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Abstract
As Bayesian networks are applied to more
complex and realistic real-world applications, the
development of more efficient inference
algorithms working under real-time constraints is
becoming more and more important. This paper
presents a survey of various exact and
approximate Bayesian network inference
algorithms. In particular, previous research on
real-time inference is reviewed. It provides a
framework for understanding these algorithms
and the relationships between them. Some
important issues in real-time Bayesian networks
inference are also discussed.

1. Introduction

Over the last 20 years or so, Bayesian networks (BNs)
[Pe88, Ne90, RN95, CDLS99] have become the key
method for representation and reasoning under uncertainty
in AI. BNs not only provide a natural and compact way to
encode exponentially sized joint probability distributions,
but also provide a basis for efficient probabilistic
inference. Although there exists polynomial time
inference algorithm for specific classes of Bayesian
networks, i.e., trees and singly connected networks, in
general bothexact belief updateand belief revisionare
NP-hard [Co90, Sh94]. Furthermore, approximations of
them are also NP-hard [DL93b, AH98]. Given the NP-
hard complexity results, one of the major challenges in
applying BNs into real-world applications is the design of
efficient approximate inference algorithms working under
real-time constraints for very large probabilistic models.
Researchers have developed various kinds of exact and
approximate Bayesian network inference algorithms.
Some of them are particularly designed for real-time
inference. In this paper, we attempt to present a review to
BN inference algorithms in general, and real-time
inference algorithms in particular to provide a framework
to understand the differences and relationships between
these algorithms.
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2. Preliminaries

2.1 Bayesian Networks

BNs (also known as Bayesian belief networks, causal
networks, or probabilistic networks) are currently the
dominant uncertainty knowledge representation and
reasoning technique in AI [Pe88, Ne90, RN95, CDLS99].
BNs are directed acyclic graphs (DAGs) where nodes
represent random variables, and edges represent
conditional dependencies between random variables.
These random variables can be either continuous or
discrete. For simplicity, in this paper we shall only
consider discrete ones.

Definition – Bayesian network:A Bayesian network is a
graph in which the following holds [RN95]:

ÿ� A set of random variables makes up the nodes of the
network.

ÿ� A set of directed links connects pairs of nodes. The
intuitive meaning of an arrow from node X to node Y
is that X has adirect influenceon Y.

ÿ� Each node has aconditional probability table(CPT)
that quantifies the effects that the parents have on the
node. The parents of a node X are all those nodes
that have arrows pointing to X.

ÿ� The graph has no directed cycles (hence is adirected
acyclic graph, or DAG).

A BN represents the exponentially sizedjoint probability
distribution(JPD) in a compact manner. Every entry in
the JPD can be computed from the information in the BN
by the chain rule:
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Figure 1.1 shows a simple Bayesian network (the sprinkler
network) with 4 nodes [RN95].

Figure 1 Sprinkler Network

2.2 Bayesian Network Inference

A BN can be considered as a probabilistic expert system in
which the probabilistic knowledge base is represented by
the topology of the network and the CPTs at each node.
The main purpose of building a knowledge base is to use it
for inference, i.e., computing the answer for particular
queries about the domain. There are two main types of
BN inference tasks: belief updating (also called
probabilistic inference) and belief revision (also called
MAP explanation) [Pe88].

The objective ofbelief updatingis to calculateP(X|E), the
posterior probabilities ofquery nodes X, given some
observed values ofevidence nodes E. A simple form of it
results whenX is a single node, i.e., we are interested in
computing the posterior marginal probabilities of a single
query node. The task ofbelief revisionamounts to finding
the most probable instantiation of some hypothesis
variables, given the observed evidence. The resulting
output is an optimal list of instantiations of the hypothesis
variables, a list that may change abruptly as more
evidence is obtained [Pe88]. Belief revision for the case
when the hypothesis variables are all non-evidence nodes
is also known as computing amost probable explanation,
or MPE. An explanation for the evidence is a complete
assignment {X1= x1, …, Xn = xn} that is consistent with
evidence E. Computing a MPE is finding an explanation
such that no other explanation has higher probability.

