
Information Sciences 163 (2004) 103–122

www.elsevier.com/locate/ins
Genetic wrappers for feature selection
in decision tree induction and
variable ordering in Bayesian
network structure learning

William H. Hsu

Department of Computing and Information Sciences, Kansas State University,

Manhattan, KS 66506, USA

National Center for Supercomputing Applications (NCSA), University of Illinois, Champaign,

IL 61820, USA

Received 8 May 2002; accepted 17 March 2003
Abstract

In this paper, we address the automated tuning of input specification for supervised

inductive learning and develop combinatorial optimization solutions for two such

tuning problems. First, we present a framework for selection and reordering of input

variables to reduce generalization error in classification and probabilistic inference. One

purpose of selection is to control overfitting using validation set accuracy as a criterion

for relevance. Similarly, some inductive learning algorithms, such as greedy algorithms

for learning probabilistic networks, are sensitive to the evaluation order of variables. We

design a generic fitness function for validation of input specification, then use it to

develop two genetic algorithm wrappers: one for the variable selection problem for

decision tree inducers and one for the variable ordering problem for Bayesian network

structure learning. We evaluate the wrappers, using real-world data for the selection

wrapper and synthetic data for both, and discuss their limitations and generalizability to

other inducers.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Bayesian networks; Decision trees; Feature selection; Genetic algorithms;

Inductive bias; Permutation problems; Structure learning; Variable ordering; Wrappers
E-mail address: bhsu@cis.ksu.edu (W.H. Hsu).

0020-0255/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2003.03.019

mail to: bhsu@cis.ksu.edu

104 W.H. Hsu / Information Sciences 163 (2004) 103–122
1. Introduction

This paper presents an input-driven, genetic search-based approach towards

automatically tuning the representation bias of a supervised inductive learning
system. Specifically, we formulate the tasks of selecting and ordering the input

variables as high-level search, then develop accuracy-based evaluation mea-

sures for classification and probabilistic inference that we can apply toward

heuristic search. The combinatorial growth of the search space in the number

of input variables n (2n for variable selection, n! for the permutation problem of

variable ordering) requires an informative heuristic. We therefore examine

criteria such as accuracy, model complexity, and task-specific measures, to

develop a flexible fitness function that can express a linear combination of these
criteria. We also consider how coefficients for these criteria can be empirically

calibrated for specific learning and inference problems. Having developed such

a flexible fitness function and a validation-based evaluation method, we seek to

incorporate these into an efficient, parallel, search-based wrapper.

We justify the implementation of this wrapper using a genetic algorithm

(GA) as follows. The size of the search spaces indicates a need for parallel

search. The deceptiveness [13] of the fitness function indicates a need for sto-

chastic search and for a global optimization technique in the general case.
Given these desiderata, the breadth of the feasible search frontiers in practice

suggests that a way to recombine abstractions of good solutions may further

improve efficiency. Finally, the coding of these specifications, as bit vectors for

variable subsets and permutations for variable orderings, is a natural repre-

sentation for GAs that makes it easy to define and compare search operators.

To enable a GA or other combinatorial optimization system to search the

bias space, the space of input specifications such as variable subsets or

orderings, we adapt a flexible, composite fitness measure. Inductive learning
systems that search bias space or otherwise control high-level parameters using

validation performance of a primitive inducer are called wrappers [21]. Recent

research applying GA-based wrappers to feature selection for overfitting

control in decision trees [5,20], instance-based learning using k-nearest neigh-
bors [28], and multilayer perceptrons [15] has shown that many inducers can be

‘‘wrapped’’ using this methodology. We present a template for a generic, GA-

based wrapper as shown in Fig. 1 and show how it provides a parallel

stochastic search mechanism for loss-minimizing input specifications––specifi-
cally, variable subsets and orderings.

In this paper, our aim is to generalize loss beyond classification accuracy-

based fitness. We shall do this first by examining a GA-based selection wrapper

and its adaptation to structure learning in Bayesian networks, where loss is

measured as error in probabilistic inference rather than classification error.

Although the fitness function we evaluate in this work is accuracy-driven, we

consider its possible extension to minimum description length (MDL) criteria.

[2] Representation Evaluator
for Learning Problems

Genetic Wrapper for Change of Representation
and Inductive Bias Control

D: Training Data

: Inference Specification

Dtrain (Inductive Learning)

Dval (Inference)

[1] Genetic Algorithm

α

Candidate
Representation

f (α)
Representation

Fitness

Optimized
Representation

α̂

eI
v

Fig. 1. Abstract system design overview.

W.H. Hsu / Information Sciences 163 (2004) 103–122 105
2. Background

Consider a typical classification or probabilistic reasoning environment, as

shown in Fig. 2, where inductive learning of a classifier or graphical model ½A�
is a first step. The input to this system includes a set D of training data vectors

x ¼ ðx1; . . . ; xnÞ each containing n variables. An input specification a may also

be given as input, indicating which variables are to be considered by the

inductive learning algorithm and in what order they are to be scored. The

structure learning component of this system produces a hypothesis h that
classifies instances or describes the dependencies among partially observed Xi

(in the case of a graphical model). The inferential performance element ½B� of
this system takes h and a new data set Dval of vectors drawn from the desired

inference space and applies h to produce the output. In classification, this is a

single prediction hðxÞ per instance x; in probabilistic inference, only a subvector

E of X ¼ ðX1; . . . ;XnÞ is observable, and h is applied to infer the remaining

unobserved values X n E. We denote the indicator bit vector for membership in

E by Ie––in classification this consists of all but one variable, the target output
cðxÞ. The performance criterion f is the additive inverse of the (classification,

inferential, or utility) loss of ½B�.
In this section we specify the functionality of ½A� and ½B� in a selection

wrapper for decision tree induction and an ordering problem for Bayesian

[2] Representation Evaluator
for Learning Problems

Ie : Evidence Specification →

Dtrain (Model Training)

Dval (Model Validation by Inference)

f (α)

Representation Fitness
(Inferential Loss)

[B] Validation
(Measurement
of Inferential

Loss)

h
Hypothesis

[A] Inductive Learning
(Parameter Estimation

from Training Data)

α

Candidate
Representation

Fig. 2. Model evaluation environment, module {2} from Fig. 1.

