

Parameter Identification of Induction Motor Using Modified
Particle Swarm Optimization Algorithm

Wesam Elshamy, Hassan M. Emara and A. Bahgat

Department of Electrical Power and Machines,

Faculty of Engineering, Cairo University, Egypt

{wesamelshamy, hmrashad, ahmed.bahgat}@ieee.org

Abstract – This paper presents a new technique for induction
motor parameter identification. The proposed technique is
based on a simple startup test using a standard V/F inverter.
The recorded startup currents are compared to that obtained by
simulation of an induction motor model. A Modified PSO opti-
mization is used to find out the best model parameter that mini-
mizes the sum square error between the measured and the
simulated currents. The performance of the modified PSO is
compared with other optimization methods including line search
, conventional PSO and genetic algorithm. Simulation results
demonstrates the ability of the proposed technique to capture
the true values of the machine parameter and the superiority of
the results obtained using the modified PSO over other optimi-
zation techniques.

I. INTRODUCTION

Induction motors are the most widely used motors in industry
because they are simple to build rugged, reliable and have
good self-starting capability. The majority of control schemes
of such motor drives require exact knowledge of at least
some of the induction motor parameters. Mismatch between
the actual motor parameter values and that used within the
controller leads to deterioration in the drive performance [1].
In order to avoid performance degradation, motor drives usu-
ally perform a pre-tuning algorithm during inverter initializa-
tion. The pre-tuning is based on offline parameter estimation
using data available from simple test of motor performance
while supplied by the inverter. Several methods have been
proposed to tackle the problem of offline induction machine
parameter estimation [2].

The rapidly increasing computational power of personal
computers allowed researchers to implement several optimi-
zation algorithms and verify their efficiency. Researchers
developed many algorithms that mimics natural phenomena.
Examples of these algorithms include the simulated anneal-
ing [3], genetics algorithms [4], ant colony [5] .
Particle Swarm Optimization (PSO) [6] is among these nature
inspired algorithms. It is inspired by the ability of birds flock-
ing to find food that they have no previous knowledge of its
location. Every member of the swarm is affected by its own
experience and its neighbors’ experiences. Although the idea
behind PSO is simple and can be implemented by two lines
of programming code, the emergent behavior is complex and
hard to completely understand [7].

In this paper different versions of PSO are used to identify
six parameters of the motor. The results obtained using these
optimizers are presented and discussed.

II. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization was inspired by the ability of
a flock of birds or a school of fish to capitalize on their col-
lective knowledge in finding food or avoiding predators.
Each swarm member or particle has a small memory that
enables it to remember the best position it found so far and its
goodness. Particles are affected by their own experience (best
found position) and their neighbors’ experiences (best found
position by the neighbors). The behavior of particles is de-
scribed by (1) and (2).

()
())()(

)()()()1(

22

11

txtprandlrn

txtprandlrntvwtv

idgd

idididid

−××+
−××+×=+

(1)

)1()()1(++=+ tvtxtx ididid
 (2)

In (1), vid is the speed of particle i in dimension d. The first
right hand side term corresponds to the inertia force that
pushes the particle in its old direction, where w is the weight
value that controls this inertia force. The second term corre-
sponds to the cognitive or personal experience component. It
attracts the particle from its current position xid to its best
found position so far in that dimension pid affected by a learn-
ing weight lrn1 and a uniformly distributed random variable
rand1 in the range (0, 1). The third term corresponds to the
social influence of the neighbors on the particle. It affects the
particle by attracting it from its current position xid to the best
position found by its neighbors pgd and this influence is con-
trolled by a learning weight lrn2 and another independent
random variable rand2 uniformly distributed in the range
(0, 1). For each time step, as described by (2), each particle
moves by a step of value vid in the d th dimension.

The PSO algorithm itself has evolved. The weight parame-
ter w was not included in the basic algorithm. It was added
later and researchers examined the effect of varying its value
 [8]. A speed limit for the particles was introduced to prevent
the explosion of speed values.

PSO operates in three spaces, the social network space, the
parameter space of problem variables and the evaluative
space [7] where estimates for the goodness of solutions are
defined. Various social networks have been proposed and
investigated by researchers [9]. In the original PSO

algorithm, the social network connects every particle to all
other particles and it is only influenced by the one that has
the best experience compared to all particles. We will refer to
this algorithm as PSO-g where ‘g’ stands for global. Though
this algorithm converges rapidly, it could get easily trapped
in local minima.