Although there exists exact polynomial time inference
algorithm for singly connected networks, exact
probabilistic inference in general has been proven to be

NP-hard by Cooper [Co90]. Approximating probabilistic
inference was also shown to be NP-hard by Dagum and
Luby [DL93b]. In 1994 Shimony proved that finding
MAPs for Bayesian networks is NP-hard [Sh94] and in
1998 Abdelbar and Hedetniemi showed that
approximating MAPs is also NP-hard [AH98]. One thing
we need to keep in mind is that many belief updating
algorithms can be used for belief revision with just small
modifications, and vice versa.

2.3 Real-time Inference

A real-time computing system[St92] is defined as one in
which the correctness of a computation depends not only
on its accuracy but also on its timeliness. In this paper,
we focus on real-time Bayesian networks inference. We
define hard versus soft real-time domains [St92,
MHA+94]. A hard real-time domainadmits strict
deadlines where utility degrades instantly if the answer to
the query is not returned and a control is not produced.
Examples of hard real-time intelligent system domains
include crisis monitoring [BSCC89, HGL+98] and some
situated control problems. In asoft real-time domain,
utility loss is gradual after the deadline is passed.
Examples include many interactive real-time decision
support systems.

There are broadly two kinds of approaches that are being
used in real-time AI research:anytime algorithmsand
multiple methods approaches[GL94]. Anytime
algorithms are iterative refinement algorithms that are
able to generate an imprecise answer quickly and refine it
through some number of iterations [Bo91, HSC89, Zi93,
Zi96, GL94]. The advantage of anytime algorithms is that
the computation can be interrupted at any time and still
produces results of a guaranteed quality. Multiple
methods approaches involve a number of different
algorithms that are available for a task, each of which is
capable of generating solutions having different
characteristics [GL94, LPD88, BH90b, LEFG+90, ET91,
DL93a, GL93]. These algorithms may be more or less
appropriate for different characteristics of the problems,
and may make tradeoffs of solution quality versus time.
Works on multiple methods include approximate
processing, design-to-time scheduling, and so on. We refer
interested readers to [GL93] for more detail.

3. Bayesian Network Inference Algorithms
Review

In this section, we will briefly review exact and
approximate Bayesian Networks inference algorithms in
general.

3.1 Exact Inference
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In early 1980s, Pearl published efficient message
propagation inference algorithm forpolytrees [KP83,
Pe86a, Pe86b]. The algorithm is exact and has
polynomial complexity in the number of nodes, but works
only for singly connected networks. Pearl also presented
an exact inference algorithm for multiply connected
networks calledloop cutset conditioning[Pe86b]. Loop
cutset conditioning algorithm changes the connectivity of
a network and renders it singly connected by instantiating
a selected subset of nodes referred to as a loop cutset. The
resulting single connected network is solved by the
polytree algorithm, and then the results of each
instantiation are combined weighted by their prior
probabilities. The complexity of this algorithm results
from the number of different instantiations that must be
considered. This implies that the complexity grows
exponentially with the size of the loop cutset beingO(dc),
whered is the number of values that the random variables
can take, andc is the size of the loop cutset. It is thus
important to minimize the size of the loop cutset for a
multiply connected network. Unfortunately, the loop cutset
minimization problem is NP-hard.

The most popular exact BN inference algorithm is
Lauritzen and Spiegelhalter’sclique-tree propagation
algorithm [LS88]. It is also called the “clustering”
algorithm. It first transforms a multiply connected
network into a clique tree by clustering the triangulated
moral graph of the underlying undirected graph, then
performs message propagation over the clique tree. The
clique propagation algorithm works efficiently for sparse
networks, but still can be extremely slow for dense
networks. Its complexity is exponential in the size of the
largest clique of the transformed undirected graph.

There exist many other classes of exact inference
algorithms. Arc reversal/node reductionapproach
developed by Shachter was one of the three early exact
inference algorithms (conditioning, clustering and arc
reversal) [Sh86a, Sh90]. It applies a sequence of operators
to the network, which reverse the links using Bayes’ rule.
The process continues until the network is reduced to just
the query nodes with the evidence nodes as immediate
predecessors [He90].Variable elimination (VE)algorithm
eliminates other variables one by one by summing out
them [ZP94]. The complexity of VE can be measured by
the number of numerical multiplications and numerical
summations it performs. An optimal elimination ordering
is one that results in the least complexity, but the problem
of finding an optimal elimination ordering is NP-
complete. Symbolic probabilistic inference (SPI)views
probabilistic inference as a combinatorial optimization
problem, the optimal factoring problem. Probabilistic
inference is the problem of finding an optimal factoring
given a set of probabilistic distributions [SD90, LD94].
SPI is symbolic and query-driven.Differential approach
compiles a Bayesian network into a multivariate

polynomial and then computes the partial derivatives of
this polynomial with respect to each variable [Da00].
Once such derivatives are made available, one can
compute answers to a very large class of probabilistic
queries in constant time.