106 W.H. Hsu / Information Sciences 163 (2004) 103–122
network structure learning. We then explain the derivation of a generic fitness

function f as a function of the input specification a. In the next section, we

show how the environment depicted in Fig. 2 is used as the fitness evaluation

module {2} of the overall GA-based system (Fig. 1). The overall output a
_
of

Fig. 1––a set of selected variables or a reordering––is evaluated using a second

holdout segment, Dtest.
2.1. Variable selection in overfitting control

The variable selection problem is alternatively known as that of attribute

subset selection [19], feature subset selection, and variable elimination; it is one
case of relevance determination [21]. Our bias space is simply the power set of

variables. Kohavi [21] developed a wrapper based upon deterministic best-first

search, using validation set accuracy, that is used in the machine learning li-

brary MLC++ to select variables for many inducers (ID3, C4.5, CN2, Na€ıve
Bayes, IBL, PEBLS, etc.). One purpose of variable selection is to prevent

overfitting by using the validation set accuracy of an inducer to pre-prune

variables that are irrelevant (not weakly relevant) [21]. As we document in our

experimental section, we implemented two GA wrappers for variable selection:
Grefenstette’s simple GA [14] and Guerra-Salcedo and Whitley’s CHC [15]. We

observed that these wrappers are competitive with deterministic best-first

W.H. Hsu / Information Sciences 163 (2004) 103–122 107
search-based wrappers and in addition are less likely to over-prune, but are

also less stable and require many more fitness evaluations.

2.2. Learning Bayesian network structure

Consider a finite set v ¼ fX1; . . . ;Xng of discrete random variables. A

Bayesian network is an annotated directed acyclic graph G ¼ ðV ;EÞ that en-

codes a joint probability distribution over v. The nodes of the graph corre-

spond to the random variables X1; . . . ;Xn. Each node is annotated with the
conditional probability distribution (CPD) that represents P ðXi jPaxiÞ, where
Paxi denotes the parents of Xi in G. A Bayesian network B specifies a unique

joint probability distribution over v given by
1 Th

paper;
P ðX1; . . . ;XnÞ ¼
Yn
i¼1

P ðXi jPaxiÞ: ð1Þ
The graph G represents conditional independence properties of the distri-

bution. These are theMarkov independencies: each variable Xi is independent of

its non-descendants, given its parents, in G [9]. We denote the annotating CPD

parameters of B by H; thus, B ¼ ðV ;E;HÞ.
We are interested in learning B from training data D consisting of examples

x. The input to this system includes a set D of training data vectors
x ¼ ðx1; . . . ; xnÞ each containing n variables. If the structure learning algorithm

is greedy, an ordering a on the variables may also be given as input. The

structure learning component of this system produces a graphical model

B ¼ ðV ;E;HÞ that describes the dependencies among Xi, including the condi-

tional probability functions. The inferential performance element ½B� of this

system takes B and a new data set Dval of vectors drawn from the desired

inference space, where only a subvector E of X ¼ ðX1; . . . ;XnÞ is observable,

and infers the remaining unobserved values X n E. We denote the indicator bit
vector for membership in E by Ie. The performance criterion f is the additive

inverse of the (inferential or utility) loss of ½B�. For simplicity, we assume that

there are no variables that are latent or completely irrelevant (not weakly

relevant [21]). The objective of structure learning is then to find the arcs E for

V ¼ v. Some structure learning algorithms, such as K2 [6], are greedy in that

they add arcs based upon the incremental gain that each single arc induces in a

global score, such as the Bayesian (Dirichlet) score. 1 We use K2 for structure

learning––module ½A� of Fig. 2––because it finds structures quickly if given a
reasonable ordering a. Variables must occur ‘‘upstream’’ from one another (or

‘‘downstream’’ in a, i.e., have a higher index) to be considered as candidate
e definition and properties of the Dirichlet scoring function are beyond the scope of this

for brevity, we refer the interested reader to [6,11].

108 W.H. Hsu / Information Sciences 163 (2004) 103–122
parents. If the number of parents per variable is constrained to a constant

upper bound, K2 has worst-case polynomial running time in the number n of

variables.

Two clear limitations of greediness are inability to backtrack (i.e., undo the
addition of an arc) or consider the joint effects of adding multiple arcs (par-

ents). This is why greedy structure learning algorithms are sensitive to the

presence of irrelevant variables in the training data, a pervasive problem in

machine learning [21]. Additionally, K2 is particularly sensitive to the variable

ordering because arcs fail to be added, resulting in unexplained correlations,

whenever candidate parents are evaluated in any order that precludes a causal

dependency. Were a gold standard structure G� ¼ ðV ;E�Þ available, this would
be seen as an inversion in the partial ordering induced by E�. Preventing
missing arcs––i.e., ‘‘false negatives for causality’’––is a challenge in structure

learning as applied to causal discovery [11,27].

Unfortunately, just as finding the optimal structure is itself intractable [18],

so is finding the optimal ordering of inputs for a given structure learning

algorithm. Searching the space of permutations of variables is prohibitive, and

defeats the purpose of using a greedy algorithm. In this paper, we focus on K2
and the problem of optimizing the variables to be given as its input. To specify

the optimization of variable order as a search problem, we must define the
states (permutations), operators (re-ordering), initial candidates, and evalua-

tion criterion.

Previous work on using genetic algorithms for Bayesian network structure

learning includes that of Larra~naga et al., who represented network structure

using adjacency matrix (bit strings) with ordering constraints. In this work,

Larra~naga et al. [22] noted the sensitivity of greedy score-based methods and

GAs to variable ordering. Our adaptation wraps the score-based approach

within a permutation GA but focuses on the ordering problem. This approach
admits other fitness measures (e.g., marginal likelihood scores) besides the

inferential loss estimators discussed in the following section.

