
A Bayesian Approach for Automatic Algorithm Selection

Haipeng Guo
Department of Computing and Information Sciences

Kansas State University, Manhattan, KS 66506
hpguo@cis.ksu.edu

Abstract

This paper introduces a self-trainingautomatic al-
gorithm selection systembased on experimental
methods and probabilistic learning and reasoning
techniques. The system aims to select the most ap-
propriate algorithm according to the characteristics
of the input problem instance. The general method-
ology is described, the system framework is pre-
sented, and key research problems are identified.

1 Introduction
Given a computational problem, there usually exists many
different algorithms to solve it exactly or approximately. Dif-
ferent algorithms often perform better on different classes of
problem instances. Thealgorithm selection problemasks the
following question: “which algorithm should we select to
solve the input instance?”

The automatic algorithm selection problem arises in var-
ious situations. It is important both theoretically and prac-
tically. Theoretically, we computer scientists always like to
seek a better understanding to the problem instance hardness
and algorithm performance so that we can deliver better and
faster algorithms for the given computational task. In prac-
tice, it helps us gain more efficient computations to solve the
problem. Algorithm selection is particularly crucial for appli-
cations with real-time constrains.

There are two possible ways to attack the problem: an-
alytically and experimentally. Furthermore, there are three
analytical algorithm comparison and selection methods. The
first one is to apply worst-case analysis to all candidate algo-
rithms, compare their complexities, and select the best one.
This approach has been widely studied in classical theoreti-
cal computer science, however, it does not always work well.
Some algorithm may have a bad worst-case complexity, but
they perform averagely very well in practice. For exam-
ple, Quicksort has a worst-case complexity ofO(n2), how-
ever, such pathological behavior is never observed in prac-
tice. Also, for many complex, approximate, randomized, and
heuristic algorithms formal analysis is often infeasible. The
second approach is to analyze the algorithm’s average-case
complexity. The drawback of this method is that it often re-
quires a strong assumption on the distribution probabilities
of input instances, which is hard to make in most cases. The

third analytical approach considers instance classes instead of
single instances or all instances as a whole[Mannila, 1985].
It defines a subproblem of the original problem by some in-
tuitive criteria of instance easiness (or hardness) and then
studies the worst-case complexity of the subproblem. Al-
gorithms optimal to the instance hardness measures are de-
signed and analyzed on these subproblems, with resource re-
quirements increasing smoothly when moving to larger sub-
problems. The drawback of this approach is that it is feasible
only to simple problems. It is hard to be applied to NP-hard
optimization problems which are more complex yet impor-
tant in practice. Another drawback is although it provides a
way to design adaptive algorithms that are optimal for some
measures, it is usually impossible to design an algorithm that
are optimal for all measures. For algorithms adaptive to dif-
ferent measures there also exists an algorithm selection prob-
lem. Furthermore, all these analytical approaches are gen-
erally not suitable to making predictions about the empirical
hardness of problem instances and the run time performance
of the algorithms.

In this paper, I describe an experimental methodology of
building automatic algorithm selection system using machine
learning techniques in which the results of theoretical analy-
sis serve mainly as a source of domain knowledge to guide
the experiment design. Such a methodology is more feasible
because of the following reasons. First, any theoretical re-
sults will still need to be implemented and verified. Second,
in practice the human expert of algorithm selection seldom
depends solely on theoretical analysis without observing the
algorithms’ run time behaviors. Third, the analytical method
has its inherent limitations as we pointed out above. Finally,
the progresses recently made in the field of experimental al-
gorithmics, machine learning and Artificial Intelligence (AI)
have provided some useful techniques to help solve the auto-
matic algorithm selection problem.

2 Background and Related Works
The algorithm selection problem is originally formulated in
[Rice, 1976]. Later on it has been mainly applied to the
selection of problem-solving method in scientific computing
[Houstiset al., 2000], specifically to the performance evalua-
tion of numerical softwares. An abstract model for the prob-
lem is also given in[Rice, 1976] as reproduced in Figure 1,
wherex is the input instance in the problem space andw is



Figure 1: The Abstract Model of Algorithm Selection Prob-
lem

the performance criteria. The input problem instance is rep-
resented by the feature(s)f in the feature space by a feature
extraction procedure. The task is to build a selection map-
pingS that provides a good (measured byw ) algorithmA to
solvex subject to the constrains that the performance ofA is
optimized.

Algorithm selection can bestaticor dynamic. Static algo-
rithm selection system makes the selection and commits to
the selected algorithm, while the dynamic algorithm selec-
tion system may change its selection dynamically by mon-
itoring the running of the algorithm. One special kind of
dynamic algorithm selection isrecursive algorithm selection
[Lagoudakis and Littman, 2000; 2001] in which a decision of
algorithm selection needs to be made every time a recursive
call is made. For example, a sorting algorithm often needs
to recursively sort smaller instances. At each recursive call,
you need to make the decision about which sorting algorithm
to choose. The goal becomes to optimize a sequence of al-
gorithm selection decisions dynamically. In this paper I con-
sider the static algorithm selection problem. Hopefully, the
methodology can be applied to dynamic situations with only
slight modifications.

