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Abstract. This paper investigates the effectiveness of adversarial train-
ing in enhancing the robustness of Deep Q-Network (DQN) policies to
state-space perturbations. We first present a formal analysis of adver-
sarial training in DQN agents and its performance with respect to the
proportion of adversarial perturbations to nominal observations used for
training. Next, we consider the sample-inefficiency of current adversar-
ial training techniques, and propose a novel Adversarially-Guided Ex-
ploration (AGE) mechanism based on a modified hybrid of the ε-greedy
algorithm and Boltzmann exploration. We verify the feasibility of this ex-
ploration mechanism through experimental evaluation of its performance
in comparison with the parameter-space noise exploration algorithm.
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1 Introduction

Recent studies have established the brittleness of Deep Reinforcement Learn-
ing (DRL) policies to variations in the state space[10]. This can be attributed
to failure in the generalization of the policy with respect to input features[13].
Consequently, many of the proposed techniques for enhancement of such brittle-
ness are based on the idea of regularization. As a recent survey of literature on
defensive techniques illustrates [3], a major emphasis in such techniques is on ad-
versarial training [9], which is in effect a regularization technique based on data
augmentation. In this paper, we first present an analysis of adversarial train-
ing in Deep Q-Network (DQN) agents[7], and its effectiveness with respect to
the proportion of adversarial perturbations used for training. Next, we establish
the sample-inefficiency of current adversarial training techniques, and develop a
novel adversarially-guided exploration mechanism based on a modified hybrid of
the ε-greedy and Boltzmann exploration techniques [12], and evaluate its perfor-
mance in comparison with the parameter-space noise exploration[6] algorithm.
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2 Limits of Adversarial Training

In this section, we analyze the effectiveness of training a DRL agent with expe-
riences generated through an adversarial interaction. We consider an adversary
constrained to a probabilistic budget P (attack), which is the probability of per-
turbing any state s′t ← st + δ such that the approximated policy at the ith
iteration of training (πi) produces an incorrect action, i.e., πi(s

′
t) 6= πi(st). We

also consider two types of adversarial objectives, one is the state-neutral adver-
sary, which imposes the perturbation so that the resulting s′t induces any action
other than πi(st). The second type type of adversary we consider is the targeted
adversary, which crafts s′t such that the induced action is the worst possible
choice, i.e., πi(s

′
t) = arg minaQi(s, a). We assume that the adversary is always

successful in crafting the desired perturbations.
We begin the analysis by noting the effect of such perturbations on the

composition of the experience replay memory. For any state st, two types of
experiences may be recorded. One represents the nominal (i.e., unperturbed)
experiences, denoted by:

〈st, at = πi(st), st+1, r(st, at, st+1)〉 (1)

The second type are experiences in which st is the result of perturbing another
state, i.e., st ← s′t + δ. Such adversarial experiences are denoted by:

〈st, at = πi(st), s
′
t+1, r(st, at, s

′
t+1)〉 (2)

Hence, the expected TD-error of state st in each iteration i + 1 of training is
given by:

E[Erri+1(st)] = pi+1(attack|st).[r(st, at, s′t+1) + γV πi(s′t+1]

+ [pi+1(st)− pi+1(attack|st)].[r(st, at, st+1)) + γV πi(st+1)]

− V πi(st)
(3)

where pi+1(st) is the probability of choosing an experience beginning with either
nominal or crafted state st from the experience memory in the i+ 1th iteration,
and pi+1(attack|st) = pi+1(st) − pnominali+1 (st) is the probability of choosing an
experience sample beginning with an adversarially-crafted state st. It is notewor-
thy that adversarial perturbations add bias to the expected TD-error. It can be
seen that, for the effect of this bias to be decreasing as i increases, the following
condition must hold true:

pi+1(st)− pi+1(attack|st) > pi(st)− pi(attack|st) (4)

That is, the probability of sampling nominal experiences starting with st from
the experience memory must be increasing with i. In the case of a state-neutral
adversary, and assuming the uniform sampling from experiences, this condition
reduces to:

∀st ∈ S : pnominali+1 (st) > p(attack) (5)
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Which can be interpreted as p(attack) < 0.5. This is in agreement with the
results reported in [2] for non-contiguous, non-targeted adversarial example at-
tacks against DQN agents.

