
Hyperbolically Discounted Advantage Estimation for Generalization in
Reinforcement Learning

Nasik Muhammad Nafi 1 Raja Farrukh Ali 1 William Hsu 1

Abstract
In reinforcement learning (RL), agents typically
discount future rewards using an exponential
scheme. However, studies have shown that hu-
mans and animals instead exhibit hyperbolic time-
preferences and thus discount future rewards hy-
perbolically. In the quest for RL agents that
generalize well to previously unseen scenarios,
we study the effects of hyperbolic discounting
on generalization tasks and present Hyperbolic
Discounting for Generalization in Reinforcement
Learning (HDGenRL). We propose a hyperbolic
discounting-based advantage estimation method
that makes the agent aware of and robust to the un-
derlying uncertainty of survival and episode dura-
tion. On the challenging RL generalization bench-
mark Procgen, our proposed approach achieves up
to 200% performance improvement over the PPO
baseline that uses classical exponential discount-
ing. We also incorporate hyperbolic discounting
into another generalization-specific approach (AP-
DAC), and results indicate further improvement
in APDAC’s generalization ability. This denotes
the effectiveness of our approach as a plug-in to
any existing methods to aid generalization.

1. Introduction
Generalization refers to the capability of an agent to per-
form in similar but unseen environments and is currently
an active research challenge. Training deep RL algorithms
is a data-intensive task and given a sufficiently large set of
samples, they can learn a specific skill (Mnih et al., 2015;
2016; Haarnoja et al., 2018). However, they tend to overfit
even with large training samples (Cobbe et al., 2020; 2021;
Grigsby & Qi, 2020; Justesen et al., 2018). To facilitate re-
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Figure 1. Distribution of episode lengths for eight Procgen envi-
ronments, estimated based on 1000 episodes randomly sampled
from the test levels for each game. This depicts how much an
episode varies in terms of duration for each of these games.

search on this issue, newer benchmarks like Procgen (Cobbe
et al., 2020) have been introduced that present a set of pro-
cedurally generated environments to evaluate generalization
through held-out levels used only in testing. In this work,
we consider the problem of generalization in the context of
such procedurally generated environments.

Standard RL algorithms specify a discount factor, 0 ≤ γ <
1, that discounts the future reward rt at step t as γtrt (Sutton
et al., 1998). Such discounting guarantees the theoretical
convergence of the value function and stabilizes the opti-
mization. The value of γ sets a fixed effective horizon for
an agent such that all rewards beyond that point will be
insignificant (Fedus et al., 2019). At the same time, the no-
tion of an effective horizon induces a prior belief that there
exists a known, fixed risk or hazard rate in the environment
(Fedus et al., 2019). We argue that this assumption does
not comply with the set of diverse, ever-changing levels in
a procedurally generated environment, wherein an environ-
ment’s dynamics and attributes change across levels, hence
introducing significant uncertainty and stochasticity com-
pared to the generic RL environments. Figure 1 shows the
distribution of episode length measured over 1000 episodes
sampled randomly from the test levels for 8 Procgen en-
vironments. The episodes were generated using a learned
policy trained on 25M time steps. Even with such a mature
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policy, we see that the episode length varies significantly for
each environment. This indicates the uncertainty over the
hazard rate (survival rate) and why a fixed effective horizon
may fail to better assess expected future rewards. Existing
literature indicates that when an agent holds uncertainty
over the environment’s hazard rate, a non-exponential (such
as hyperbolic) discounting factor is more suitable (Sozou,
1998; Fedus et al., 2019). Hyperbolic discounting of re-
wards also aligns with the time-preference of animals and
humans (Mazur, 1997).