A variant of the simple PSO has a ring social network. In
this algorithm the particles are arranged in an imaginary ring
and every particle is connected to its immediately preceding
and succeeding particles in this ring. We will refer to this
algorithm as PSO-l where ‘l’ stands for local. This algorithm
converges slower than PSO-g but it is less susceptible to local
minima and enjoys a higher degree of particles diversity. The
influence of each particle in the swarm is limited to its two
immediate neighbors. This influence limitation helps the par-
ticles to explore the search space with different points of at-
traction instead of a single best found point in the PSO-g al-
gorithm. On the other hand, it may lead to excessive wander-
ing for the particles leading to slow convergence even in easy
problems having single optimum.

Both PSO-g and PSO-l are based on a static neighborhood
network. The first stages of the search for the global best po-
sition require exploration of possible solutions, which PSO-l
can do better. Later stages require exploitation of the best
found candidate solutions by early stages of the search, which
PSO-g is clever at. Hence, researchers suggested using a dy-
namic neighborhood.

In [10], the neighborhood of each swarm member expands
from an initial network that connects each particle to itself at
early stages of the search, to a network that fully connects it
to all other particles. This algorithm transforms gradually
from acting like PSO-l in early stages of the search, to behave
more like PSO-g at late stages. Two network expanding pro-
cedures have been introduced. Both of them depend on the
current position of the particle to search for nearby particles
to add to its neighborhood list.

In [11], a Fitness-Distance-Ratio based PSO (FDR-PSO)
algorithm is introduced. In this algorithm, each particle is
affected by three components; the cognitive, social and the
FDR components. The third component corresponds to the
influence of the particle that maximizes the FDR. The higher
the fitness of the neighbor and the closer its distance to the
original particle, the more likely it will influence this particle.
A new learning factor is introduced for the FDR component.

In [12], a randomly generated directed graphs are used to
define neighborhood where graph links are unidirectional.
Two methods for modifying the neighborhood structure are
tested. The ‘random edge migration’ method disconnects one
side of an edge and connects it to another neighbor, while the
‘neighborhood re-structuring’ method totally re-initializes the
structure after it is kept fixed for a period of time.

In [13], a Hierarchical PSO (H-PSO) version is introduced.
In this algorithm, particles are arranged in a hierarchy struc-
ture and the best performing particles ascend the tree to influ-
ence more particles, replacing relatively worse performing
particles which descend the tree. A variant of this algorithm

where the structure of the tree itself is made dynamic is pre-
sented and tested.

III. CLUBS-BASED PSO

PSO first models were confined to perceive the swarm as a
flock of birds that fly in the search space. The picture of fly-
ing birds has limited the imagination of researchers somehow
for sometime. Recently, a more broad perception of the
swarm as a group of particles, whether birds, humans, or any
socializing group of particles began to emerge.

In our proposed C-PSO algorithm, we create ‘clubs’ for
particles analogous to our clubs where we meet and socialize.
In our model, every particle can join more than one club, and
each club can accommodate any number of particles. Vacant
clubs are allowed.

After randomly initializing the particles position and speed
in the initialization range, each particle joins a predefined
number of clubs, which is known as its ‘default membership
level’, and the choice of these clubs is made random. Then,
current values of particles are evaluated and the best local
position for each particle is updated accordingly. While up-
dating the particles’ speeds, each particle is influenced by its
best found position and the best found position by all its
neighbors, where its neighborhood is the set of all clubs it is a
member of. After speed and position update, the particles’
new positions are evaluated and the cycle is repeated.

While searching for the global optima, if a particle shows
superior performance compared to other particles in its
neighborhood, the spread of the strong influence by this par-
ticle is reduced by reducing its membership level and forcing
it to leave one club at random to avoid premature conver-
gence of the swarm. On the other hand, if a particle shows
poor performance, that it was the worst performing particle in
its neighborhood, it joins one more club selected at random to
widen its social network and increase the chance of learning
from better particles.

The cycle of joining and leaving clubs is repeated every
time step, so if a particle continues to show the worst per-
formance in its neighborhood, it will join more clubs one
after the other until it reaches the maximum allowed mem-
bership level. While the one that continues to show superior
performance in every club it is a member of will shrink its
membership level and leave clubs one by one till it reaches
the minimum allowed membership level.

