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Abstract

Data augmentation has been proven as an effective measure to improve general-
ization performance in reinforcement learning (RL). However, recent approaches
directly use the augmented data to learn the value estimate or regularize the es-
timation, often ignoring the core essence that the model needs to learn that aug-
mented data indeed represents the same state. In this work, we present RAIR:
Reinforcement learning with Augmentation Invariant Representation that disen-
tangles the representation learning task from the RL task and aims to learn similar
latent representations for the original observation and the augmented one. Our
approach learns the representation of high-dimensional visual observations in a
non-contrastive self-supervised way combined with the standard RL objective.
In particular, RAIR gradually pushes the latent representation of an observation
closer to the representation produced for the corresponding augmented observa-
tions. Thus, our agent is more resilient to the changes in the environment. We
evaluate RAIR on all sixteen environments from the RL generalization benchmark
Procgen. The experimental results indicate that RAIR outperforms PPO and other
data augmentation-based approaches under the standard evaluation protocol.

1 Introduction

Despite the success of modern deep Reinforcement Learning (RL), learning a generalizable policy
directly from visual observations remains a foundational concern in modern deep reinforcement
learning [Cobbe et al., 2019][Cobbe et al., 2020]. RL algorithms may completely fail to generalize
when slight environment changes occur as opposed to the biological agents who can quickly adapt or
generalize previous learnings to unseen environmental conditions [Raileanu and Fergus, 2021]. While
the use of diverse samples can effectively improve the generalization performance of RL agents, data
collection for training real-world control tasks remains costly and notoriously difficult. The online
nature of many state-of-the-art RL algorithms exacerbates the issues further. To address this problem,
recent approaches have proposed to leverage techniques like data augmentation [Laskin et al., 2020a],
regularization [Raileanu et al., 2021], or representation learning [Laskin et al., 2020b]. In this work,
we provide a solution from a combined perspective of data augmentation and representation learning.

We observe that current RL algorithms leverage data augmentation in different ways: (i) simply
apply augmentation to data and use those augmented data directly for RL objective estimation
[Laskin et al., 2020a], (ii) add additional auxiliary losses based on augmented data to regularize
the policy and value function [Raileanu et al., 2021][Yarats et al., 2021], and (iii) use unsupervised
contrastive learning to learn representation from similar and dissimilar pairs [Laskin et al., 2020b].
For contrastive losses similar data denotes the augmented ones and dissimilar ones refer to the
samples from other trajectories [Laskin et al., 2020b]. While contrastive loss-based approaches
attempt to learn better representation, naive application of data augmentation often outperforms them
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in challenging tasks where the agent needs to generalize to unseen contexts [Laskin et al., 2020a]. RL
algorithms that use augmentation-based regularization aim to directly learn transformation invariant
policy and value function, thus sacrificing the explicit representation learning step. In general,
learning from state-based features is known to be more sample-efficient than learning from raw pixels.
Thus learning latent representations for high-dimensional observations that preserves the semantic
meaning can greatly help the control algorithm to achieve sample-efficiency and generalization.
Non-contrastive similarity-based approaches have recently achieved success in computer vision (i.e.
image classification task) [Bardes et al., 2021][Grill et al., 2020], however, the potential of such an
approach is yet to be explored for reinforcement learning.

In this paper, we propose Reinforcement learning with Augmentation Invariant Representation
(RAIR) that distinctly considers the representation learning task and the downstream RL task. More
specifically, we combine non-contrastive self-supervised embedding learning and RL objective
optimization. During the unsupervised representation learning phase, RAIR learns representations
that are invariant to the augmented version of the observed state and then goes to the next phase
where it optimizes the standard RL objective. By augmentation invariant, we refer to the property
that for both the original observation and corresponding transformed observation the encoder will
produce a similar latent representation so that the agent can perceive that both are the same. While we
validate our approach using Proximal Policy Optimization (PPO) [Schulman et al., 2017] that uses an
actor-critic architecture, our method can be used with any RL algorithm (on-policy and off-policy)
that uses neural network-based function approximator to represent the policy and value function, and
the observation space allows some kind of meaningful transformations of the states. We evaluate our
proposed approach on the Procgen benchmark. We empirically show that our proposed approach
outperforms standard PPO without any kind of augmentation and is comparable to or better than
generalization-specific previous approaches that leverage data augmentation.

2 Related Works

Generalization in Reinforcement Learning (RL) has been extensively addressed in recent years
[Farebrother et al., 2018][Packer et al., 2018] [Cobbe et al., 2019]. Several successful methods have
emerged to enhance generalization in deep RL. These methods include the application of regular-
ization techniques such as dropout [Igl et al., 2019], batch normalization [Igl et al., 2019][Cobbe
et al., 2019][Hu et al., 2021], and data augmentation [Cobbe et al., 2019][Raileanu et al., 2021]. To
mitigate observational overfitting, Bertoin and Rachelson [2022] have introduced a feature-swapping
regularization technique. Zhang et al. [2020] and Agarwal et al. [2021] have employed bisimulation
metrics to analyze the similarity between states, enabling the learning of task-relevant representa-
tions. Decoupled policy and value networks have been proposed to avoid overfitting and bolster
generalization [Raileanu and Fergus, 2021] [Nafi et al., 2022] [Nafi et al., 2023]. Additionally, policy
distillation techniques have been employed to enhance generalization, as demonstrated by Igl et al.
[2020] and Lyle et al. [2022]. More recent works have introduced interesting approaches such as the
generalist-specialist training framework [Jia et al., 2022] and pre-trained encoder [Yuan et al., 2022].