Automatic algorithm selection is an interdisciplinary prob-
lem invovling many fields such as complexity theory[Garey
and Johnson, 1979], computability theory[Homer and Sel-
man, 2001], experimental algorithmics[Johnson, 1996], arti-
ficial intelligence[Russell and Norvig, 1995], machine learn-
ing [Mitchell, 1997], and so on. Complexity theory provides
basic analytical tools and results for algorithm comparison
and selection. But the automatizing of the analysis of algo-
rithm complexity is generally infeasible. Computability the-
ory, specifically the Rice’s theorem, points out the nonexis-
tence of a program that takes as input only the description
of the problem instance and the description of the algorithms
and return the best algorithm to solve it. It means that the gen-

eral automatic algorithm selection problem is undecidable.
But this does not rule out the possibility of inducing an algo-
rithm selection system from the experimental data collected
by running different algorithms on instances with different
features.

In recent years researchers in experimental algorithmics,
combinatorial optimization, and artificial intelligence have
studied theempirical hardnessof NP -hard instances. They
have managed to find simple relationships between the char-
acteristics of the problem instances and the hardness of the
problems independent of any algorithms. One of the ma-
jor findings is thephase-transition[Cheesemanet al., 1991;
Mitchell et al., 1992] in NP -hard problems. Their approach
is to vary some parameter values of the input instances look-
ing for a hard-easy-hard transition corresponding to a phase
transition in the resources that required to solve the problem.
It is easy to see that this approach can also be applied to study
the relationships between the features of the input instances
and the algorithm-dependent hardness of the problem, which
is key to solve the algorithm selection problem.

In practice, the selection of algorithm is done by hand by
some algorithm selection experts who have a good theoreti-
cal understanding to the computational complexity of various
algorithms and are very familiar with their run time behav-
iors on different input instances. To automate this process
is to build an expert system that has the capability to per-
form the same task of algorithm selection. Like any intelli-
gence systems, the algorithm selection expert system should
have at least three core components: knowledge representa-
tion, learning, and inference. The knowledge and informa-
tion in automatic algorithm selection contains inherent uncer-
tain factors: the uncertainty in the input problem space, the
working mechanism of the algorithms (especially these com-
plex and randomized algorithms), the influence of different
implementations, the uncertainty of run time environments,
etc. Researchers in the community of Uncertainty in Artifi-
cial Intelligence (UAI) have advocated the use of probabilis-
tic graphic models such asBayesian networks[Pearl, 1988]
in intelligent systems which reason under uncertainty. In this
paper I propose to use Bayesian networks as the core model
of an automatic algorithm selection system.

Bayesian networks (BNs), also known as Bayesian be-
lief networks, causal networks, or probabilistic networks,
are currently the dominant uncertainty knowledge repre-
sentation technique in AI[Pearl, 1988; Neapolitan, 1990;
Russell and Norvig, 1995]. BNs are Directed Acyclic Graphs
(DAGs) where nodes represent random variables, and edges
represent conditional dependence between random variables.
Each node in the network has a conditional probability ta-
ble, or CPT. Each column in the CPT contains the conditional
probability of each node value for a possible combination of
values for its parent nodes. The topology of the network can
be thought of as an abstract knowledge base representing the
general structure of the causal process in the domain. The
numbers in the network - these probabilities - are interpreted
as beliefs, i.e., probability is a measure of belief in a propo-
sition given particular evidence. A Bayesian network pro-
vides a complete description of the domain. It encodes joint
probability distributions (JPD) in a compact manner. BNs



can be learned from data using Bayesian network learning
algorithms such as K2[Cooper and Herskovits, 1992]. The
learned network represents the dependency relationships be-
tween these domain variables. It then can be used to answer
queries about the domain by inference.

3 The Self-training Automatic Algorithm
Selection System

In this section I describe a self-training automatic algorithm
selection system based mainly on Bayesian methods[Horvitz
et al., 2001; Guo, 2002]. Knowledge of dependencies be-
tween the characteristics of input problem instances and the
performance of the candidate algorithms can be considered
as some sort of uncertain knowledge. The uncertainty knowl-
edge can be encoded by a Bayesian network, “the algorithm
selection expert network”, which is automatically learned
from some training data with the guidance of domain knowl-
edge. To learn the expert network, we need to have a rep-
resentative training data that contains the knowledge we are
seeking. In order to achieve this, we develop a controllable
random problem instances generator that can randomly gen-
erate input instances with the specified characteristic. By
controlling the characteristic parameters values, random in-
stances can be generated for both training and testing. Since
the space of all possible problems is very large and at the
same time many extreme characteristics are rarely encoun-
tered in real applications, it’s reasonable and necessary to
consider only a subset of it, the set of “real world problems”
(RWP). This can be done by first extracting the real world dis-
tributions of all characteristic parameters from a collection of
real world samples, then generating “random” problem in-
stances from them. Once we can generate synthetic problem
instances, we can then select the candidate algorithms we are
interested in and run them on these instances to generate the
training data. These data records the characteristics param-
eter values of the input instances, the algorithms being used,
and the run time performance of the algorithms. They contain
the uncertain knowledge of how well each algorithm matches
each class of problems statistically. The expert network for
algorithm selection can be learned from the training data us-
ing Bayesian networks learning algorithm. After we have this
expert network in hand, we can use it to select the best algo-
rithm for a given input instance and even predict the run time
performance of the algorithm on it.

