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Abstract 
 
This research summary describes some work in 
progress on using graphical models  to represent 
relational data in computational science portals 
such as myGrid.  The objective is to provide a 
integrative collaborative filtering (CF) capability 
to users of data, metadata, source code, and 
experimental documentation in some domain of 
interest.  Recent systems such as ResearchIndex / 
CiteSeer provide collaborative recommendation 
through citation indexing, and systems such as 
SourceForge and the Open Bioinformatics 
project provide similar tools such as content-
based indexing of software.  Our current research 
aims at learning probabilistic relational models 
(PRMs) from data in order to support intellignet 
retrieval of data, source code, and experimental 
records.  We present a system design and a 
précis of a test bed under development that 
applies PRM structure learning and inference to 
CF in repositories of bioinformatics data and 
software. 
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1 INTRODUCTION 
Collaborative filtering is the problem of analyzing the 
content of an information retrieval system and actions of 
its users, to predict additional topics or products a new 
user may find useful.  Developing this capability poses 
several challenges to machine learning and reasoning 
under uncertainty.  The research described in this 
summary addresses the problem of formulating tractable 
and efficient problem specifications for probabilistic 
learning and inference in this framework.  It describes an 
approach that combines learning and inference algorithms 
for relational models of semi-structured data into a 
domain-specific collaborative filtering system.  Recent 
systems such as ResearchIndex / CiteSeer have succeeded 
in providing some specialized but comprehensive indices 
of full documents.  The collection of user data from such 
digital libraries provides a test bed for the underlying IR 

technology, including learning and inference systems.  
The authors are therefore developing two research indices 
in the areas of bioinformatics (specifically, functional 
genomics) and software engineering (digital libraries of 
source codes for computational biology), to experiment 
with machine learning and probabilistic reasoning 
software recently published by the authors and a 
collaborative filtering system currently under 
development. 
 The overall goal of this research program is to 
develop new computational techniques for discovering 
relational and constraint models for domain-specific 
collaborative filtering from scientific data and source 
code repositories, as well as use cases for software and 
data sets retrieved from them.  The focus of this project is 
on statistical evaluation and automatic tuning of 
algorithms for learning graphical models of uncertain 
domains from such data.  These include probabilistic 
representations, such as Bayesian networks and decision 
networks, that have recently been applied to a wide 
variety of problems in intelligent information retrieval 
and filtering.  The primary contribution of this research 
shall be the novel combination of algorithms for learning 
the structure of relational probabilistic models with 
existing techniques for constructing relational models of 
metadata about computational science experiments, data, 
and programs.  The technical objectives center around 
statistical experiments to evaluate this approach on data 
from the domains of gene expression modeling and 
indexing of bioinformatics repositories. 

1.1 Rationale 

Recent systems such as ResearchIndex / CiteSeer 
[LGB99] have succeeded in providing cross-indexing and 
search features for specialized but comprehensive citation  
indices of full documents.  The indexing technologies 
used by such systems, as well as the general-purpose 
algorithms such as Google PageRank  [BP98] and HITS  
[KL99], have several advantages: They use a simple 
conceptual model of document webs.  They require little 
specialized knowledge to use, but organize and present 
hits in a way that allows a knowledgeable user to select 
relevant hits and build a collection of interrelated 
documents quickly.  They are extremely popular, 



encouraging users to submit sites to be archived and 
corrections to citations, annotations, links, and other 
content.  Finally, some of their content can be 
automatically maintained. 

 Despite these benefits, systems such as 
ResearchIndex have limitations that hinder their direct 
application to IR from bioinformatics repositories: 

• Over-generality: Citation indices and 
comprehensive web search engines are designed for 
the generic purpose of retrieving all individual 
documents of interest, rather than collections of data 
sets, program source codes, models, and metadata 
that meet common thematic or functional 
specifications. 

• Over-selectivity: Conversely, IR systems based on 
keyword or key phrase search may return fewer (or 
no) hits because they check titles, keywords, and tags 
rather than semi-structured content. 

• Lack of explanatory detail:  A typical user of an 
integrated collaborative filtering system has a 
specific experimental objective, whose requirements 
he or she may understand to varying degree 
depending upon his or her level of expertise.  The 
system needs to be able to explain relationships  
among data, source codes, and models in the context 
of a bioinformatics experiment. 

1.2 Objectives and Hypothesis 

How can we achieve the appropriate balance of generality 
and selectivity?  How can we represent inferred 
relationships among data entities and programs, and 
explain them to the user?  Our thesis is: 

Probabilistic representation, learning, and reasoning 
are appropriate tools for providing domain-specific 
collaborative filtering capability to users of a 
scientific computing repository, such as one 
containing bioinformatics data, metadata, 
experimental documentation, and source codes. 