Data Augmentation is an effective way to learn from limited data and has widely been used in com-
puter vision [Wang et al., 2017][Rebuffi et al., 2021][Goodfellow et al., 2020]. In supervised learning,
an augmented version of a sample is assigned the same label and directly used as an independent
sample during training [Krizhevsky et al., 2012][Goodfellow et al., 2020]. Self-supervised methods
exploit the augmented images to generate pseudo labels for pretext tasks [Chen et al., 2020] [Xie
et al., 2020] [Grill et al., 2020][Bardes et al., 2021][He et al., 2020]. Recently, data augmentation
has gained significant attention in RL to improve the sample efficiency and generalization [Ma
et al., 2022]. The naive approach is to simply use the augmented data as an additional sample for
RL optimization [Cobbe et al., 2019] [Lee et al., 2019]. Contrastive loss has been adopted for RL
in [Laskin et al., 2020b] that uses crop as the data augmentation technique. Laskin et al. [2020a]
presents a comprehensive study on data augmentation for RL and shows that data augmentation can
outperform even approaches dedicated to learning better representation. Yarats et al. [2021] uses
augmented data to regularize the Q-function in value-based RL algorithms. Following their work,
Raileanu et al. [2021] proposes to regularize both the policy and value functions in an actor-critic
setting. Raileanu et al. [2021] also presents a way to automatically select the best augmentation
technique that achieves better generalization. In our work, we aim to learn augmentation invariant
representation for RL using non-contrastive loss.
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Figure 1: Overview of the proposed non-contrastive RL approach. Unlike other approaches, we
directly use the raw sample x and use the augmented one x′ only for self-supervised learning.

3 Background

3.1 Contextual Markov Decision Process

Contextual Markov Decision Process (CMDP) extends the general MDP formulation by introducing
the dependence on the context. CMDP allows a set of contexts and every context induces a slight
variation in the base MDP thus resulting in a number of MDPs that share similar characteristics
but vary in terms of initial state distribution and the transition function. Here, we assume a CMDP
is defined byM = (S,A, C, T , r, µC , µS) where S is the state space, A is the action space, C is
the context space, T (s′|s, a) is the transition function, r is the reward function, µC is the context
distribution, and µS is the context-dependent initial state distribution. Each episode corresponds to a
context sampled according to c ∼ µC . An initial state is sampled according to s0 ∼ µ(·|c) and the
subsequent states within that episode are sampled based on st+1 ∼ T (·|st, at, c). Consider dcπ as the
state distribution that is generated through the execution of the acting policy π in context c. During
training, the agent has access to a limited number of contexts. The objective is to learn a generalizable
policy π such that the expected return over all possible contexts G = Ec∼µC ,s∼dc

π,a∼π(s)[r(s, a)] is
maximized.

3.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is the widely used policy gradient method [Schulman et al.,
2017], and for this work, we use PPO as a baseline and build our approach on top of PPO. While
learning from high-dimensional image observation, as the policy and value function approximator,
PPO generally leverages a shared neural network. Given that the network is parameterized by θ, PPO
optimizes the following objective:

JPPO(θ) = Jπ(θ)− αvLV (θ) + αsSπ(θ) (1)

where Jπ(θ) is the policy gradient objective, LV (θ) is the value loss, Sπ(θ, ϕπ) is the entropy bonus
for exploration, and αv and αs are the coefficients for the respective terms.

4 Augmentation Invariant Representation Learning for RL

In this section, we describe our proposed approach RAIR that enables better representation learning
for pixel-based observations and consequently improves the generalization ability of the RL agent in
zero-shot settings. Our critical insight is that even if two observations visually appear different, if they
share the same semantic meaning then the latent representation should be semantically similar. For
example, an RGB observation and its grayscale counterpart or a random cropped counterpart denote
the same state. Thus, we propose a simple idea to iteratively optimize the state representation encoder
so that it can generate similar latent representation in such cases while learning the RL objective.
Figure 1 presents an overview of the approach.
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Algorithm 1 RAIR: Reinforcement learning with Augmentation Invariant Representation
1: Hyperparameters: total number of updates N, replay buffer size T, minibatch size M , encoder

network params ϕ, params for actor-critic heads θ, image transformation tr with parameters vi.
2: for n = 1, . . . , N do
3: Collect D = {(st, at, rt, st+1)}Tt=1 using π(θ)
4: for j = 1, . . . , T

M do
5: {(st, at, rt, st+1)}Mt=1 ∼ D
6: for i = 1, . . . ,M do
7: vi ∼ H
8: zi ← fϕ(si)
9: ẑi ← fϕ(tr(si; vi))