To address this uncertainty regarding an environment’s haz-
ard rate and to mitigate the drawbacks of the fixed effec-
tive horizon, we propose to discount future rewards hyper-
bolically for generalization tasks and present our method
HDGenRL (Hyperbolic Discounting for Generalization in
Reinforcement Learning). We present a simple extension
to calculate hyperbolically-discounted advantage estimates
that can be used with policy gradient methods. We evaluate
our approach on all sixteen environments from the Procgen
benchmark and our approach significantly outperforms the
Proximal Policy Optimzation (PPO) baseline that uses expo-
nential discounting (Schulman et al., 2017). We further inte-
grate our discounting scheme with Attention-based Partially
Decoupled Actor-Critic (APDAC) (Nafi et al., 2021), a re-
cent generalization specific method, and the results indicate
the potential of our approach to be used with any existing
method that employs classical exponential discounting.

2. Related Work
Generalization in Deep RL. There has been a lot of em-
phases lately on building intelligent agents that avoid over-
fitting and can generalize well to unseen data (Rajeswaran
et al., 2017; Justesen et al., 2018; Grigsby & Qi, 2020;
Cobbe et al., 2019). Methods that have been used with some
success include regularization techniques like dropout, batch
normalization, and data augmentation (Igl et al., 2019; Hu
et al., 2021). Raileanu & Fergus (2021) leverages fully sep-
arated policy and value networks to achieve generalization,
while Cobbe et al. (2021) introduce a phase-wise training.

Hyperbolic Discounting. Hyperbolic discounting has been
studied in the fields of behavioral psychology, economics,
neuroscience, and lately, to a limited extent, in reinforce-
ment learning. Sozou (1998) proposed a per-time-step death
via the hazard rate, whereas Dasgupta & Maskin (2005) pro-
posed that uncertainty over the timing of rewards leads to
preference reversals as exhibited in hyperbolic discounting.
Alexander & Brown (2010) proposed a temporal difference
(TD) based hyperbolically discounting solution. Although
TD learning relies on exponential discounting in its cal-
culation, naive modifications to it to discount hyperboli-
cally have been shown to be inconsistent. Kurth-Nelson
& Redish (2009) proposed the modeling of hyperbolic dis-

counting via distributed exponential discounting. Fedus
et al. (2019) were the first to extend this formulation to deep
reinforcement learning by approximating hyperbolic dis-
counting from exponential discounting and evaluated their
approach using a value-based method, Rainbow (Hessel
et al., 2018), on the ALE benchmark.

3. Background
3.1. Discount Factor and Effective Horizon

In standard RL algorithms, the agent’s objective is to max-
imize the sum of the discounted rewards over the future.
Formally, the expected discounted return Gt is:

Gt = rt+1 + γrt+2 + γ2rt+3 + ..., (1)

where 0 ≤ γ < 1 is called the discount factor (Sutton et al.,
1998). The discount factor γ determines the current value
of the future rewards. The horizon refers to how many steps
into the future the agent takes into account and values the
reward it receives. If γ = 0, then the agent becomes myopic
and only maximizes immediate rewards. Conversely when
γ −→ 1, the agent values future rewards as well, making
the agent far-sighted. A particular value of γ sets a fixed
effective horizon till which point the rewards are considered.

3.2. Uncertain Hazard and Hyperbolic Discounting

An alternative perspective connects the discount factor to
the notion of an agent not surviving to collect the reward
due to encountering a risk or hazard (Sozou, 1998; Fedus
et al., 2019). If s(t) is the probability that the agent survives
until time t, then the present value of a future reward rt
shall be discounted by the probability that the agent will
survive till time t to collect it. Hence v(rt) = s(t)rt. The
negative rate of change of the log-survival at time t is called
the hazard rate h(t):

h(t) = − d

dt
ln s(t). (2)

By solving eq. 2 as s(t) = e−λt, and setting s(t) = γt

(exponential discounting) as in v(rt) = s(t)rt, the rela-
tion between hazard rate λ ∈ [0,∞] and γ ∈ [0, 1] can
be expressed as γ = e−λ. A single value of γ thus rep-
resents a known constant hazard rate λ = − ln(γ). How-
ever, to reflect the uncertainty in the hazard rate, we can
relax this assumption of knowing the exact true hazard
rate and replace it with a hazard prior p(λ) such that:
s(t) =