2.1 Experimental Results

To evaluate the practical implications of the theoretical analyses of this sec-
tion, we study the training performance of a CartPole DQN policy under non-
targeted attacks with perturbation probabilities of 0.2, 0.4, 0.8, and 1.0. In these
experiments, the attacks begin after the convergence of the policy to optimal
performance.

The results are presented in figures 1 and 2. It can be seen that for p(attack) =
0.2 and p(attack) = 0.4, the training process recovers rather quickly. However,
for p(attack) = 0.8 and p(attack) = 1.0, the recovery fails to realize within
the observed training horizon. It is noteworthy that the early peaking observed
in Figure 2 are due to residual unperturbed experiences still remaining in the
replay memory, the impact of which immediately fades at around 50000 steps
after the attack begins, which is equivalent to the number of experiences required
to completely overwrite the memory.
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Fig. 1. Training Performance Under Non-Targeted Attack with p(attack)= 0.2 and
p(attack) = 0.4
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Fig. 2. Training Performance Under Non-Targeted Attack with p(attack)= 0.8 and
p(attack) = 1.0

3 Adversarially-Guided Exploration Mechanism for
Sample-Efficient Adversarial Training

There exists a noteworthy difference between the theoretical adversaries consid-
ered so far and one that crafts perturbations through adversarial examples. As
reported in [9] and [2], training on adversarial examples enhances the resilience
of the policy to perturbations crafted using the same technique. Similar to the
case of adversarial training for deep learning classifiers [11], this phenomenon
can be explained from the perspective of regularization: adversarial example
perturbations of states provide the means for regularization of the policy (or
value function) through data augmentation. Therefore, training the policy over
adversarial examples of states generated with a certain attack mechanism results
in the enhancement of resilience and robustness of the policy to perturbations
crafted via that mechanism.

However, current procedures for training over adversarial examples (e.g.,
[9][8] are based on “blanket perturbation”, in which all states have an equal
probability of being perturbed during training, thus leading to the deterioration
of sample efficiency in DRL training. To alleviate this adverse effect, we pro-
pose the Adversarially-Guided Exploration (AGE) mechanism, which efficiently
reduces the number of perturbed observations required to produce similar or
better improvements in robustness compared to the results achieved by previous
techniques. The proposed mechanism is based on the fact that not all states are
equal with respect to the total regret produced by their perturbation. To ac-
count for this fact, the proposed AGE mechanism extends the classical ε-greedy
exploration mechanism by adjusting the probability of sampling actions for each
state according to the adversarial state-action significance, defined as follows:
In the (i + 1)th training iteration, the adversarial significance of any action a
in state s, denoted by ζπiadv(s, a), measures the maximum achievable adversarial
gain, determined by the difference between maximum Q-value at state s and
Qπi(s, a) with respect to actions. We define ζadv as the ratio of this difference
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to the sum of this difference for all actions a ∈ A. Furthermore, to retain the
GLIE (Greedy in the Limit with Infinite Exploration) criteria of the ε-greedy
mechanism [12], we formulate ζadv in the form of the Boltzmann probability[5],
with ε as the decaying temperature factor. Consequently, the formal definition
of ζadv is as follows:

ζπiadv(s, a) =
exp (maxa′ Q

πi(s, a′)−Qπi(s, a)/ε)∑
α∈A exp (maxa′ Qπi(s, a′)−Qπi(s, α)/ε)

(6)

Algorithm 1 presents the details of our proposed exploration mechanism:

Algorithm 1 Adversarially-Guided Exploration (AGE) for Adversarial Training

Require: Qπi , action space A
function Adversarial Exploration(Current state s, exploration probability ε)

for all a ∈ A do
ζπiadv(s, a) =

exp (maxa′ Q
πi (s,a′)−Qπi (s,a)/ε)∑

α∈A exp (maxa′ Q
πi (s,a′)−Qπi (s,α)/ε)

end for
if rand() ≤ ε then

Sample action according to ζπiadv to perform
else

Perform arg maxaQ
πi(s, a)

end if

4 Experiment Setup

Environment and Target Policies: To evaluate the performance of AGE in
adversarial training, we study the training efficiency and adversarial resilience
of a DQN policy in the CartPole environment in OpenAI Gym [4]. Table 1
presents the specifications of the CartPole environment, and Table 2 provides
the parameter settings of each target policy.

