Carlo
methods may be suitable.

The classification model was used to audit an existing rule-based classification system
over the same instance space, and to calibrate an underwriting model (to guide pricing
decisions for policies) for an experimental market.

Table 11. Distribution of resources for One Company project.

Task Development time Overall effort (%) Computational resources (%)

ALLVAR-1 rule 25% (1 FTE) 10 30
simulations

Descriptive 10% (2.5 FTE) 10 1
statistics

ALLVAR-2 rule 20% (2 FTE) 15 50
simulations

MineSet/MLC++ 15% (3 FTE) 20 5
experiments

D2K development 10% amortized (2.5 FTE) 10 10
and experiments

Collecting and 15% (4 FTE) 25 0
interpreting results

Generalization of 5% amortized (5 FTE) 10 4
D2K modules
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Figure 7. Learning curves (fitness).

4.2. Lessons learned

The Allstate underwriting division’s foremost objective was to answer the question “What
are the primary determinants of the targets (pure premium, total loss, and loss ratio) among
attributes defined over ALLVAR fields?” Answering this question was not, however, as
straightforward a matter as running MineSet Column Importance after determining the
target and cleaning up the data model. To successfully produce a simple and compre-
hensible classification model, we had to consider joint relevance and be able to explain
why an attribute was important (in rule-based and visual terms). To this end, we devel-
oped a generic pipeline for attribute synthesis, reduction (pre-filtering), transformation,
and subset selection as shown in figure 5. This pipeline is implemented using the D2K
itinerary shown in figure 3, and its core novel component is the genetic wrapper shown in
figure 6.

We have observed that the aggregation method scales well across lines of business (the
indemnity and non-indemnity companies) and states. This was demonstrated using many of
our decision tree experiments and visualizations using ALLVAR-2 samples and subsamples
by state.

Our current and future work includes the following extensions and experiments with the
One Company itinerary:

1. Controlling solution (subset) diversity using niching and crowding methods (Goldberg,
1989)

2. Using Bayesian learning methods to integrate over subsets (Neal, 1996), e.g., combining
solutions from the Pareto-optimal front (Goldberg, 1989)
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3. Extension of Jenesis to bias optimization problems with more degrees of freedom
(e.g., continuous weights; full constructive induction including feature construction and
extraction (Donoho, 1996)).

4. Comparison with parallel, stochastic (non-GA-based) state space search (Kohavi, 1995;
Hsu, 1998; Hsu et al., 2000)

5. Using our data clustering techniques on the prediction problem (inter-tier migration)
and to track concept drift

6. Comparing SOM/LVQ to dimensionality reduction methods such as factor analysis
(FA), principal components analysis (PCA), and AutoClass

7. Adapting incremental clustering methods such as LVQ to take user-specified hyperpa-
rameters

8. (Manual, interactive) rule refinement using the SOM output
9. Automating validation experiments in D2K

10. Experimentation with different histogramming methods as data preparation modules in
D2K

5. System deployment and impact

5.1. Interaction with users

We consulted with the Allstate underwriting division biweekly through the third through
fifth months of the nine-month project and weekly through the sixth through ninth month.
These consultations and preparation of the visualizations constitute 15% of development
time and 25% of overall effort. They were critical in two respects:

1. Assisting the users to understand the exploratory experiments, the classification models,
the use of these models in the performance element (interactive decision support tools
based on MineSet, Clementine, and D2K ), and the data mining process

2. Elicitation of subject matter expertise in Phase I (the first 3 months) on attribute synthesis,
data clustering, and semantics of the data model (especially the data dictionary for
ALLVAR and ambiguities in the classification rule base)

3. Elicitation of user feedback in Phases II and III (the last 4 months) on attribute relevance,
selection criteria (comprehensibility of the decision trees, appropriate overfitting trade-
offs, and utility of decision trees with various test set accuracies for different quantization,
or bin, granularities)

Most important, it was critical to understand the business objective of the underwriting
team: development of an experimental pricing strategy based on several data-driven per-
formance elements (classification models for populations of policies in different lines of
business; churn prediction models; interactive query and visualization; and human-readable
rules). We found that a flexible, diagrammatic work flow model leading up to visualiza-
tion and interactive interpretation, as is used in MineSet (Kohavi, 1998), NeuroSolutions
(Principé and Lefebvre, 1998), and D2K (Auvil et al., 1999), was most useful to the under-
writing team. This allowed us to develop a sustainable data mining system that our research
group could transfer to theirs.
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5.2. Software reuse

Table 11 lists, in roughly chronological order, the tasks completed during the One Company
project over a period of 10 months; the time investment in each phase in terms of develop-
ment weeks and full-time employee equivalents (FTE); overall effort; and computational
resources. Following Brooks’s cautions (Brooks, 1995), we added personnel to the project
only when a task could be clearly delineated as new module development (e.g., Java data
preparation modules, MineSet batch scripts, or the Jenesis component of D2K ). It is also
important to distinguish the effort investment in each task as opposed to the duration of
each task (development time).

We note especially the amortization of effort due to reuse of D2K modules. Data prepa-
ration modules achieve the highest rate of reuse (up to 6:1 across projects managed by the
NCSA Automated Learning Group), but even machine learning modules average 2:1. This
reuse actually reduced the amount of time spent on preprocessing and the efficiency of
interpreting results (and developing the infrastructure of the performance element), so that
30% of the time and 40% of the effort could be devoted to inductive learning research and
development. In our experience, this rate is atypically high.

5.3. Deployed decision support applications

The One Company itinerary was delivered to the Allstate underwriting division over the
10-month development phase (August, 1998–May, 1999) of a project that ran for about
1.5 years. Early consultations on development of ALLVAR-1 occurred during summer, 1998;
final delivery of the performance element and its deployment occurred in mid-September,
1999. The system is currently being used by a new data mining research group in the Allstate
underwriting division; furthermore, this “model-driven pricing” group is implementing the
pipeline and abstract itinerary described in this paper for related decision support applica-
tions, using commodity off-the-shelf KDD packages.

Other NCSA Industrial Partners besides Allstate are currently utilizing the D2K rapid
application development environment for data mining. Currently, Caterpillar has multiple
projects implemented in D2K. For one of the projects, Caterpillar is training 300 engineers
to use the system by the end of the 1999 calendar year. The Sears Home Service Division
is in the process of building a data mining application in D2K. When completed, they plan
to use this system to deliver decision support to their service sites. D2K is also currently
being used to build prototype applications by the Illinois State Government Agencies and
by academic organizations, such as Kansas State University, for education and research.
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Notes

1. In our simplified IBL algorithm, we computed Voronoi cells using the following steps:

1. Compute relative maxima of cluster density on the map (by histogramming the output of SOM-PAK, which
gives the winning map coordinate for each training example), thresholded by a user-specified value (the
minimum number of representative examples—in our case, insurance policies). This technique was also
successful for a project on text document categorization described in Section 5.2.

2. Set the cluster representatives to be these “thresholded peaks”.
3. Compute a Voronoi diagram in one offline pass, using the cluster representatives. By contrast, LVQ (Ko-

honen, 1990) computes this diagram, and the centers of the classifier decision regions, dynamically.

Our simplification allows users to determine the desired number of clusters indirectly, by specifying a runtime
parameter that, as we have found, is often intuitive to the domain specialist: the number of representative data
points needed to constitute a cluster.

2. The simulations were conducted on ALLVAR-2, a second preprocessed data set, only because certain ambiguities
in the rule set resulted from the incomplete data model definition in ALLVAR-1. There is every indication that
the trends seen in both the cluster and tier-based classifiers hold over both data sets.
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