2.3. Validation by inference

A desired joint probability distribution function PðXÞ can be computed
using the chain rule for Bayesian networks, given above in Eq. (1). The most

probable explanation (MPE) is a truth assignment, or more generally, value

assignment, to a query Q ¼ X n E with maximal posterior probability given

evidence e. Finding the MPE directly using Eq. (1), requires enumeration of

exponentially many explanations. Instead, a family of exact inference algo-

rithms known as clique-tree propagation (also called join tree or junction tree

propagation) is typically used in probabilistic reasoning applications. The first

of these algorithms was developed by Lauritzen and Spiegelhalter [23,26].
Although exact inference is important in that it provides the only completely

W.H. Hsu / Information Sciences 163 (2004) 103–122 109
accurate baseline for the fitness function f , the problem for general BNs is #P-

complete (thus, deciding whether a particular truth instantiation is the MPE is

NP-complete) [7,30].

Approximate inference refers to approximation of the posterior probabili-
ties given evidence. One stochastic approximation method called importance

sampling [4] estimates the evidence marginal by sampling query node instan-

tiations:
PðE ¼ eÞ ¼
X
XnE

PðX n E jE ¼ eÞ ð2Þ
Chen and Druzdzel [4] discuss basic variants of importance sampling. These
include probabilistic logic sampling, whose importance function is the joint

distribution function PðXÞ. By sampling from the network as if no evidence

were given, the priors on source or root nodes are emphasized, resulting in a

possibly suboptimal importance function as the authors point out. The source

priors are similarly emphasized in forward simulation by likelihood weighting,

which samples using the joint probability of query nodes as the importance

function
PðX n EÞ ¼
X
x 62e

P ðxi jPaxiÞ ð3Þ
Welch [29] demonstrates that even a moderately complex binary network

with deterministic nodes, approximately the size of ALARM, can be difficult to
sample from by pure forward sampling if there are enough query nodes (evi-

dence)––the author instantiates 4 of 32 binary nodes with a moderately un-

likely evidence vector, PðeÞ ¼ 6:5 � 10�4.

One way of scaling up to large networks in a realistic probabilistic reasoning

application is to dynamically adapt the importance function. Cheng and

Druzdzel [4] presents a solution of this type called adaptive importance sampling

(AIS), where a dynamic importance function is first initialized using structural

heuristics, then empirically trained in each of several training steps. This is
similar to the hyperparameter sampling stages in Markov chain Monte Carlo

(MCMC) methods [25]. The key issue is whether we have any prior knowledge

regarding the estimators (e.g., heuristic importance functions).

We have implemented five variants of importance sampling: forward sim-

ulation, logic (aka rejection) sampling, backward sampling, self and heuristic

importance sampling, and adaptive importance sampling. Because adaptive

importance sampling has been empirically shown [4] to be more robust in the

presence of unlikely evidence e, and because we have found it to converge
quickly in independent experiments, we use it in our evaluation component,

module ½B� in Fig. 2.

110 W.H. Hsu / Information Sciences 163 (2004) 103–122
2.4. Deriving fitness

To optimize the ordering, we considered fitness functions with three

objective criteria. In this paper, however, we focus solely on the first:
Inferential loss. Quality of the network produced by K2 as detected through

inferential loss evaluated over a holdout validation data set Dval � D n Dtrain

(see Fig. 1)––requires modules ½A� and ½B� in Fig. 2.

Model loss. ‘‘Size’’ of the network under a specified representation––requires

module ½A� only and is independent of ½B�.
Ordering loss. Inference and model-independent measure of data quality

given only D and a––independent of both modules ½A� and ½B�.
PðX n EÞ ¼
X
x 62e

P ðxi jPaxiÞ ð3Þ

f ða;D; I
*

eÞ ¼ a � faða;D; I
*

eÞ þ b � fbða;DÞ þ c � fcða;DÞ ð4Þ

f BN
a ða;D; I

*

eÞ ¼ 1�

ffi
1P

Xi2XnE ai

X
Xi2XnE

Xai
j¼1

ðP 0ðxijÞ � PðxijÞÞ2
vuut ð5aÞ

f DT
a ða;DÞ ¼ 1� mcorrect

mval
ð5bÞ
where
mcorrect � h:classification-accuracyðDval:selectðaÞÞ
h � h0:trainðDtrain:selectðaÞÞ
mval � jDvalj

f BN
b ða;DÞ ¼ 1�

Pn
i¼1 ai �max

Q
jXj2Paxi j

aj; 1
� �� �

Qn
i¼1 ai

ð6aÞ
where
ai � arityðXi;B ¼ ðv;E;HÞÞ
ðE;HÞ ¼ K2ða;DtrainÞ

f DT
b ða;DÞ ¼ 1� h:sizeð Þ

smax

e:g:; smax ¼ m ð6bÞ

f DT
c ðaÞ ¼ 1� jaj

n
ð7Þ

aþ bþ c ¼ 1 ð8Þ
In related work on genetic wrappers for variable selection in supervised
inductive learning, we adapted Eq. (4) [19,20] from similar fitness functions

W.H. Hsu / Information Sciences 163 (2004) 103–122 111
developed by Cherkauer and Shavlik [5] for decision tree pre-pruning, Raymer

et al. [28] for similarity-based learning (k-nearest neighbor regression), and

Guerra-Salcedo and Whitley [15] for connectionist learning. This breadth of

applicability demonstrates the generality of simple genetic algorithms as
wrappers for performance tuning in supervised inductive learning.