For each of these classes of BN inference algorithms as
shown in Figure 2, there have been many variants,
refinements, hybrids, generalizations and heuristic
solutions. For example, in the class of conditioning
algorithms, there arelocal conditioning [Di92], global
conditioning[SAS94], dynamic conditioning[Da95], and
recursive conditioning[Da01]; in the class of clustering
algorithms, there areShnoey-Shafer[SS90], Hugin
[JLO90], and lazy propagation[MJ98]; in the class of
elimination, there arebucket elimination [De96] and
general elimination[Co00]; and so on.

Besides these general exact inference algorithms, there are
some exact special case inference algorithms including
quickscore for two-level networks with noisy-OR gates
[He89], and algorithms exploiting local structures in the
distributions such ascausal independency[He93] context-
specific independencies[BFGK96]. Figure 2 illustrates
main exact BN inference algorithms.

Figure 2 Categories of Exact Inference Algorithms

In general all exact Bayesian network inference
algorithms share a running time exponential in the size of
the largest clique of the triangulated moral graph, which is
also called the induced width of the graph [LS88]. For
graphs with many loops, this parameter is large and so
rules out the use of exact inference algorithm. For
example, Jaakkola and Jordan found that in “QMR-DT”,
one of the largest BNs in practice, the median size of the
maximal clique of the moralized graph is 151.5 [JJ99].
Faced with the intractability of exact inference to large,
complex networks, many researchers have investigated
approximate inference algorithms.
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3.2 Approximate Inference

Approximate BN inference algorithms includestochastic
simulation algorithms, model simplification methods,
search-based methodsand loopy belief propagation. See
Figure 3.

3.2.1 Stochastic Simulation Algorithms

Stochastic simulation algorithms, also called stochastic
sampling or Monte Carlo algorithms, are the most well
known approximate BN inference algorithms. They
generate a set of randomly selected samples or
instantiations of the network according to the CPTs in the
model, and then approximate probabilities of query
variables by the frequencies of appearances in the sample.
The accuracy depends on the size of samples irrespective
of the structure of the network. Stochastic simulation
algorithms are a big family. They can be divided into two
main categories: importance sampling algorithmsand
Markov Chain Monte Carlo (MCMC)methods.

Figure 3 Categories of Approximate Inference Algorithms

Probabilistic logic sampling is the first and simplest
forward sampling algorithm developed by Henrion in
1988 [He88]. In logic sampling, we run repeated
simulations of the world described by the Bayesian
network following the influence arrows (thus called
forward sampling), throw away samples that are
inconsistent with the evidence values, and estimate the
probabilities of query nodes by counting the frequencies
with which relevant events occur in the sample. When no
evidence has been observed, logic sampling works very
well; but if there is evidence, especially unlikely evidence,
most samples generated will be inconsistent with it and be
wasted. The fraction of useful samples decreased
exponentially with the number of evidence variables. For
a large network with several evidence nodes, the prior
probability of the evidence is usually very small, and thus
logic sampling performs poorly. Two other papers
enhance logic sampling by examining evidential

integration, which employs arc reversal to evidence nodes
that are sinks to sources to avoid the computational
penalty of observed nodes [FC89, CC89].

Likelihood weighting (LW) or evidence weightingare
designed to get around the problem of logic sampling
[FC89, SP90]. In likelihood weighting, every time we
reach an evidence node, we don’t sample and throw away
inconsistent samples; instead we take the observed value
of the evidence variable, and weights the sample by the
likelihood of evidence conditional on the samples.
Likelihood weighting usually converges much faster then
logic sampling, and can handle very large networks. The
main difficulty with likelihood weighting, and indeed with
any stochastic sampling algorithms, is that it takes a long
time to converge for unlikely events.