During this cycle of joining and leaving clubs, particles
which no longer show extreme performance in its neighbor-
hood, either by being the best or the worst, go back gradually
to default membership level. The speed of going back to de-
fault membership level is made slower than that of diverting
from it due to extreme performance. The slower speed of
regaining default membership level allows the particle to
linger, and adds some stability and smoothness to the per-
formance of the algorithm. A check is made every rr (reten-
tion ration) iterations to find the particles that have member-
ship levels above or below the default level, and take them
back one step towards the default membership level if they
do not show extreme performance.

The proposed algorithm can be described by the following
pseudo code.

begin
Initialize particles and clubs
while (termination condition = false)
do

 evaluate particles fitness: f(x)
 update P
 for (i = 1 to number of particles)

 g
i
 = best of neighbors

i

 for d = 1 to number of dimensions
v
id
= w×rand

1
×v

id
 + lrn

1
×rand

2
×(p

id
 – x

id
)

+ lrn
2
×rand

3
×(g

id
-x

id
)

x
id
 = x

id
 + v

id

 next d
 next i
 update neighbors

 for j = 1 to number of particles
 if (x

j
 is best of neighbors

j
) and

(|membership
j
| > min_membership)

 leave random club
 end if
 if (x

j
 is worst of neighbors

j
) and

 (|membership
j
| < max_membership)

 join random club
 end if
 if (|membership

j
| • default_membership)

 and (remainder(iteration/rr) = 0)
 update membership

j

 end if
 next j
 end do
 iteration = iteration + 1
 evaluate termination condition
end while

Where P is local best position, neighborsi is the set of

particle i neighbors, membershipi, |membershipi|
are the set of clubs that particle i is a member of and the size
of this set respectively. rand1,2,3 are three independent uni-
formly distributed random numbers in the range (0, 1). Figure
1 shows a snapshot of the clubs during an execution of the C-
PSO algorithm. In this example, the swarm consists of 8 par-
ticles, and there are 6 clubs available for them to join.

Fig. 1. Snapshot of clubs during a simulation of

the C-PSO algorithm

Given the previous pseudo code, and that the minimum,

default and maximum membership levels are 2, 3 and 5 re-
spectively, the following changes in membership will happen

to particles in Fig. 1 for the next iteration which is a multiple
of rr:

1. Particle3 will leave club1, 2 or 3 because it is the best
particle in its neighborhood.

2. Particle5 will join club1, 2 or 4 because it is the worst
particle in its neighborhood.

3. Particle2 will leave club1, 2, 3 or 4, while particle4 will
join club2, 3, 4, or 6 to go one step towards default
membership level because they do not show extreme per-
formance in their neighborhood.

IV. INDUCTION MOTOR PARAMETER IDENTIFICA-
TION

4.a Induction motor model
In this paper, parameter identification of the induction ma-

chine involves the estimation of the induction machine,
namely: stator resistance, rotor resistance, Leakage induct-
ances of the stator and rotor, mutual inductance, and equiva-
lent rotor inertia. As indicated in Figure 2, the proposed test
is based on a simple startup via either direct on line or con-
stant V/F converter. The varying frequency excites the differ-
ent motor dynamics, while the constant V/F keeps the ma-
chine flux nearly constant and equal to the rated flux. The
starting current wave is recorded and several identification
algorithms are used to find out appropriate parameter values
that can minimize the integrated absolute error between the
recorded waveform and that generated by a motor model us-
ing the identified parameters.

For the purpose of this study, the model used for the induc-
tion machine is based on [14]. The model is a standard IM
model in the synchronous frame with the states selected to be
isd, isq, rdψ , rdψ , and ω , which represent the stator current,

and the rotor flux linkage in both direct and quadrature axis,
and the rotor speed.

Fig. 2. Parameter identification using V/F starting of induc-

tion machine

4.b Parameter Identification Techniques
For the sake of comparison, the response of the C-PSO iden-
tifier is compared with different algorithms namely: Line

search technique, GA based technique, Global and local PSO
techniques. The Line Search (LS) method which is selected
to represent the traditional algorithms. GA based technique
and classical PSO variants falls under the umbrella of EAs.