Recently, we automatically validated the coefficients a, b, and c for several

individual data sets on a supervised learning task [20]. Results were positive in

that this approach found application-specific values for these GA parameters, 2

and the GA achieved better generalization accuracy than deterministic best-

first search-based feature selection wrappers [21] for a real-world test bed (risk

category classification and loss prediction in commercial data mining). Con-

trolling the values of a, b, and c simultaneously proved to be difficult in that
large amounts of validation data were required, and the authors report that

experiments did not indicate conclusively whether the GA performed better

with this single composite-objective fitness function or a multi-objective one

(i.e., Pareto optimization). Therefore, for clarity, we set b and c to 0 to ignore fb
and fc in the experiments reported in this paper. In the last section, we discuss

the ramifications of this design choice and possible future work using the full f .
We now focus on the first term, fa. This fitness function computes inferential

loss by measuring the predictive power of the Bayesian network on the data set
given a specification of evidence, Ie. The specific fa we use is the normalized

additive inverse of the root mean squared error (RMSE), which is the square

root of the sum of squared differences between the sampled, approximate

probabilities P 0ðxijÞ and exact probabilities P ðxijÞ, over states xij of variables Xi

[4]. Note that fa is the only term that depends on which variables are ob-

servable, i.e., members of E. We consider this the most important term just as

validation set classification error is considered a typical estimator of general-

ization error in supervised classification learning [24]. Ultimately, a BN B is
only as good as the inferences it can produce on real-world data given realistic

evidence e, and an ordering a is only as good as the BN that it can induce given

a specific structure learning algorithm. In the next section, we explain why this

is a motivation for GA wrappers in general.
3. Searching for variable subsets and orderings in learning

Fig. 1 indicates the role of a combinatorial optimization system for

controlling a, in context: a probabilistic reasoning system based on greedy
2 We distinguish between parameters of the genetic algorithm, such as these fitness function

coefficients, and those that are learned by the wrapped inducers. Neal [25] refers to parameters

governed by an outer stochastic proposal distribution as hyperparameters, but for simplicity we use

the term (GA) parameter.

112 W.H. Hsu / Information Sciences 163 (2004) 103–122
structure learning can use an optimized ordering â to enhance structure quality.

This is done by searching for a good a using a ‘‘realistic’’ inferential criterion

and a fixed, greedy structure learning algorithm such as K2. We now explore

this combinatorial optimization problem and the design of our specific GA.
3.1. Wrapper approaches: controlling input to enhance supervised learning

Tuning machine learning algorithms for large, complex data sets is an

expensive and difficult task. In addition to identifying the appropriate inputs

for a particular classification or inference performance element, the system

designer must find a representation for hypotheses, i.e. the language for

expressing the target concept, and a suitable performance measure by which to

evaluate hypotheses. Making appropriate decisions regarding the input speci-

fication is crucial for tractable learning, because these determine part of the

inductive bias [1,24] of the learning system. Bias, the preferences of a learning
system for one hypothesis over another other than those dictated by consis-

tency with the training data, determines how the space of hypotheses (in our

application, BN structures) is to be searched and can radically affect the

tractability of this search. Unfortunately, effective decisions often depend in

subtle ways upon the learning algorithm, training data, and their interaction. A

mechanism for systematically identifying good inputs should take the perfor-

mance element of the system input into account. 3 It must have the ability to

tune the learning system by automatically adjusting some aspect of the input
specification (e.g., selected variables, aka feature subsets, or variable orderings

a) and coefficients for quantitative inductive bias such as those discussed

previously. Controlling all of these parameters, while keeping the machine

learning system efficient and manageable, is not easy.

We approach this problem in BN structure learning by applying search-

based combinatorial optimization and use validation by inference (presented in

the previous section) as a search heuristic. The high-level mechanisms that

determine a learning system’s representation and preference biases can be ex-
pressed using GA parameters such as a. Just as a parameter of an inducer

denotes a trainable component of a pattern detector or classification function,

a parameter of the GA denotes a controllable component of the organization,

representation, or search algorithm for a learning problem. Inductive learning

systems, or inducers, are built with such parameters and the ability to tune
3 The term wrapper as used in machine learning [21] simply refers to this property, wherein the

combinatorial optimization system ‘‘wraps around’’ a specific inductive learning and classification

or inference ensemble such as the one shown in Fig. 2. In the genetic and evolutionary computation

literature, as we note below, wrappers for tuning GA parameters have been in use for quite some

time [2,8,16].

W.H. Hsu / Information Sciences 163 (2004) 103–122 113
them using combinatorial search, based upon evaluation metrics over valida-

tion data. The benefits to probabilistic learning and reasoning are the potential

for greater flexibility in learning processes, an increase in generalization

quality, and the ability to make the learning component more automatic and
transparent.

3.2. GA-based wrappers

A GA is ideal for implementing wrappers where parameters are naturally

encoded as chromosomes such as bit strings or permutations. This is precisely
the case with variable (feature subset) selection, where a bit string can denote

membership in the subset, and with variable ordering, where a permutation

denotes a, the order in which nodes are added to the BN. Both of these are

methods for inductive bias control where the input representation is changed

from the default [1]––here, the full subset v or an arbitrary ordering a0.

With a GA-based wrapper, we seek to evolve parameter values using the

performance criterion of the overall learning system as fitness. In learning to

classify, this may simply mean validation set accuracy. However, as we have
noted, many authors of GA-based wrappers have independently derived cri-

teria that resemble minimum description length (MDL) estimators––that is, they

seek to minimize model size and the sample complexity of input as well as

maximize generalization accuracy [5,15,20,28].

An additional benefit of GA-based wrappers is that it can automatically

calibrate ‘‘empirically determined’’ constants such as the coefficients a, b, and c
introduced in the previous section. As we noted, this can be done using indi-

vidual training data sets rather than assuming that a single optimum exists for
a large set of machine learning problems. This is preferable to empirically

calibrating parameters as if a single ‘‘best mixture’’ existed. Even if a very large

and representative corpus of data sets were used for this purpose, there is no

reason to believe that there is a single a posteriori optimum for GA parameters

such as weight allocation to inferential loss, model complexity, and sample

complexity of data in the variable selection wrapper.

Finally, GA wrappers can ‘‘tune themselves’’––for example, the GA-Based

Inductive Learning (GABIL) system of DeJong et al. [8] learns propositional
rules from data and adjusts constraint parameters that control how these rules

can be generalized. Mitchell [24] notes that this is a method for evolving the

learning strategy itself. Many classifier systems also implement performance-

tuning wrappers in this way [2]. Finally, population size and other constants

for controlling elitism, niching, sharing, and scaling can be controlled using

parameterless GAs [16].

We adapted GAJIT [10], a Java shell for developing genetic algorithms,

to implement a GA for the permutation problem of ordering variables
for Bayesian network structure learning (using K2) and inference (using the

114 W.H. Hsu / Information Sciences 163 (2004) 103–122
Lauritzen–Spiegelhalter junction tree algorithm [23,26] and AIS [4]). We now

specify the ordering problem and, in the next section, present the permutation

GA design.