Both logic sampling and likelihood weighting are forward
sampling methods. Backward sampling allows for
generating samplings from evidence nodes in the direction
that is opposite to the topological order of nodes in the
network [FF94]. Backward sampling works better than
forward sampling with low-likelihood evidence. However,
there are still some cases where both will perform poorly
because they all fail to approach the correct posterior
distributions [LD99].

A well-known method to improve these sampling
approaches is to use a revised “importance” distribution
for sampling as an approximation to the posterior
distributions. The importance distributions can be
generated in many ways. Shachter and Peot introduced
two variants of importance sampling algorithms: self-
importance sampling(SIS) and heuristic importance
sampling (HIS) [SP90]. SIS updates its importance
function infrequently using the scores generated in the
algorithm. HIS computes its importance function by
performing a modified version of the singly connected
evidence propagation algorithm. Other implementations
of importance sampling include Cano’s and Hernandez’
importance sampling algorithms [CHM96, HMA98]. The
experimental result reported shows that they all perform
better than likelihood weighting.

Bounded-varianceand AA algorithms are variants of
likelihood weighting described by Dagum and Luby
[DKLS95, DL97]. They are based on the LW algorithm
and the Stopping-Rule Theorem. They work better than
straight LW.

The most efficient stochastic sampling algorithm reported
so far seems to be Jian Cheng and Marek Druzdzel’s
adaptive importance samplingfor Bayesian networks
(AIS-BN) [CD00A]. AIS-BN reduces the sampling
variance by learning a sampling distribution that is as
close as possible to the optimal importance sampling
function. AIS-BN algorithm introduces different weights
for samples generated at different learning stages. [CD01]
combines AIS-BN with new stopping rules to yield two
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other sampling algorithms that work well for large
networks.

All stochastic sampling algorithms above can be
generalized into the framework of importance sampling
[CD00A] in which samples are independent to each other.
The main differences between them are in how they
initialize and update the important function and how they
generate and weight the samples. Another group of
stochastic sampling algorithms is calledMarkov Chain
Monte Carlo (MCMC)methods in which the samples are
dependent. MCMC methods consist of Gibbs sampling,
Metropolis sampling and Hybrid Monte Carlo sampling
[GG84, GRS96, Ma98, Pe87, CC90]. These algorithms
work well if without extreme probabilities in CPTs. When
there are extreme conditional probabilities, the
convergence of MCMC sampling algorithms can be very
slow.

Other sampling techniques include stratified sampling
[Bo94], hypercube sampling [CD00b] and quasi-Monte
Carlo methods [CD00c]. These techniques are different in
how to generate random samples from the uniform
distributions. Usually they can be used to any of the above
sampling algorithms to improve their performance.

3.2.2 Model Simplification Methods

Model simplification methods first simplify the model
until exact methods become feasible and then run an exact
algorithm. Some methods reduce the model complexity by
annihilating small probabilities[JA90]. Others involve
removal of weak dependencies [Kj94] or arc removal
[En97]. Localized partial evaluationalgorithm removes
selected nodes from networks [Dr95]. Bounded
conditioning ignores some cutset instances to compute
probability bounds and considers more instances to
improve the accuracy [HSC89]. The state space
abstractionalgorithm reduces the cardinality of CPTs to
simplify the model [WL94]. Variational approach
introduces variational transformations and delinks nodes
from the graph one by one until the graph is sparse
enough that the exact method is feasible [JJ99, JGJS99].
Sarkar’s algorithmapproximates the Bayesian network by
finding the optimal tree-decomposable representation that
is the ‘closest’ to the actual network [Sa93].Context-
specific approximation algorithm takes contextual
structure into account and simplifies the network by
removing distinctions in the probabilities [Po97, Po98].
Other partial evaluation methods include the “incremental
SPI” algorithm [Da93] and “mini-buckets” algorithm
[De97].