GA based technique
The GA used in this application is based on real value repre-
sentation. The parameters are encoded with real values dur-
ing initialization to take random values within the bounds
given in Table 1. It is to be noted that the stator and rotor
inductances (Lsl, Lrl) were combined in a single variable be-
cause they are not separable in the induction motor model.
Applications that requires the explicit knowledge of each of
the leakage inducatances should perform an extra tests to
measure Lsl.
In this application, the SBX recombination operator [16] is
used due to its strong ability to produce a varied set of off-
spring which resemble their parents to a certain degree de-
fined by a parameter of this operator (ηc). The mutation op-
erator used here is the polynomial mutation [17] because it
can produce mutations, similar to those produced in binary
GA, with a parameter that defines the severity of mutations
(ηm).
The survival selection scheme used here relies on tournament
selection to reduce selection pressure and help preserve di-
versity. However, instead of copying them to the mating
pool, the selected individuals were those who make the popu-
lation of the next generation. An elitism strategy is used here
to ensure the survival of the most fit individual to prevent a
setback in the best found fitness. The parameters of the
GA is presented in Table 2.

Table 1: Real values for motor parameters and their corre-
sponding initialization ranges

Parameter Real value Minimum Maximum
Rs 9.203 1.0 20.0
Rr 6.61 1.0 20.0
Lsl+Lrl 0.09718 0.002 1.0
Lm 1.6816 0.05 5.0
J 0.00077 0.00005 0.001

Table 2: GA parameters’ values for the parameter identifica-

tion problem
Parameter Description Value
N Population size 50
Pc Crossover rate 0.5
ηc Crossover distribution index 15
Pm Mutation rate 0.01
ηm Mutation distribution index 15
ts Tournament size 2

PSO techniques
Three variants of the PSO algorithm were used here for pa-
rameter identification. They are based on the local best (PSO-
l), global best (PSO-g) topologies, and the C-PSO algorithm.

The particles of the swarm of each one of the three variants
are randomly initialized within the initialization ranges of the
solution space given in Table 1. Initial velocities were ran-
domly initialized as well. Just as the case with the other algo-
rithms, the particles were not allowed to fly below the lower
bounds of the search space but were allowed to take any
value above the upper bound. On the other hand, the veloci-
ties were not restricted by any bound.
Based on the corresponding topology used in these variants,
the particles are affected by different neighbors and update
their positions accordingly. The parameters of those PSO
variants are given in Table 3. It is to be noted here that the
inertia weight value for the C-PSO algorithm (w = 1.458) is
twice as much as that for the two other topologies because it
is multiplied by a uniformly distributed random number with
a mean value of 0.5 leading to an expected value which is the
same as those for the two other topologies.

Table 3: PSO parameters’ values for the parameter identifi-

cation problem
Algorithm Parameter Description Value
C-PSO N Swarm size 20
 ω Inertia weight

1.458

 χ Constriction coefficient

1

 φ1 Personal learning rate

1.494

 φ2 Global learning rate

1.494

 cn Number of clubs 100

 Mavg Average membership 10

 Mmin Min membership level 4

 Mmax Max membership level 33

 N Tournament size 2

N Swarm size 20

ω Inertia weight

0.729

χ Constriction coefficient

1

φ1 Personal learning rate

1.494

PSO-l
 /
 PSO-g

φ2 Global learning rate

1.494

Line Search
The LS method is a simple deterministic local search tech-
nique. In this method, the search space is discretized with a
unit size of δi for the ith dimension. A random point (x) is
chosen in the discretized search space and its fitness is evalu-
ated (f(x)), and the fitness of its neighboring points are evalu-
ated as well. If the fitness value of most fit neighbor is less
than or equals that of x (for a minimization problem), the
algorithm moves to this new point and evaluates the fitness of
its neighbors. But if the fitness of the most fit neighbor is
higher than that of x, the algorithm terminates.
The set of neighbors Νx for a point x = (x1, x2, . . . , xn) in a n-
dimensional space contains 2n unique points. The position of
each point in the set can be determined by moving by a step
of δi in both directions of the ith dimension; Nx = (x1 ±δ1
, x2, . . . , xn), (x1, x2 ± δ2, . . . , xn), . . . , (x1, x2, . . . , xn ± δn).

This algorithm contains one parameter which is the step size
δi. For the current application, this value was set to 0.1% of
the initialization range for the corresponding dimension as
explained in Table 1.