3.3. Ordering and structure learning problems

The ordering problem itself is a straightforward search in permutation space

A for a value of a that minimizes the inferential loss or maximizes its nor-
malized, additive inverse, fa. Some simple combinatorial analysis illustrates the

relative complexity of the ordering and structure learning problems.

Clearly jAj ¼ n! if we suppose that there are no latent or irrelevant variables.

From Stirling’s approximation, we can estimate that jAj � 2nlgn. Meanwhile,

we know that all elements of structure space are directed acyclic graphs,

containing some subset of the n2 possible directed edges. The size of structure

space is thus in Oð2n2Þ. Note that this includes all directed graphs and is

therefore an overestimate. Taking the asymptotic ratio of these two counting
functions, however, we see that in the limit, there are infinitely many possible

structures for each ordering. K2, which is deterministic, finds just one such

structure, so it is not guaranteed that finding a loss-minimal ordering a will

cause it to produce a loss-optimal network B, particularly for very large n.
However, Friedman et al. [12] hypothesize that searching ordering space pro-

vides a useful change of representation [1] that tends to admit smoother

interpolation than in structure space. In evolutionary computation terms, this

would mean that ordering space is less deceptive [13] than structure space.
4. Permutation GA for ordering

4.1. Selection GA: searching the power set

The coefficients a, b, and c have been hand-calibrated in several previous

GA selection wrappers [5,28]. There is, however, no evidence to indicate that

these coefficients should be constants for any particular inducer over all data

sets, nor even that keeping them constant throughout the execution of a GA
results in an effective fitness criterion.

We reimplemented Grefenstette’s simple GA Genesis and Guerra-Salcedo

and Whitley’s CHC [15] in Java and used them to drive wrappers as shown in

Fig. 1, where a is coded as a bit string denoting inclusion of a variable in the

input schema of an inducer (that is, the data set D is projected to include only

columns of data indicated by a). Selection is fitness-proportionate, crossover is

uniform in CHC and single-point Jenisis (the Java port of Grefenstette’s simple

GA Genesis [14]), and mutation is single-bit inversion. No niching, sharing, or
elitism is applied. For several individual data sets on a supervised learning task,

W.H. Hsu / Information Sciences 163 (2004) 103–122 115
we experimented with a range of preset values for a, b, and c, finding data sets

where the published defaults of a ¼ 0:75, b ¼ 0:125, and c ¼ 0:125 outper-

formed all other weights and some where they did not [20]. As summarized

below, this simple GA achieved better generalization accuracy than search-
based feature selection wrappers [21] for a real-world test bed.

We pause to discuss the choice of crossover operator. Caruana et al. [3]

discuss the ramifications of positional bias in single-point crossover, which

tends to preserve locality of bits. In variable selection, the original variables are

best regarded as an unordered set of variables. This bias is mitigated by uni-

form and shuffle crossover, hence the use of uniform crossover in CHC [15] and

majority of our experiments.

4.2. Permutation GA: searching ordering space

The criterion fa is computed by actually learning a BN B ¼ K2 ða;DtrainÞ––
more precisely ðE;HÞ ¼ ða;DtrainÞ.

E is computed by K2, which makes a single pass through a (a permutation of

v ¼ fX1; . . . ;Xng) and, for each Xi, considering only Xj where aðjÞ > aðiÞ as a
potential parent of Xi in E. It then adds Xj to Paxi by adding (Xj;Xi) to E if and

only if this increases the Dirichlet score of Paxi , evaluated over Dtrain. This

continues until: the set of Xj is exhausted, no single parent can be added to

incrementally increase the score, or a preset (or automatically calibrated) limit

on the size of Paxi in E is reached. For discrete BNs, H is computed simply by

populating the specified conditional probability tables (CPTs) with frequencies

computed using Dtrain. Once B is fully learned, each example in Dval � D n Dtrain

is masked with Ie and its complement to obtain separate evidence and query
data. The inferential loss fa is computed as specified in the previous section.

The ordering problem is a combinatorial search in A using fa as a heuristic.

Application of genetic algorithms to permutation problems is discussed in

[13] and [17]. The design of the GAJIT wrapper illustrated in Fig. 1 is as fol-

lows.

We implemented an elitist permutation GA purely by extending the GAJIT

classes using order crossover (OX) [17]. OX exchanges subsequences of two

permutations, displacing duplicate indices with holes. It then shifts the holes to
one side, possibly displacing some indices, and replaces the original subse-

quence in these holes. If two parents p1 ¼ ½346215� and p2 ¼ ½415326� are
recombined using OX, with the crossover mask underlined, the resulting

intermediate representation is i1 ¼ ½- -5314� and i2 ¼ ½- -6241�, and the off-

spring are o1 ¼ ½625314� and o2 ¼ ½536241�. Mutation is implemented by

swapping uniformly selected indices. Cataclysmic mutation can easily be

implemented using a shuffle operator, but we did not find this necessary.

The master controller for our GA runs in a Java virtual machine. It manages
slaves that concurrently evaluate members of its population a. Each individual

116 W.H. Hsu / Information Sciences 163 (2004) 103–122
is encoded as a permutation of the indices f1; . . . ; ng. Slave processes distrib-

uted across (4–48 processors) of a distributed-shared memory (DSM) compute

cluster run identical copies of the K2 and inference-based application depicted

in Fig. 2. Each evaluates the ordering it is given by learning B from Dtrain, a
holdout segment of D (2/3 by default) and returns fa for the validation set

Dval � D n Dtrain. The master GA collects the fitness components for all mem-

bers of its population and then computes f (here, f ¼ fa).
5. Experimental results and evaluation

We developed a real-world data set as part of a commercial data mining test

bed [20]. This data set consists of 350 aggregate training examples (divided into

5 folds of 70 examples each) representing 350 000 customer records and con-

taining 100 input attributes. Some feature construction steps reported in [20]

were applied to reduce an original 471 attributes to these 100.
Results for this data set using ID3 are shown in Table 1, for 5-fold cross

validated runs. Although the average prediction accuracy for the simple GA is

higher than those for FSS and the unwrapped inducer, we found that the actual

subsets found by FSS and simple GA (SGA) across folds are not stable (that is,

they overlap in only 5–6 variables between any two subsets). The effectiveness

of the GA wrapper approach for inducing decision trees, is therefore not

conclusive, though it is still possible to adapt bagging or rule post-pruning to

obtain a coherent classifier as output.
We have ported the MLC++ base classes and the ID3 and Na€ıve Bayes

inducer into a Java edition called MLJ and incorporated Quinlan’s C4.5 into

this code base. Continuing with experimentation using GA selection wrappers,
Table 1

5-fold cross-validation error for simple GA versus FSS, on commercial data set

Cross-validation segment

0 1 2 3 4 Mean S.D.