3.2.3 Search-based Methods

Search based methods assume that a relative small
fraction of the joint probability space contains a majority
of the probability mass. These algorithms search for the

high probability instantiations and then use them to obtain
a reasonable approximation [Co85, PR87, He91, Po93a,
Po93b, Dr94]. They include Henrion’s “Top-N” search-
based method [He91], Poole’s search approach using
“conflicts” [Po93a, Po93b, Po96], Santos’ “Deterministic
Approximation” and “Sample-and-Accumulate” methods,
and so on [SS96, SSSW96, SS98]. Druzdzel [Dr94] has
theoretically demonstrated that the skewness of the joint
probability distributions can be predicted by the
asymmetries of the CPTs. However, Lin and Druzdzel’s
empirical results on a subset of CPCS network (179 nodes)
show that even though a small fraction of the total number
of instantiations may indeed cover most of the probability
mass, it is still intractably huge by all standards [LD99].

3.2.4 Loopy Belief Propagation

In the past few years,loopy belief propagation(BP) - the
use of Pearl's polytree propagation algorithm in a
Bayesian network with loops - has become a hot topic
[MWJ99, WF99]. Researchers have empirically
demonstrated that loopy belief can perform well in the
context of error-correcting codes and computer vision
[MMC98]. But for some other graphs with loops, BP may
give poor results or even fail to converge. More recently, it
has been shown that there is a close connection between
the belief propagation algorithm and certain
approximations to thevariational free energyin statistical
physics [YFW01, Ye01, PA02]. Specifically, the fixed
points of BP are shown to coincide with the stationary
points of theBethe approximate free energysubject to
consistency constraints. Bethe free energy approximation
is known to be a special case of a general class of
approximations called Kikuchi free energy
approximations. A general class of BP algorithms are also
introduced which attempts to find the stationary points of
Kikuchi free energy [YFW01].

4. Algorithms for Real-time Bayesian Network
Inference

In this section we focus on discussing real-time Bayesian
networks inference algorithms.

4.1 Anytime BN Inference Algorithms

Theoretically, any Bayesian networks inference algorithm
that temporarily ignores partial information contained in a
BN, and recovers those ignored information whenever the
allocated computational time allowed, is an anytime
inference algorithm [WL94]. This partial information
could be partial instantiations [Po96, SS96, SS98], partial
nodes [Dr95], partial edges [Kj94, En97], partial
probabilities in CPTs [JA90], partial node states [WL94],
and partial cutset or other computational items [HSC89].
Therefore, most approximate inference algorithms can be



easily used as an anytime algorithms by applying them
iteratively.

Stochastic sampling algorithms are anytime algorithms.
The precision obtained by stochastic sampling algorithms
generally increases with the number of samples generated
so far and is not affected by the network topology and size.
Computation can be interrupted by anytime to yield an
approximation. The main problem of stochastic sampling
algorithms is that the convergence becomes worse if there
are extreme probabilities in the CPTs and the probability
of evidence is low. It is also difficult to judge how close
of the simulation results to the exact results, especially
when the probability of evidence is very low [Ch01].

Many model simplification methods and search-based
approaches are also anytime algorithms. In late 1980s
Eric Horvitz first investigated the problem of uncertain
reasoning under limited computational resources under
the name of flexible computation [Ho87, Ho88, Ho90]. His
bounded conditioningalgorithm was the first anytime
Bayesian network inference algorithm (under the name of
flexible computation) [HSC89]. Bounded conditioning
uses conditioning method, but conditions only on a small,
high probability cutset instances. As more resources
(time) are allocated, more cutset instances are included
and the accuracy is improved incrementally. Horvitz also
suggested a list of useful strategies for bounded-resource
computation including bound calculation and
propagation, stochastic simulation, completeness
modulation, abstraction modulation, local reformulation
anddefault reasoning and compilation[Ho87].

D’Ambrosio redefined probabilistic inference as term
computation in Incremental Probabilistic Inference
[Da93]. They assumed that most distributions in a belief
net are “skewed” and considering only a small number of
the largest terms can lead to a good approximation. The
process is made incremental by computing larger terms
first, and constructing an error bound on the possible
remaining probability mass. It can also be made
incremental with respect to queries, evidence and model
revisions. D’Ambrosio also reported some experiments
with real-time decision algorithms in the domain of On-
line Maintenance Agent (OLMA) [DB96].

Poole’s search-based algorithmworks very similarly
[Po93a, Po93b, Po96]. It uses conflicts to generate a set of
possible worlds for computing posterior probabilities.
When the distributions are skewed, it produces small error
bounds. All search-based algorithms exploit the skewness
of the joint distribution probability. In 1994 Druzdezl
proved the skewness assumption by applying Central limit
theorem [Dr94].