V. SIMULATION RESULTS

The five previously mentioned algorithms are used to esti-
mate the real parameters of an induction motor which are
given in Table 1. All the five optimizers used the same fitness
function, which evaluates the fitness of the solution passed to
it by solving the differential equations based on the parame-
ters of this solution using Matlab’s ode45 solver1 and accu-
mulates the error which is the difference between the esti-

mated currents (321
ˆ,ˆ,ˆ iii) and the measured currents

(321 ,, iii). The error value is used as fitness measure:

() ()∫ −+−+−=
T

dtiiiiiif
0

332211
ˆˆˆθ

To make a fair comparison between the different optimizers,
each one of them were allowed to perform 100,000 function
evaluations. So a larger size for the population or the swarm
meant lower number of generations or iterations. The shown
results are the average of 10 independent runs of the optimi-
zation algorithms.

Figure 3 shows the fitness values obtained by the five opti-
mizers through the 100,000 function evaluations of the simu-
lation. As can be seen, the C-PSO algorithm reached the low-
est fitness value among the five optimizers at the end of the
100,000 function evaluations. It managed to reach a fitness
value of 0.0019 which is significantly better than a value of
0.1554 for the PSO-l algorithm which came in the second
place. Little behind the PSO-l algorithm comes the GA then
the PSO-g optimizers, while the LS algorithm lags behind
them by a long distance.

Fig. 3. Average fitness obtained by the five optimizers
against number of fitness function evaluations

From the results obtained in Figure2, the algorithms can be
categorized into three groups according to their performance.
The first group contains the LS algorithm which totally lacks
any capability of escaping local minima. In all the runs, the
algorithm was trapped in the first local minima it faced,
which happened very early in the run (in the first 5,000 func-

tion evaluations in most cases), and subsequent evaluations
were unnecessary. In the second group come the PSO-g, GA,
and the PSO-l algorithms. The ability of these algorithms to
escape local minima is much better than the LS algorithm,
which is clear from their much lower final fitness values.
Moreover, even at the end of the 100,000 function evalua-
tions, the fitness values of these algorithms were steadily
decreasing, however with a small rate. The third group con-
tains the C-PSO algorithm which outperformed all the other
optimizers.
This algorithm shows much better ability than the two other
groups in escaping local minima. Moreover, the rate of fit-
ness decrease for this algorithm is much more higher than
that of all the other algorithms, and it even maintained a rea-
sonable decrease rate at the end of the 100,000 function
evaluations. These results show how the C-PSO algorithm
exploits the available computation power much more better
than all the other algorithms.
Regarding convergence speed, it is clear from Figure 2 that
the C-PSO algorithm is the fastest converging algorithm. By
using the number of evaluations needed to reach a value
equals 5% of the initial fitness value (roughly equals 10) as
convergence speed measure, it can be seen that the C-PSO
algorithm was the fastest converging algorithm among all the
optimizers. After around 15,000 function evaluations it
reached the desired fitness value which the PSO-l algorithm
achieved after approximately 23,000 function evaluations. In
the third place comes the GA algorithm which needed nearly
60,000 evaluations to reach that fitness value. However, nei-
ther the PSO-g nor the LS algorithms achieved the fitness
value in question during the 100,000 function evaluations.
The results obtained here confirms the results obtained in a
similar parameter identification study presented in [18], as
the PSO algorithms (on average) achieved lower final fitness
values and higher convergence speed, which was the case
here as well.
Further statistical analysis of the results is shown in Table 4.
As can be seen, the C-PSO algorithm achieves the best per-
formance in all the five performance measures shown in the
Table. The lowest standard deviation value achieved by the
C-PSO algorithm which is much more lower than that of the
PSO-l algorithm which comes second shows how the algo-
rithm is much more reliable than all the other optimizers,
because its performance is less dependent on the stochastic
variables such as the starting point and the random weight
variables. The median value of the different independent runs
is a good representative of these runs because it is not af-
fected by the outlier values when compared to their average
or mean value. For this measure, the C-PSO algorithm
achieved the lowest fitness value among all the optimizers as
well.