Training set

accuracy

(%)

ID3 100.0 100.0 100.0 100.0 100.0 100.0 0.00

FSS-ID3 55.00 54.29 67.86 50.36 60.71 57.64 6.08

Jenesis 65.71 67.14 71.43 71.43 55.71 66.29 5.76

Test set

accuracy

(%)

ID3 41.43 42.86* 28.57 41.43 44.29 39.71 5.67

FSS-ID3 48.57* 35.71 24.29 47.14 54.29 44.00 7.74

Jenesis 41.43 42.86* 31.43* 52.86* 55.71* 44.86 8.69

Attributes

selected

ID3 35 35 37 40 35 36.40 1.96

FSS-ID3 7 8 7 13 18 10.60 4.32

Jenesis 20 19 22 20 23 20.80 1.47

W.H. Hsu / Information Sciences 163 (2004) 103–122 117
we ported the CHC wrapper of Guerra-Salcedo and Whitley [15] into Java and

adapted it to perform selection. CHC is a more sophisticated GA, featuring

options such as cataclysmic mutation (where diversity is maintained through

population-wide perturbation).
The CHC wrapper also achieves results comparable to Kohavi’s FSS when

wrapped around both ID3 and C4.5, and outperforms it on some data sets

from the Irvine Machine Learning Database repository, as shown in Table 2.

We observed that in two of the data sets––Anneal and Credit––the CHC

wrapper consistently outperformed the MLC++ FSS wrapper using both ID3

and C4.5. Five of the cases were not entirely conclusive: Breast, Hypothyroid,

Mushroom, Pima and Solar. In two cases (Hypothyroid and Solar), CHC

showed an insignificant advantage; and in one (Mushroom), the outcome was
tied. For Mushroom, the FSS wrapper is (notoriously) known to hurt perfor-

mance slightly due to overselection; CHC simply achieves 0% test set error and

is competitive with the unwrapped inducer with slightly higher (nonzero)

variance. It appears that all variable selection tends to hurt generalization

accuracy in Anneal. Finally, performance by CHC is markedly worse than that

of both unwrapped and FSS-wrapped ID3 on the toy problems Monk1 and

Monk3. Though this record is mixed, is important to note that except for the

Monk’s problems, the CHC wrapper tends to boost or maintain the perfor-
mance of at least one of the inducers.

Generally, the CHC wrapper is competitive with best-first search-based FSS

using population size 100 after 10–100 generations. We did note instability (i.e.,

failure to converge) in nearly all cases where CHC underperforms an un-

wrapped or FSS-wrapped inducer.

An example curve for validation set accuracy is shown in Fig. 3, showing the

fitness (dominated by the training error term) for CHC-ID3. This plot depicts a

run with population size 100 and 100 generations. We note that the cases where
Table 2

Comparison of unwrapped inducer (ID3 and C4.5), feature subset selection (FSS) wrapper from

MLC++, and CHC genetic wrapper (population size 100, 100 generations)

Data set ID3 C4.5 FSS-ID3 FSS-C4.5 CHC-ID3 CHC-C4.5

Anneal 0.00± 1.24 11.33± 1.83 0.67± 0.47 10.33±1.76 0.00± 0.45a 1.00± 1.45

Breast 5.58± 1.51 4.29± 1.33a 5.58± 1.51 4.29±1.33a 5.15± 0.78 4.72± 1.15

Credit

(CRX)

27.50± 3.17 17.50± 2.69 17.50± 2.69 18.00±2.72 17.00± 1.73 15.50± 1.68a

Hypothyroid 0.95± 0.30 0.76± 0.27 1.23± 1.34 0.76±0.06 0.94± 0.05 0.75± 0.06a

Monk1 18.98± 1.89 24.31± 2.07 2.78± 0.79a 11.11±1.51 27.77± 0.90 25.00± 7.51

Monk3 8.33± 1.33 2.78± 0.79a 2.78± 0.79a 2.78±0.79a 25.00± 3.31 2.78± 11.38

Mushroom 0.00± 0.00a 0.00± 0.00a 0.19± 0.00 0.19±0.83 0.00± 0.03 0.00± 0.03

Pima 29.30± 0.85 23.83± 2.67 29.69± 2.86 20.70±2.54a 28.90± 0.98 24.60± 3.89

Solar 27.78± 4.33 26.85± 4.28 27.78± 4.33 31.48±4.49 26.85± 2.65a 26.85± 2.95

aDenotes best result.

Fig. 3. Training error curve plotted over 100 generations of CHC-ID3 run, population size 100, for

the Wisconsin breast cancer set. Lower is better.

118 W.H. Hsu / Information Sciences 163 (2004) 103–122
CHC-wrapped decision tree inducers outperform or are competitive with the
FSS-wrapped ones include larger real-world data sets such as Breast, Credit

(CRX), and Hypothyroid for knowledge discovery in databases (KDD), by

contrast with the synthetic data sets. In the case of Credit, we found that the

fitness improved steadily and was already outperforming that of FSS, but

cataclysmic tended to wipe out this progress.

For the ordering GA, we conducted a series of experiments using data

simulated from the well-known toy BN Asia [26], which has eight nodes. This is

a very simple network to perform inference on when the structure is known a
priori, but the permutation space––which we are searching using only f and the

synthetic data––has 8!¼ 40320 orderings.