Localized partial evaluation(LPE) considers parts of the
network incrementally [DS94, Dr95]. LPE is based on
standard message-passing method but uses interval-valued
messages instead of point-valued messages, and perform

its calculation only on a subset of the nodes in the
network. It ignores nodes that are too “far away” from the
queried nodes to have much impact on its values. LPE is
anytime because it is able to produce better solutions given
more time to consider more of the network.

State space abstractionalgorithm [LW94] reduces the
complexity of the model by changing the state space
cardinalities. It produces progressively improving
estimates of a probabilistic query via a series of
incremental refinements of the state spaces of random
variables.

Santos’deterministic approximatealgorithm enumerates
high-probability Independence-Based (IB) assignments to
approximate marginal probabilities [SS96,SSSW96,
SS98]. IB assignments are partial assignments that take
advantage of local independencies not represented by the
topology of the network to reduce the number of assigned
variables, and hence the probability mass in each
assignment. This method is a search-based method and
will also benefit from the probability skewness
assumption.

Welch’s real-time estimationmethod combines genetic
algorithm (GA) with stochastic simulation [We96]. It first
utilizes a Monte Carlo sampling method (forward or
backward sampling) to generate a sufficient number of
trails for an initial breeding set. Then it runs a GA search
until either the time allocated for a real-time responses
runs out, the accuracy reaches a tolerate level, or the graph
of the archive probability mass from trails that conform to
the evidence is flat. Finally, it uses an estimation based on
partial sums of the joint probabilities of trails in the
archive rather than the weighted frequency of the values
encountered during sampling.

Mini-Clustering is a parameterized approximation scheme
that extends the partition-based approximation of mini-
bucket elimination to tree decompositions [MKD01]. The
scheme is governed by a controlling parameter that allows
adjustable levels of accuracy and efficiency in an anytime
style.

Variational probabilistic inferencetransforms the network
to a simpler network by variationally delinking nodes and
executes an exact algorithm when the resulted graph is
sparse enough. Its accuracy generally improves as more
nodes are treated exactly and hence has an anytime
characteristic of time-accuracy tradeoff [JJ99].

The TreeNets framework also allows incremental
evaluation of a BN, but the main limitation is that it is
only applicable to polytree structure [JN97].

4.2 Metalevel Reasoning and Multiple Methods

4.2.1 Ideal Reformulation



The intelligent reformulation of a Bayesian network can
greatly increase the efficiency of inference. But there is a
tradeoff between the time dedicated to reformulating and
the time applied to executing inference. This problem is
called themetareasoning-partition problem. Breese and
Horvitz studied this problem of ideally apportioning
resources between a meta-analysis and the solution of a
base problem [BH90a]. They studied different
prototypical models of cost. Their analysis showed that
the use of metareasoning to dynamically optimize the
amount of time expended on reformulation frequently is
more valuable than the static policy of halting
reformulation after the first valid clique-tree is discovered.

4.2.2 Performance Prediction and Algorithm Selection

So far we have reviewed various exact and approximate
Bayesian networks inference algorithms. Each of them has
different properties and works better for different class of
inference problems. Given a Bayesian network inference
problem instance, it is usually important but hard to
decide in advance which algorithm among a set of choices
is most appropriate. This problem is known as the
algorithm selection problem[Ri76]. This problem
becomes more crucial when there are limited resources.
Metareasoning from the characteristics of the problem
instances about what algorithm should be selected and
executed can significantly increase the inference
efficiency.

Jitnah and Nicholson proposed a system for network
characterization as the basis for inference algorithms
comparison and selection [NJ96]. The domain
characterization they proposed includes whole network
characteristics (size and connectivity of the network), node
characteristics (skewness of the CPT), and characteristics
of an evaluation (map of the evidence and query nodes).
They presented performance results on logic sampling,
likelihood weighting, the polytree and the Jensen
algorithm. Their results indicated that domain
characterization could be useful for predicting inference
algorithm performance. The ability of predicting
algorithm performance could provide the basis for more
optimal metareasoner that guide the selection and
execution of BN inference algorithms.