Toward this end, we are developing DESCRIBER, a 
research index for consolidated repositories of 
computational  genomics resources , along with machine 
learning and probabilistic reasoning algorithms to refine 
its data models and implement collaborative filtering.  
The unifying goal of this research is to advance the 
automated extraction of graphical models of use cases 
for computational science resources, to serve a user base 
of researchers and developers who work with genome 
data and models.  We present recent results from our own 
work and related research that suggest how this can be 
achieved through a novel combination of probabilistic 
representation, algorithms, and high-performance data 
mining not previously applied to collaborative filtering in 
bioinformatics.  Our project shall also directly advance 

gene expression modeling and intelligent, search-driven 
reuse in distributed software libraries. 

 

2 CF IN COMPUTATIONAL SCIENCES 

2.1 Collaborative Filtering Objectives 

 
 We seek to take existing ontologies and minimum 
information standards for computational genomics and 
create a refined and elaborated data model for decision 
support in retrieving data, metadata, and source codes to 
serve researchers.  A typical collaborative filtering 
scenario using a domain-specific research index or portal  
is depicted in Error! Reference source not found. 1.  
We now survey background material briefly to explain 
this scenario, then discuss the methodological basis of our 
research: development of learning and inference 
components that take records of use cases and queries 
(from web server logs and forms) and produce decision 
support models for the CF performance element. 

 As a motivating example of a computational 
genomics experiments, we use gene exp ression modeling 
from microarray data.  DNA hybridization microarrays, 
also referred to as gene chips, are experimental tools in 
the life sciences that make it possible to model 
interrelationships among genes, which encode instructions 
for production of proteins including the transcription 
factors of other genes.  Microarrays simultaneously 
measure the expression level of thousands of genes to 
provide a “snapshot” of protein production processes in 
the cell.  Computational biologists use them in order to 
compare snapshots taken from organisms under a control 
condition and an alternative (e.g., pathogenic) condition.  
A microarray is typically a glass or plastic slide, upon 
which DNA molecules are attached at up to tens of 
thousands of fixed locations, or spots.  Microarray data 
(and source code for programs that operate upon them) 
proliferate rapidly due to recent availability of chip 
makers and scanners. 

A major challenge in bioinformatics is to discover 
gene/protein interactions and key features of a cellular 
system by analyzing these snapshots. Our recent projects 
in computational genomics focus on the problem of 
automatically extracting gene regulatory dependencies 
from microarray data, with the ultimate goal of building 
simulation models of an organism under external 
conditions such as temperature, cell cycle timing (in the 
yeast cell), photoperiod (in plants), etc.  Genomes of 
model organisms, such as S. cerevisiae (yeast), A. 
thaliana  (mouse ear cress or weed), O. sativa (rice), C. 
elegans (nematode worm), and D. melanogaster (fruit 
fly), have been fully sequenced.  These have also been 
annotated with the promoter regions that contain binding 
sites of transcription factors that regulate gene 



expression.  Public repositories of microarray data such as 
the Saccaromyces Genome Database (SGD) for yeast 
have been used to develop a comprehensive catalog of 
genes that meet analytical criteria for certain 
characteristics of interest, such as cell cycle regulation in 
yeast. We are using SGD data and a synthesis of existing 
and new algorithms for learning Bayesian networks from 
data to build robust models of regulatory relationships 
among genes from this catalog.  Most data resources we 
plan to use in developing DESCRIBER are in the public 
domain, while some are part  of collaborative work with 
the UK myGrid project (Goble). 

 

Figure 1. Design overview of DESCRIBER 

The next two figures depict our design for DESCRIBER.  
Figure 2 is the block diagram for the overall system, 
while Figure 3 elaborates Module 1 as shown in the lower 
left hand corner of Figure 3.  Our current and continuing 
research focuses on algorithms that perform the learning, 
validation, and change of representation (inductive bias) 
denoted by Modules 2 and 4.  We choose probabilistic 
relational models  as a representation because they can 
express constraints (cf. Figure 1) and capture uncertainty 
about relations and entities.  We hypothesize that this will 
provide more flexible generalization over use cases.  We 
have recently developed a system for Bayesian network 
structure learning that improves upon the K2 [CH92] and 
Sparse Candidate [FLNP00] algorithms by using 
combinatorial optimization (by a genetic algorithm) to 
find good topological orderings of variables.  Similar 
optimization wrappers have been used to adapt problem 
representation in supervised inductive learning for 
classification, using decision trees and instance-based 
learning. 