Table 3 summarizes experimental results (validation set accuracy) achieved

using the experimental platform described in the previous section. Fig. 4 shows

the average-fitness curve for Asia using the GAJIT wrapper. We generated 5000

samples using forward sampling for Dtrain and 1000 for Dval. The GA with OX

and swap-mutation improves the ordering to within 0.01 of the optimum

RMSE (about 0.95, calculated using exact inference to compute the marginals
on the data), which is the average of best results achieved by AIS, over 10 trials.

Table 3

Results for Asia data set (5000 training, 1000 validation samples per f , AIS update every 100

samples)

Population size Generations Average f over run Best f , final gen

10 10 0.8864 0.9313

10 100 0.9116 0.9316

0.7

0.75

0.8

0.85

0.9

0.95

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Fig. 4. GA fitness curve over 100 generations for Asia data set (5000 training, 1000 validation

samples per f , AIS update every 100 samples).

W.H. Hsu / Information Sciences 163 (2004) 103–122 119
As the fitness curve shows, the GAJIT wrapper reaches 0.932 rather quickly.

The highest fitness achieved by the wrapper on any run is 0.964, and inspection

shows that the corresponding ordering has only one inversion from the

canonical one given by Neapolitan [26]. This inversion is consistent with

the partial ordering of the canonical B, which means that K2 can still produce

the best possible structure from it.
6. Discussion and future work

Slightly positive results for the SGA and positive results for CHC indicate

that an accuracy-based fitness function can be used to drive a GA wrapper for
variable selection. We are continuing to collect results to test scalability to data

sets with more variables, a known issue in GA-based optimization, and to tune

the fitness coefficients. The key remaining goal, however, is to better under-

stand how possibly differing input specifications produced by a variable

selection module on different cross-validation folds or samples can be com-

bined.

Positive preliminary results for the Bayesian network ordering GA indicate

that for small networks, the ordering can indeed be optimized. Scalability is a
very significant concern here but is currently limited by severe computational

120 W.H. Hsu / Information Sciences 163 (2004) 103–122
bottlenecks in the module for validation by inference. We have considered

several continuations of this research: validation, scalability, and comparison

to other structure learning methods and permutation GAs.

Validation is currently performed by running AIS for precisely 1000 samples
with an importance function update every 100 samples, and this is repeated to

find the fitness of the best ordering â found by the generational GA. Future

experiments shall run K2 with a range of Dtrain sizes to generate a learning

curve, and run AIS longer with â to get a more accurate evaluation. We have

focused in this paper on the general case, where the gold standard network may

not be known, but when it is, one can use graph edit distance between the BN

induced by â and the gold standard as a validation measure [6].

We plan to explore the scalability of the GA wrapper by experimenting with
larger networks (such as ALARM, Pathfinder, and CPCS) with which we have

already tested AIS and K2 as individual components. When used in a GA,

which may evaluate fitness thousands to millions of times for this problem,

these primitives become bottlenecks. To make the wrapper feasible, it will be

necessary to parallelize K2 and AIS.

There are several algorithms besides greedy search for structure learning,

such as deterministic score-based (sparse candidate, Tabu search) methods,

constraint-based methods, stochastic sampling in structure space by direct
(non-greedy) global optimization and stochastic sampling in ordering space (to

determine structure, without using a greedy algorithm such as K2 as an

intermediary). These are often less sensitive to variable ordering but may still

be affected by it. In continuing work, we plan to compare our GA wrapper to

these techniques. Finally, the following are promising variants of the GA that

are high experimental priorities: Pareto optimization of (fa, fb, fc) and exper-

imentation with other permutation mutation and crossover operators (partially

matched and cycle crossover).
Acknowledgements

Support for this research was provided in part by the US National Science

Foundation (NSF) under cooperative agreement 9874732 (NSF EPSCoR First

Award) and by the US Office of Naval Research (ONR) under grant N00014-
01-1-0917. The author thanks Haipeng Guo, Roby Joehanes, Benjamin B.

Perry, and Julie A. Thornton, for development assistance with the Bayesian

network structure learning, inference, and variable ordering GA components;

Cecil P. Schmidt, James A. Louis, Matt A. Durst, and James W. Plummer, for

reimplementing the ID3, C4.5, Na€ıve Bayes inducers and CHC wrapper in

Java; and Thomas Redman and David Clutter for implementing NCSA D2K

and assisting with development of the SGA wrapper. Finally, the author

W.H. Hsu / Information Sciences 163 (2004) 103–122 121
thanks the anonymous reviewers for helpful comments and for suggestions

regarding GA design and experiments.
References

[1] D.P. Benjamin (Ed.), Change of Representation and Inductive Bias, Kluwer Academic

Publishers, Norwell, MA, 1990.

[2] L.B. Booker, D.E. Goldberg, J.H. Holland, Classifier systems and genetic algorithms,

Artificial Intelligence 40 (1989) 235–282.

[3] R.A. Caruana, L.A. Eshelmann, J.D. Schaffer, Representation and hidden bias II: eliminating

defining length bias in genetic seach via shuffle crossover, in: N.S. Sridharan (Ed.), Eleventh

International Joint Conference on Artificial Intelligence, vol. 1, Morgan Kaufmann Publishers,

San Mateo, CA, 1989, pp. 750–755.

[4] J. Cheng, M.J. Druzdzel, AIS-BN: an adaptive importance sampling algorithm for evidential

reasoning in large Bayesian networks, Journal of Artificial Intelligence Research (JAIR) 13

(2000) 155–188.

[5] K.J. Cherkauer, J.W. Shavlik, Growing simpler decision trees to facilitate knowledge

discovery, in: Proceedings of the Second International Conference of Knowledge Discovery

and Data Mining, (KDD-96), Portland, OR, AAAI Press, Menlo Park, CA, 1996, pp. 315–

318.

[6] G.F. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic networks

from data, Machine Learning 9 (4) (1992) 309–347.

[7] G.F. Cooper, The computational complexity of probabilistic inference using Bayesian belief

networks, Artificial Intelligence 42 (2–3) (1990) 393–405.

[8] K.A. DeJong, W.M. Spears, D.F. Gordon, Using genetic algorithms for concept learning,

Machine Learning 13 (1993) 161–188.