Borghetti developed an empirical method for using
performance data gathered offline to predict future
performance of algorithms on new problems [Bo96]. A
knowledge base is analyzed into a set of characteristics.
Each algorithm is executed individually on a single
knowledge base and provides a set of solutions. These
solutions are analyzed and the performance profiles for
each algorithm are generated. A mapping relation is
created between the characteristics and the performance
profile of each algorithm. The mapping relation is used to
predict the performance of algorithms based on the
domain characteristics of the knowledge base. The

relation mapping is made by examining the critical points
where two or more algorithms’ utility curves intersect.
Whenever a decision needs to be made, we simply
determine whether or not the domain characteristics for a
network are above or below the critical points. Then an
algorithm is chosen accordingly.

Williams also studied the inference algorithm selection
problem but he addressed it in a very different way. He
developed and implemented a selection process based on
algorithm analysis instead of empirical methods [Wi97].

4.2.3 Algorithms Cooperative Inference

Santos developed a distributed architecture, OVERMIND,
for unifying various probabilistic reasoning algorithms
that have both anytime and anywhere properties
[SSSW95, Wi97]. Anywhere algorithms can exploit
intermediate results produced by other algorithms. When
different algorithms have both anytime and anywhere
properties, they can be harnessed together into a
cooperative system. The resultant system can exploit the
best characteristics of each algorithm. OVERMIND
architecture consists of an intelligent resource allocator,
an overseer task manager, and a library of tasks. The
library of tasks contains a Genetic algorithm (GA), an
integer linear programming (ILP) algorithm, a best first
search algorithm (A*) and a hybrid stochastic sampling
algorithm (HySS). When performing inference, the A*
tended to produce reasonable solutions immediately, Gas
took these solutions near some maximas, HySS fine-tuned
those maximas, and the ILP finished the optimization and
generated the optimal solution [SSSW95].

5. Discussions

5.1 Summary

As just reviewed, there exists a number of exact and
approximate Bayesian networks inference algorithms,
different algorithms exploit different characteristics of the
problem instances and work better for different classes of
algorithms. For example, Pearl’s poly-tree propagation
algorithm has polynomial complexity in the number of
nodes, but only works for singly connected networks; the
clique-tree propagation is efficient only on sparse
networks; the accuracy of stochastic sampling algorithms
depends on the size of samples irrespective of the structure
of the network, but they converge very slowly if there are
extreme probabilities in the CPTs; search-based
algorithms are only efficient on networks that have highly-
skewed distributions; variational approaches work better
on dense networks than sparse ones.

The No Free Lunch (NFL) theorem [WM95, WM97]
states that the performance of any algorithm averaged over
all possible cost functions will be the same as that of any



other algorithm. Put another way, NFL suggests that there
are classes of problems and that for each class there exists
an algorithm that solves the problems of that class most
efficiently. Applying NFL to the problem of Bayesian
network inference, we can draw the conclusion that there
does not exist a single champion Bayesian network
inference algorithm, and we need to run different
algorithms for different problems to maximize run time
performance. Therefore, it is necessary to systematically
study the matching relationships between the spaces of
problems and the spaces of algorithms. This line of
research has been explored in [NJ96, Bo96, Wi97], but we
believe that there are much more work could be done in
this direction.

In real-time BN inference research, we can see that the
majority of algorithms for real-time Bayesian networks
inference are anytime algorithms. Less work has been
done on the multiple methods approach, probably because
of the empirical difficulty and its less obviously appealing
theoretical properties. We believe that in the future it is
still necessary to develop new efficient inference
algorithms for particular class of problem instances.
However, to gain more efficient inference under real-time
constraints, the more important and more promising goal
should be integrating various kinds of exact and
approximate inference algorithms into one unified
inference system such that the most appropriate algorithm
or a group of most appropriate algorithms are selected and
executed depending on the characteristics of the input
inference problem instance [He90, LD99, JJ99].

Other metalevel strategies that could be very helpful for
real-time Bayesian networks inference include pre-
computation techniques such as pruning the network to
delete the irrelevant portions of the network for the given
inference problem [BB90, DS94], the problem-solving
process monitoring and running time algorithms
cooperation [FM01, SSSW95], hybrid inference
algorithms that combine the advantages of different
algorithms [JJ99], and continual computation [Ho97,
Ho01].
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