10: end for
11: J(ϕ) = 1

M

∑M
i=1 1− coss(zi, ẑi)

12: Train encoder with J(ϕ)
13: JPPO(θ, ϕ)← Jπ + αvLV − απSπ

14: Train full actor-critic network with JPPO(θ, ϕ)
15: end for
16: end for

4.1 Augmentation Invariant Representation

We propose to use non-contrastive self-supervised learning for RL to ensure that the representations of
behaviorally similar states are not being pushed far apart. Contrastive learning is designed to minimize
the distance between anchor-positive pairs (similar) while maximizing the distance between anchor-
negative pairs (dissimilar). Thus, similar data points are clustered together, and dissimilar points
are separated further. However, the notion of dissimilarity in RL is very different. An observation
even being so different in visual appearance may have similar consequences if they are behaviorally
similar. Thus, it is hard to distinguish true negative samples without secondary measures. Contrastive
learning runs the risk of pushing the behaviorally similar states further in the latent space and disturbs
the representation learning task. Therefore, we develop a non-contrastive learning approach to RL
that uses only the positive pairs generated through data augmentation. For augmented states, we
know for sure that our agent should consider them behaviorally similar.

To this end, we propose to disentangle the representation learning task from the RL task. Our aim is
to learn encoders fϕ : S → Z that captures representations of states that are augmentation invariant,
at the same time suitable for the control task. We train the encoder to minimize the cosine similarity
loss which is defined as follows:

J(ϕ) = 1− coss(z, ẑ) (2)
where z = fϕ(s), ẑ = fϕ(tr(s)); and the state transformation mapping tr : S ×H → S denotes the
augmentation function withH being the set of all possible parameters for tr(.). The coss refers to
the cosine similarity metric,

coss(zi, zj) =
zi.zj

max(||zi||2.||zj ||2, ϵ)
, (3)

where ϵ is a very small number used to avoid division by zero. Other standard similarity metrics such
as l1 distance can also be used in place of cosine similarity. Unlike other algorithms, we directly and
solely maximize the agreement between the learned latent representations of similar observations.
Our approach also reduces the complexity of learning instance discrimination which has the risk of
destabilizing the RL objective.

4.2 Combining Representation Learning with RL

In order to lay out a fully functional reinforcement learning method, we incorporate our augmentation
invariant representation learning framework with Proximal Policy Optimization (PPO) which is
an actor-critic algorithm. We modify the standard actor-critic algorithm by adding an additional
component that calculates the cosine similarity loss and updates the encoder based on that. Algorithm
1 shows all the steps. After the encoder update, RAIR estimates the PPO objective and jointly updates
the encoder and the actor-critic parameters. Thus, RAIR iteratively updates the encoder (only) and
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Figure 2: Test performance of RAIR (Ours), DrAC, CURL, and PPO for "crop" data augmentation in
four Procgen environments. Mean and std are calculated over 5 trials with different seeds.

Figure 3: Test performance of RAIR (Ours), DrAC, and PPO for "grayscale" (left two) and "color
jitter" (right two) data augmentation in four Procgen environments. Mean and standard deviation are
calculated over 5 trials, each with a different seed.

the combined policy and value function (including the encoder) in turn. We observe training with a
single combined loss function is often susceptible to instability and high variance. After the training
phase, the policy π is used to collect data from the environments. Here, the update sequence is
crucial - the encoder update should precede the update for the RL objective. Otherwise, there may be
a misalignment between the encoder output and the learned policy. This is because if the encoder
update occurs after the policy update, then the mapping learned by the policy head may get disrupted.

5 Experiments

We conduct our experiments on the Procgen benchmark [Cobbe et al., 2020] that offers sixteen
procedurally generated environments. Each environment generates levels with diverse dynamics and
backgrounds. Each level or episode can be considered as a context as the levels are generated using
some seed. Following commonly used standards, we train the agent on 200 contexts or levels and
test the agent on the full distribution of contexts. Training on a limited set of levels and testing on
the full distribution of possibilities provides the opportunity to evaluate the model’s generalization
capability. The objective is to achieve better performance in unseen levels or contexts. Figure 2
and Figure 3 present the experimental results for four Procgen environments. RAIR outperforms
standard PPO [Schulman et al., 2017], contrastive approach [Laskin et al., 2020b], and generalization-
specific approach UCB-DrAC [Raileanu et al., 2021]. We present results for three data augmentation
techniques: crop, grayscale, and color jitter.

6 Conclusion

In conclusion, this work introduces RAIR (Reinforcement learning with Augmentation Invariant Rep-
resentation), a novel approach aimed at enhancing the generalization performance of reinforcement
learning (RL) agents through data augmentation. Unlike existing methods that directly use augmented
data or contrastive learning, RAIR takes a distinct approach by introducing non-contrastive loss for
RL. RAIR learns latent representations of an observation that is invariant to the representation of its
corresponding augmented versions. The proposed approach leads to agents that are more robust in
adapting to changes in the environment, leading to improved generalization.
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