[9] G. Elidan, N. Friedman, Learning the dimensionality of hidden variables, in: A. Darwiche, N.

Friedman (Eds.), Proceedings of the Seventeenth Conference on Uncertainty in Artificial

Intelligence, (UAI-2001), Seattle, WA, Morgan Kaufmann, San Francisco, CA, 2001, pp. 144–

151.

[10] M. Faupel, GAJIT genetic algorithm package, Available from <http://www.angelfire.com/ca/

Amnesiac/gajit.html> 2000.

[11] N. Friedman, M. Goldszmidt, Learning Bayesian networks from data Tutorial, in: American

National Conference on Artificial Intelligence, (AAAI-98), Madison, WI, AAAI Press, San

Mateo, CA, 1998.

[12] N. Friedman, M. Linial, I. Nachman, D. Pe�er, Using Bayesian networks to analyze expression

data, in: R. Shamir, S. Miyano, S. Istrail, P. Pevzner, M. Waterman (Eds.), Proceedings of the

Fourth Annual International Conference on Computational Molecular Biology, (RECOMB

2000), Tokyo, Japan, ACM Press, New York, NY, 2000, pp. 127–135.

[13] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley, Reading, MA, 1989.

[14] J.G. Grefenstette, Genesis 5.0, in: A.C. Schulz (Ed.), NRL GA Archives Source Code

Collection, Available from <ftp://ftp.aic.nrl.navy.mil/pub/galist/src/genesis.tar.Z>, 1994.

[15] C. Guerra-Salcedo, L.D. Whitley, Genetic approach to feature selection for ensemble creation,

in: W. Banzhaf, J. Daidam, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith

(Eds.), Proceedings of the 1999 International Conference on Genetic and Evolutionary

Computation, (GECCO-99), Orlando, FL, Morgan Kaufmann, San Mateo, CA, 1999, pp.

236–243.

http://www.angelfire.com/ca/Amnesiac/gajit.html
http://www.angelfire.com/ca/Amnesiac/gajit.html
ftp://ftp.aic.nrl.navy.mil/pub/galist/src/genesis.tar.Z

122 W.H. Hsu / Information Sciences 163 (2004) 103–122
[16] G. Harik, F. Lobo, A parameter-less genetic algorithm, Technical Report 99009, Illinois

Genetic Algorithms Laboratory (IlliGAL), 1999.

[17] R.L. Haupt, S.E. Haupt, Practical Genetic Algorithms, Wiley-Interscience, New York, NY,

1998.

[18] D. Heckerman, D. Geiger, D. Chickering, Learning Bayesian networks: the combination of

knowledge and statistical data, Machine Learning 20 (3) (1995) 197–243.

[19] W.H. Hsu, M. Welge, J. Wu, T. Yang, Genetic algorithms for selection and partitioning of

attributes in large-scale data mining problems, in: Proceedings of the Joint AAAI-GECCO

Workshop on Data Mining with Evolutionary Algorithms, Orlando, FL, July 1999.

[20] W.H. Hsu, Control of inductive bias in supervised learning using evolutionary computation: a

wrapper-based approach, in: J. Wang (Ed.), Data Mining: Opportunities and Challenges, Idea

Group Publishing, Hershey, PA, 2003, pp. 27–54.

[21] R. Kohavi, G.H. John, Wrappers for feature subset selection, Artificial Intelligence (Special

Issue on Relevance) 97 (1–2) (1997) 273–324.

[22] P. Larra~naga, M. Poza, Y. Yurramendi, R.H. Murga, C.M.H. Kuijpers, Structure learning of

Bayesian networks by genetic algorithms: a performance analysis of control parameters, IEEE

Journal on Pattern Analysis and Machine Intelligence 18 (9) (1996) 912–926.

[23] S.L. Lauritzen, D.J. Spiegelhalter, Local computations with probabilities on graphical

structures and their application to expert systems, Journal of the Royal Statistical Society,

Series B 50 (1988) 157–224.

[24] T.M. Mitchell, Machine Learning, McGraw-Hill, New York, NY, 1997.

[25] R.M. Neal, Probabilistic Inference Using Markov Chain Monte Carlo Methods, Technical

Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.

[26] R.E. Neapolitan, Probabilistic Reasoning in Expert Systems: Theory and Applications, Wiley-

Interscience, New York, NY, 1990.

[27] J. Pearl, T.S. Verma, A theory of inferred causation, in: J.F. Alien, R. Fikes, E. Sandewall

(Eds.), Proceedings of the Second International Conference on Principles of Knowledge

Representation and Reasoning (KR’91), Morgan Kaufmann, San Mateo, CA, 1991, pp. 441–

452.

[28] M.L. Raymer, W.F. Punch, E.D. Goodman, P.C. Sanschagrin, L.A. Kuhn, Simultaneous

feature extraction and selection using a masking genetic algorithm, in: T. Back (Ed.),

Proceedings of the Seventh International Conference on Genetic Algorithms, (ICGA-97), San

Francisco, CA, Morgan Kaufmann Publishers, San Mateo, CA, 1997, pp. 561–567.

[29] R.L. Welch, Real-time estimation of Bayesian networks, in: Proceedings of the Twelfth

Conference on Uncertainty in Artificial Intelligence, (UAI-96), Portland, OR, Morgan

Kaufmann Publishers, San Mateo, CA, 1996, pp. 533–544.

[30] Wikipedia Online Encyclopedia, Sharp-P, Available from <http://www.wikipedia.com/wiki/

Sharp-P> 2003.

http://www.wikipedia.com/wiki/Sharp-P
http://www.wikipedia.com/wiki/Sharp-P

	Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning
	Introduction
	Background
	Variable selection in overfitting control
	Learning Bayesian network structure
	Validation by inference
	Deriving fitness

	Searching for variable subsets and orderings in learning
	Wrapper approaches: controlling input to enhance supervised learning
	GA-based wrappers
	Ordering and structure learning problems

	Permutation GA for ordering
	Selection GA: searching the power set
	Permutation GA: searching ordering space

	Experimental results and evaluation
	Discussion and future work
	Acknowledgements
	References