Table 4: Final fitness values after 100,000 function evalua-
tions

Algorithm Average Std. dev. Min. Max.
C-PSO 0.0019 0.0035 2.5e-5 0.0114
PSO-l 0.1554 0.1679 5.6e-4 0.5244
PSO-g 0.8125 1.3091 6.5e-4 4.5732
GA 0.2607 0.2250 2.2e-2 0.7459
LS 9.3531 0.5663 8.7e-0 10.4027

The C-PSO algorithm continues to show superior perform-
ance over the other algorithms regarding the average percent-
age deviation of the estimated parameters from the actual
induction motor parameters which are shown in Table 5. It
achieves much more lower deviation values in three out of
the five parameters (by an order of 100 in some situations),
and comes second regarding the other two parameters. As can
be seen, the LS algorithm did a bad job in searching for the
real parameter values. The lowest deviation error it achieved,
which is approximately 19%, is an unacceptable error in most
real applications (above 5% deviation error2). This deviation
error value reached a staggering value of 467% in the case of
the identified inertia value (J).

Table 5: Average percentage deviation of the estimated pa-

rameters from the real parameters

 Rs Rr Lsl+Lrl Lm J
C-PSO 0.024 1.323 0.652 0.029 1.684
PSO-l 1.976 1.169 3.051 2.188 2.814
PSO-g 17.11 16.21 25.88 7.849 17.69
GA 3.105 2.517 3.349 0.051 0.939
LS 19.04 63.17 103.4 28.86 467.1

Second worst comes the PSO-g algorithm which achieved
deviation errors ranging between 7.8% and 25.9%. Although
these values are better than those obtained by the LS algo-
rithm, they are still unacceptable. Next come the PSO-l and
the GA algorithms showing similar performance, however
the PSO-l is slightly better as it achieves lower deviation er-
ror values in three out of the five parameters being identified.
Those two algorithms achieve a tolerable deviation error tol-
erance (below 5%) in all the parameters. Ahead of all the
other optimizers comes the C-PSO algorithm achieving a
deviation error lower than 2% in all five parameters being
identified.
Further statistical analysis of the obtained results is presented
in Figure 4 using boxplots. First, Figures 4(a)–(d) show sta-
tistical data regarding the estimated parameters. As can be
seen, Figure 4(a) shows how the C-PSO had more restricted
outliers (lower deviation from the mean) when compared to
the other algorithms shown in Figure 4(b)–(d). Moreover, the
deviation from the mean is graphically shown to be less in
the case of the C-PSO algorithm than in the case of the other
optimizers. Figure 4(e) shows statistical data regarding the
final fitness values obtained by the four AI techniques, again,

C-PSO is shown to show superior performance; The obtained
results are very close to the mean value and there are no out-
liers compared to the other AI techniques with higher devia-
tion from the mean and more outliers.

Fig. 4. Boxplots showing the performance of the different AI

algorithms:

Figure 5 presents the index values of the best performing
particle in the swarm for the three PSO algorithms. As can be
seen, most of the particles in the C-PSO swarm participated
in the search process as status of the best particle in the
swarm was alternating among almost all the particles (Figure
5 up). On the other hand, the status of the best particle in the
PSO-l algorithm was confined to fewer particles (Figure 5
middle), and each one of them claimed that status for a longer
period of time (on average) than the case of the C-PSO algo-
rithm. The effect of the ring topology is clear in this case as
best particle status moves from a particle to its neighbor in
the ring. Finally the behavior of the particles of the PSO-g
algorithm is shown in (Figure 5 bottom).Only three particles

(#13, #19, and #20) were leading the swarm in the last 90,000
function evaluations.

Fig. 5. Best particle in the swarm of the three PSO al-
gorithms used in parameter identification, C-PSO
(top), PSO-l (middle), and PSO-g (bottom)

The alternation of the best particle status as depicted in the C-
PSO case shows that most of the particles of the swarm par-
ticipated effectively in the search process; While some parti-
cles are searching for the global optimum in one region, the
other particles are searching for that optimum elsewhere, but
are guided by the experience of the other particles in the
swarm. This effective search mechanism was present but
with less efficiency in the case of the PSO-l algorithm, and
this efficiency is much more less in the case of the PSO-g as
few particles are effectively searching for the global mini-
mum which the others are being dragged by them.

VI. CONCLUSION

Particle swarm optimizers are very sensitive to the shape
of their social network. Both PSO-g and PSO-l lack the abil-
ity of adapting their social network to the landscape of the
problem they optimize.

The proposed C-PSO algorithm overcomes this problem.
The dynamic social network of the optimizer shrinks the
membership level of superior particles to reduce their influ-
ence on other particles, while expanding the membership
level for the worst particles to increase their chance in learn-
ing from better particles.