Table 1. Specifications of the CartPole Environment

Observation Space

Cart Position [-4.8, +4.8]
Cart Velocity [-inf, +inf]
Pole Angle [-24 deg, +24 deg]
Pole Velocity at Tip [-inf, +inf]

Action Space
0 : Push cart to the left
1 : Push cart to the right

Reward +1 for every step taken

Termination
Pole Angle is more than 12 degrees
Cart Position is more than 2.4
Episode length is greater than 500
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Table 2. Parameters of DQN Policy

No. Timesteps 105

γ 0.99

Learning Rate 10−3

Replay Buffer Size 50000

First Learning Step 1000

Target Network Update Freq. 500

Prioritized Replay True

Exploration Parameter-Space Noise

Exploration Fraction 0.1

Final Exploration Prob. 0.02

Max. Total Reward 500

Adversarial Agent: In these experiments, the adversarial agent is a DQN
agent with the hyperparameters provided in Table 3. We consider a homogeneous
perturbation cost function for all state perturbations, that is ∀s, a′ : cadv(s, a

′) =
cadv. For both the resilience and robustness measurements, we set cadv = 1 (i.e.,
each perturbation incurs a cost of 1 to the adversary). The training process is
terminated when the adversarial regret is maximized and the 100-episode average
of the number of adversarial perturbations is quasi-stable for 200 episodes.

Table 3. Parameters of Adversarial DQN Agent

Max. Timesteps 105

γ 0.99

Learning Rate 10−3

Replay Buffer Size 50000

First Learning Step 1000

Target Network Update Freq. 500

Experience Selection Prioritized Replay

Exploration Parameter-Space Noise

Exploration Fraction 0.1

Final Exploration Prob. 0.02

4.1 Results

Figure 3 illustrates the training performance of the DQN policy utilizing AGE
for exploration. It can be seen that the training has successfully converged, and
the progress is noticeably more stable than that of a DQN policy with NoisyNet
exploration. Furthermore, Figure 5 depicts the training performance of a DQN-
based adversarial resilience agent with the same configuration as presented in [1].
In comparison with the performance of the same agent against the same policy
trained using NoisyNet exploration (Figure 4 ), two significant differences are
observed: first, the adversarial agent targeting the AGE-trained policy achieves a
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lower regret and higher perturbation count in the same number of training itera-
tions as its counter-part. Second, the training process targeting the AGE-trained
policy fails to converge in 100000 iterations, whereas its counter-part converged
at around 90000 iterations. These results indicate the superior resiliency of the
AGE-trained policy over the nominal policy, thereby verifying the effectiveness
of AGE in improving the adversarial resilience of policies.

Furthermore, in comparison with to the best-case scenario of adversarial
training of the nominal DQN policy (as presented in Figure 1), it can be seen
that the AGE-based training process requires significantly fewer samples for con-
vergence. This comparison further verifies the efficiency of our proposed scheme
with respect to sample complexity.
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Fig. 3. Training Performance of a CartPole DQN policy with AGE exploration
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Fig. 4. Adversarial Training Progress for Resilience Benchmarking of the DQN Policy
with NoisyNet exploration
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Fig. 5. Training Performance of an Adversarial Agent Targeting the AGE-Trained
Policy

5 Conclusion

This paper formally establishes the limits of adversarial training in DQN agents
with respect to the ratio of perturbed training experience to the nominal (i.e.,
unperturbed) experiences. We then address the sample-inefficiency of current
adversarial training techniques, and present the Adversarially-Guided Explo-
ration (AGE) mechanism to improve upon this shortcoming. The presented ex-
perimental results demonstrate the feasibility of this exploration mechanism in
comparison with the parameter-space noise exploration algorithm.
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