GA-Hardness Revisited

Haipeng Guo and William H. Hsu

Department of Computing and Information Sciences
Kansas State University, Manhattan, KS 66502
{hpguo,bhsu}@cis.ksu.edu

1 Introduction

Ever since the invention of Genetic Algorithms (GAs), researchers have put a
lot of efforts into understanding what makes a function or problem instance
hard for GAs to optimize. Many measures have been proposed to distinguish so-
called GA-hard from GA-easy problems. None of these, however, has yet achieved
the goal of being a reliable predictive GA-hardness measure. In this paper, we
first present a general, abstract theoretical framework of instance hardness and
algorithm performance based on Kolmogorov complexity. We then list several
major misconceptions of GA-hardness research in the context of this theory.
Finally, we propose some future directions.

2 Instance Hardness and Algorithm Performance

Intuitively, an algorithm a performs better if it compiles more information about
the input instance. An instance f is hard if it does not have much structure infor-
mation for any algorithm to exploit to solve it. Since both algorithm and problem
instance can be encoded as finite strings, we can build an abstract framework
of problem instance hardness and algorithm performance base on Kolmogorov
complexity as follows to capture these intuitions. We measure the hardness of
f by K(f), the Kolmogorov complexity of f, which is defined as the size of the
smallest program that can produce f. It can be seen as the absolute informa-
tion, or the “randomness”, of f. The information in a about f is defined by
I(a: f) = K(f)— K(f|a). It is a natural indicator of the performance of a on f.
Similarly, K (a) measures the randomness of the algorithm a. Random instances
are the “hardest” ones because they are incompressible and contain no internal
structures for any algorithm to exploit. Random search algorithms are the least
efficient algorithms because they convey no information about the problem and
just visit the search space randomly. Given any f, can we deliberately design an
a that performs worse than random search? If f happens to be a random one,
we cannot design an algorithm to perform either better or worse than a random
search. If it is a structured problem but we do not know any information about
its structure, it is still hard for us to do so since we do not know what we should
deceive. The only case we can do that is when f contains structural information
one and we know what it is. The resulting algorithm can be called a deceptively-
solving algorithm for its “purpose” is to seek deceptiveness and perform worse

E. Canti-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 1584-[I585] 2003.
© Springer-Verlag Berlin Heidelberg 2003



GA-Hardness Revisited 1585

than random search. It is a structured algorithm since it contains structural in-
formation about the problem. But it uses this information in a “pathological”
way. In this sense we can say a contains “negative information” about f. In the
other hand, there are algorithms that are structured and perform better than
random search. These algorithms can be called straightforwardly-solving algo-
rithms. Therefore, there are three factors that cause an instance to be hard for
a particular algorithm: randomness, mismatch and deception.

3 Misconceptions in GA-Hardness Research

There are three major misconceptions in the problem space. The first miscon-
ception is blurring the differences among the three above-mentioned instance
hardness factors and feeding GAs with problems that are too hard to be mean-
ingful. The second misconception is using a few, specific problem instances to
support a general result. The third one is applying GAs on problems that are too
general to be realistic. In the algorithm space, the most common misconception
is considering GAs as a single algorithm and seeking a universal GA dynamics
and general separation of GA-hard and GA-easy problems. For a given instance,
if we change the parameters of GAs we can get totally different convergence re-
sults. So instead of taking GAs as a whole, researches into GA hardness should
be done separately on different subclasses of GAs. The main misconception in
the performance space is taking for granted the existence of a general a priori
GA-hardness measure that can be used to predict a GA’s performance on the
given instance. Ideally, we want to have a program (a Turing machine) that
can take as inputs a GA and an instance f of optimization problem and return
how hard f is for the GA. Rice’s theorem states that any non-trivial property
of recursive enumerable languages is undecidable. This means that there are no
nontrivial aspects of the behavior of a program which are algorithmically de-
terminable given only the text of the program. It implies the nonexistence of
general a priori predictive measure for problem hardness and algorithm perfor-
mance based only on the description of the problem instance and the algorithm.
This limits the general analysis, but it does not rule out the possibility of induc-
ing an algorithm performance predictive model from some elaborately designed
experimental results.

4 Future Directions: Experimental Approaches

We propose that future researches should focus more on real world NP-complete
optimization problems rather than man-made functions; should study the clas-
sification of various GAs rather than considering them as a whole; and should
give up analytically seeking a priori GA-hardness measures based only on the
descriptive information of the problem and the GA, in favor of experimental,
inductive approaches to learn the predictive model from the posterior results of
running various GAs on problem instances with designed parameter settings.



	Introduction
	Instance Hardness and Algorithm Performance
	Misconceptions in GA-Hardness Research
	Future Directions: Experimental Approaches