C-PSO versions achieved better results than PSO-l and
PSO-g either in escaping local optima or in convergence
speed to global optima for almost all benchmark problems we
considered.

Further investigations have shown that the dynamic social
network allowed particles to be guided indirectly by the supe-
rior particles, while searching for better solutions more freely
than the case of PSO-g. It was shown using empirical results
that C-PSO is able to explore and find better regions in the
search space during periods of stagnation, making it attrac-
tive for use in multimodal problems.

REFERENCES

[1] P. Vas, Sensorless Vector and Direct Torque Control. Lon-
don, U.K: Oxford Univ. Press, 1998.

[2] H.Toliyat, E.Levi and M. Raina, "A Review of RFO Induction
Motor Parameter Estimation Techniques", IEEE Trans. En-
ergy Conversion, vol. 18, no. 2, pp. 271–283, Jun. 2003.

[3] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, pp. 671–680, May
1983.

[4] J. H. Holland, Adaptation in Natural and Artificial Systems,
Ann Arbor: University of Michigan Press, 1975.

[5] A. Colorni, M. Dorigo and V. Maniezzo, “Distributed optimi-
zation by ant colonies,” in Proc. First European Conference
on Artificial Life, 1991, pp. 134–142.

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proc. IEEE Int. Conf. on Neural Networks, vol. 4, 1995, pp.
1942–1947.

[7] J. Kennedy, “Particle swarms: optimization based on socio-
cognition,” in Recent Development in Biologically Inspired
Computing, L. N. de Castro and F. J. Von Zuben, Ed. Idea
Group, 2005, pp. 235–269.

[8] Y. Shi and R. C. Eberhart, “Parameter selection in particle
swarm optimization,” in Proc. Evolutionary Programming
VII, vol. 1447, 1998, pp. 591–600.

[9] J. Kennedy, “Small worlds and mega-minds: effects of
neighborhood topology on particle swarm performance,” in
Proc. Cong. on Evolutionary Computation (CEC 1999), vol.
3, 1999, pp. 1931–1938.

[10] P. N. Suganthan, “Particle swarm optimization with a
neighborhood operator,” in Proc. Cong. on Evolutionary
Computation (CEC 1999), vol. 3, 1999, pp. 1958–1962.

[11] K. Veeramachaneni, T. Peram, C. Mohan and L. A. Osadciw,
“Optimization using particle swarms with near neighbor inter-
actions,” in Proc. Genetic and Evolutionary Computation
(GECCO 2003), vol. 2723, 2003, pp. 110–121.

[12] A. S. Mohais, R. Mendes, C. Ward and C. Posthoff,
“Neighborhood re-structuring in particle swarm optimization,”
in Proc. Australian Conference on Artificial Intelligence, vol.
3809, 2005, pp. 776–785.

[13] S. Janson and M. Middendorf, “A hierarchical particle swarm
optimizer and its adaptive variant,” IEEE Systems, Man and
Cybernetics - Part B, vol. 35, no. 6, pp. 1272–1282, Dec.
2005.

[14] K. Wang, J. Chiasson, M. Bodson, and L. M. Tolbert, " An
online rotor time constant estimator for the induction machine
," IEEE Trans. Cotrol Systems Technology, vol. 15, no. 2, pp.
339–348, Mar. 2007.

[15] I. C. Trelea, “The particle swarm optimization algorithm: con-
vergence analysis and parameter selection,” Inform. Process.
Lett., vol. 85, pp. 317–325, 2003.

[16] K. Deb and R. B. Agrawal, “Simulated binary crossover for
continuous search space,” Complex Systems, vol. 9, pp. 115–
148, 1995, http://citeseer.ist.psu.edu/deb95simulated.html.

[17] M. M. Raghuwanshi and O. G. Kakde, “Survey on multiobjec-
tive evolutionary and real coded genetic algorithms.” Cairns,
Australia: Monash University, Dec. 2004, pp. 150–161,
http://www.complexity.
org.au/conference/upload/raghuw01/raghuw01.pdf.

[18] R. K. Ursem and P. Vadstrup, “Parameter identification of in-
duction motors using stochastic optimization algorithms,”
Appl. Soft Comput, vol. 4, no. 1, pp. 49–64, 2004,
http://www.daimi.au.dk/~ursem/publications/RKU
ASOC2004_Par ID Stoch.pdf.

View publication statsView publication stats