∫∞
λ=0

p(λ)e−λtdλ. It is further shown by (Sozou,
1998) that for an exponential hazard prior p(λ) = 1

ke
(−λ/k),

the survival rate of the agent becomes hyperbolic.

s(t) =
1

1 + kt
≡ Γk(t) (3)

where k is the hyperbolic exponent with value k > 0.
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4. POMDP Formulation
The problem of generalization consider a distribution of
POMDP, p(m) where m ∈ M , and each instance m
is defined by (Sm,Om,A, Tm,Rm,Ωm, γm), where Sm

is the set of states, Om is the set of observations, A is
the set of actions, Tm(s′|s, a) are the transition probabili-
ties, Ωm(o|s′, a) are the conditional observation probabil-
ities, Rm(s, a) is the reward function, and γm is the dis-
count factor sampled from the hazard distribution instead
of a constant one. A limited number of POMDPs are ex-
posed during training, Mtrain = {m1,m2, ...,mk}, where
Mtrain ⊆ M , mi ∼ p and i ∈ {1, 2, ..., k}. The goal
is to optimize the policy πθ using the objective function
J(πθ) = Ep,π,Tm

[∑T
t=0 γ

tRm(st, at)
]

over the full dis-
tribution of POMDPs. Each environment corresponds to a
distribution of POMDPs, p(m) and each level of the game
is analogous to a sampled POMDP instance. The model
is trained on 200 levels and tested on the full distribution
of levels which is significantly larger than the training set.
This enables the evaluation of the model’s generalization
capability beyond those 200 training levels.

5. Methodology
We aim to learn a value function and consequently a good ad-
vantage estimate to guide the policy optimization, in order to
achieve a generalizable policy. We identify that hyperbolic
discounting is more suitable than exponential discounting
on the generalization task and propose to optimize the policy
using hyperbolically discounted advantage estimate.

5.1. Avoiding the Curse of Fixed Effective Horizon

As discussed in Section 3.1, a fixed discount factor in the
case of exponential discounting can impose a single effec-
tive horizon for the agent. Thus the agent’s value function
estimate relies on a prior belief about the length of the
episode. Raileanu & Fergus (2021) demonstrate that even
with the same starting state, the length of the episode can
differ significantly. The episode length can significantly
change the value estimate of the earlier states in a trajectory
based on the later reward. For example, the final reward of
an episode will be highly discounted and perceived as small
if the episode length is too big. However, if the episode
length is small, then the same final reward will contribute
much more to the value estimate. Thus, due to the fixed
effective horizon, an agent may fail to correctly anticipate
the worth of future rewards in case of highly-varied episode
length (see Figure 1). As we can not restrict the length of
an episode, we propose to relax this fixed effective hori-
zon by considering multiple horizons simultaneously. Thus,
we need a value estimate that considers multiple discount
factors γs while calculating the value estimate.

5.2. Modeling the Unknown Hazard

Unseen levels in a highly diverse environment imply un-
known hazards. Since the agent is unsure about the envi-
ronment’s hazard rate across unseen levels, we model this
uncertainty by injecting a hazard distribution in the POMDP
through the variable discount factor, γm (see Section 4).
Thus an episode from a new level comes with a hazard rate
λm, where γm = e−λm . Since an agent cannot accurately
estimate the value of γm for each new level in a model-free
setup, and hyperbolic discounting is better able to capture
this uncertain hazard, we use hyperbolically discounted ad-
vantage estimate to learn a robust policy for unseen levels.

5.3. Hyperbolically-discounted Advantage Estimation

We extend the basic idea of hyperbolic discounting-based
value function to estimate hyperbolically-discounted advan-
tage so that it can be integrated with policy gradient meth-
ods. Fedus et al. (2019) present an approach that leverages
multiple discount factors from an exponential discounting
scheme to approximate the hyperbolic discounting function.
We adopt this approximation approach but instead use it
for advantage estimation with respect to multiple effective
horizons.