 Other relevant work includes BioIR, a digital library 
for bioinformatics and medical informatics whose content 
is much broader than that of this  test bed for genome 
analysis.  BioIR emphasizes phrase browsing and cross-
indexing of text and data repositories rather than 
experimental metadata and source codes.  Other systems 
such as CANIS, SPIDER, and OBIWAN also address 

intelligent search and IR from bioinformatics digital 
libraries, emphasizing categorization of text documents.  
We view the technologies in these systems as 
complementary and orthogonal to our work because of 
this chief difference. 

 

 

 

Figure 3.  Collaborative filtering component of 
DESCRIBER 

3 LEARNING BN STRUCTURE 

3.1 Classifier System for Learning BN Structure 

 Learning the structure, or causal dependencies, of a 
graphical model of probability such as a Bayesian 
network (BN) is often a first step in reasoning under 
uncertainty.  In many machine learning applications, it is 
therefore referred to as a method of causal discovery 
[PV91].  Finding the optimal structure of a BN fro m data 
has been shown to be NP-hard [HGC95], even without 
considering latent (unobserved) or irrelevant (extraneous) 
variables.  Therefore, greedy score-based algorithms 

Figure 2.  DESCRIBER system 



[FG98] have been developed to provide more efficient 
structure learning at an accuracy tradeoff.  In this paper 
we examine a general shortcoming of greedy structure 
learning – sensitivity to variable ordering – and develop a 
genetic algorithm to mitigate this problem by searching 
the permutation space of variables [HH98] using a 
probabilistic inference criterion as the fitness function. 

We make the case in this paper that the probabilistic 
inference performance element, in the absence of a 
known gold standard network or any explicit 
constraints, can provide the feedback needed to search for 
a good ordering.  We then derive a heuristic based on 
validation by inference (exact inference [LS88, Ne90] for 
small networks, approximate inference by stochastic 
sampling [CD00] for larger ones).  Our primary objective 
is inferential accuracy using the learned structure. 

Toward this end, we have developed a genetic wrapper, 
similar to a classifier system [BGH89], to search the 
space of variable orderings in score-based structure 
learning.  This wrapper adapts a composite fitness 
measure used in other wrappers based upon best-first 
search [KJ97] and automatically tunes parameters of the 
learning system [HL99] such as the ordering of input 
variables.  We present the system shown in Figure 1, a 
genetic algorithm-based wrapper [CS96, RPG+98, Hs03], 
and show how it provides a parallel stochastic search 
mechanism for inferential loss-minimizing variable 
orderings.  We demonstrate that, used in tandem with K2, 
it produces structures whose loss under importance 
sampling is nearly as low as any found by exhaustive 
enumeration of orderings.  Finally, we discuss how this 
wrapper provides a flexible method for tuning 
representation biases [Mi97] in Bayesian network 
structure learning using different fitness criteria. 

Consider a typical probabilistic reasoning environment, as 
shown in Figure 2, where structure learning [A] is a first 
step.  The input to this system includes a set D of training 
data vectors x = (x1, …, xn) each containing n variables.  If 
the structure learning algorithm is greedy, an ordering a 
on the variables may also be given as input.  The structure 

learning component of this system produces a graphical 
model B = (V, E , Θ) that describes the dependencies 
among Xi, including the conditional probability functions.  
The inferential performance element [B] of this system 
takes B and a new data set Dtest of vectors drawn from the 
desired inference space, where only a subvector E of X = 
(X1, …, Xn) is observable, and infers the remaining 
unobserved values X \ E.  We denote the indicator bit 
vector for membership in E by Ie .  The performance 
criterion f is the additive inverse of the (inferential or 
utility) loss of [B]. 

4 CONTINUING WORK 
Our current research focuses on structure learning of 
relational models by adapting traditional score-based 
search algorithms  for flat graphical models  [Pe03] and 
constrain-based structure search over hierarchical models. 

Entity and reference slot uncertainty present new 
challenges to PRM structure learning.  Three of the 
questions that we are looking into are: 

1. How much relational data is needed?  How can 
we estimate the sample complexity of PRMs 
under specified assumptions about entity 
existence and reference slot distributions? 

2. What constraint-based approaches can be usedf? 
Learn ing reference slot and entity structure in 
PRMs presents a task beyond flat structure 
learning. 

3. Can this cut down on the amount of data to learn 
the low-level model (versus the flat version)?  
How can we establish and test sufficient 
conditions for conditional independenc, and 
context -specific independence,  in PRMs? 
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