Policy gradient objective for PPO (Schulman et al., 2017):

Jπ(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
where rt(θ) =

π(θ)(at|st)
π(θ)old

(at|st) , and Ât is the estimation of the
advantage function at timestep t. Advantage is defined as
A(st, at) = Q(st, at)− V (st). Leveraging the hyperbolic
function evaluation Γk(t) =

1
1+kt =

∫ 1

0
γktdγ, we propose

to estimate hyperbolically-discounted advantage as follows:

AΓ
π(st, at) =

∫ 1

0

A(γk)
t

π (st, at)dγ

=

∫ 1

0

[
Q(γk)

t

π (st, at)− V (γk)
t

π (st)
]
dγ

=

∫ 1

0

[
Q(γk)

t

π (st, at)
]
dγ −

∫ 1

0

[
V (γk)

t

π (st)
]
dγ

Q
(γk)

t

π (st, at) can be decomposed into rt+γkV
(γk)

t

π (st+1).
Thus based on the value function calculated over all the
γk where 0 ≤ γ < 1, we can estimate the hyperbolically-
discounted advantage. Note that the effective discount factor
is γk, not the original γ. From a practical perspective, we
consider a finite set of γ (consequently γk) to approximate
the advantage. Using a multi-head architecture, where each
head corresponds to the value function for each γk, we min-
imize the average of the losses calculated for these multiple
γk. Each loss function corresponding to a γk is defined as:

Lγk

v (θ) = Êt

[(
V γk

θ (st)− V̂ γk

targ

)2]
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Figure 2. Test performance of our proposed HDGenRL and PPO (Schulman et al., 2017) over eight Procgen environments.

Figure 3. Test performance of APDAC (Nafi et al., 2021) and corresponding HDGenRL version over four Procgen environments.

6. Experiments and Results
Following previous works on Procgen, we use the IMPALA-
CNN architecture as the actor-critic model for the PPO base-
line and implement generalized advantage estimate. (Cobbe
et al., 2020). This CNN architecture has three similar blocks
each with 5 convolutional layers. To implement our pro-
posed approach HDGenRL, we augment the same architec-
ture with five value heads corresponding to five different γ.
Then we calculate the advantage value for each of the value
predictions. Finally, we integrate these advantage values to
obtain the approximation for the hyperbolic advantage.

We train the model for 25M time steps. Figure 2 shows
the experimental results on the test distribution of levels for
8 out of the 16 environments from Procgen, and presents
rolling mean test scores and standard deviations calculated
over five trials. The results indicate that the proposed HD-
GenRL significantly outperforms the PPO baseline on the
test levels. Since PPO was not specifically designed for
generalization, we further compare our approach against
APDAC, a recent generalization-specific approach, to get a
robust performance comparison on the generalization task.

Figure 3 shows that our proposed hyperbolic discounting-
based counterpart performs much better than APDAC on
the test distribution of four selected games.

7. Discussion
This work presents a hyperbolic discounting-based method
of estimating advantages and applies it on the generalization
task. We argue that since the underlying hazard rate in a pro-
cedurally generated environment is more uncertain, having
an agent that discounts future rewards hyperbolically would
perform better on unseen levels. Throughout the training,
the agent learns the advantage estimate simultaneously over
multiple horizons through the exponential discount factors
γ0, γ1, ..., γn, which has been shown to be an approxima-
tion of hyperbolic discounting. We evaluate our proposed
method of hyperbolically discounted advantage estimation
on PPO and APDAC, and the results show that the modified
agent performs well on more than half of the tasks. We
plan on extending this work by testing the proposed method
against more recent state-of-the-art methods, varying num-
ber of discount factors, and other ablation studies.
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