To summarize, the proposed methodology consists of the
following steps.

1. Identify a list of feasible instance characteristics using
domain knowledge. They need to be representative and
easy to compute comparing to the cost of the problem
solving itself.

2. Identify a list of candidate algorithms for solving the
problem.

3. Generate a representative set of test instances with dif-
ferent characteristic values settings uniformly at random
(or using the RWP characteristic).

4. Run the candidate algorithms on these elaborately de-
signed instances and collect the performance data.

Figure 2: Overview of the Automatic Algorithm Selection
System

5. Apply Bayesian network learning techniques to induce a
predictive model (a Bayesian network) out of the exper-
imental data.

6. For a new instance, analyze its characteristic and use the
learned Bayesian network to infer the most appropriate
algorithm to solve it.

Figure 2 shows the overview of the system. The system
should be easily extended in the future to include new charac-
teristic parameters and new inference algorithms. It can start
a self-training cycle once new features and/or new algorithms
are plugged in.

4 Experimental Results

In this section I report some results of applying the proposed
methodology to algorithm selection for sorting and the Most
Probable Explanation (MPE) problem.

For sorting, the algorithms I considered included insertion
sort, shellsort, heapsort, mergesort and quicksort. The in-
stance characteristics included the size of the input permu-
tation and three presortedness measures: the number of in-
versions (INV), the number of runs (RUN), and length of the
longest ascending subsequence (LAS)[Knuth, 1981]. Be-
cause sorting can be solved inO(n log n), the meta-level rea-
soning becomes too expensive if using a Bayesian network.
Our results showed that although the learned Bayesian net-
work provided the best classification accuracy of selecting the
best sorting algorithm, the gain in overall computational time
was negative. Instead, a simple decision tree provided the
best overall performance as a meta-level reasoner. Reason-
ing using decision trees can be done quickly because it just
checks a set of if-then rules. The classification accuracy and
reasoning time of Bayesian network and decision tree are list
in table 1.



Table 1: Reasoning Time (microseconds) and Classification
Accuracy (%) in Sorting Algorithm Selection

C4.5 DecisionTree BayesNet
accuracy (%) 90.03 90.61

time 43.35 14,845.35

In theNP -hard MPE problem, solution quality rather than
time is more important in evaluating the system’s overall per-
formance because the reasoning time can basically be ignored
comparing to the actual computational time. The MPE prob-
lem, also called belief revision, computes the most probable
explanation given the observed evidence in a Bayesian net-
work. For the MPE problem, the algorithms I considered
included MCMC Gibbs sampling, importance forward sam-
pling, multi-start hillclimbing, tabu search, and ant colony
optimization. MPE instance characteristics being used in-
cluded number of nodes of the network, network topolog-
ical type, network connectedness, CPT skewness, evidence
percentage, and evidence distribution. The learned Bayesian
network is shown in Figure 3. Its classification accuracy was
76.08%. Our test result showed that the MPE algorithm selec-
tion system provided the best overall performance for solving
the MPE problem compared to all candidate MPE algorithms
alone.

Figure 3: The Learned BN for Approximate MPE Algorithm
Selection

5 Discussions and Summary
In this paper I have presented a Bayesian approach for build-
ing automatic algorithm selection system. The core of the
system is a Bayesian network which represents the uncertain
knowledge of the mapping relationship between algorithms
performance and problem features. It has the capability of
self-training and facilitates efficient learning and inference of
the model. When new algorithms or new problem features
are plugged in, the system can use idle time to generate ran-
dom instances and training data to train itself, discover new
knowledge, and improve its algorithm selection capability au-
tomatically. After inducing the model from training data, the

system can select the best algorithm for a given input instance
x as solving a Bayesian network inference problem as fol-
lows: it first computes the characteristic vector of inputx,
then uses the characteristic values as observed evidence of
the corresponding nodes of the Bayesian network, and finally
computes the most probable algorithm given the evidence.
The methodology relies heavily on experimental methods and
probabilistic learning and reasoning techniques. The general
model should apply to other automatic computing system as
well.

The key research issues of this scheme include the random
generation problem[Sinclair, 1997] to guarantee the repre-
sentativeness of the training data, the use of analytical do-
main knowledge to guide the design of the algorithmics ex-
periments, the measuring of the algorithm performance, and
the problem of learning the model and reasoning on it.

The proposed algorithm selection system can be extended
from the following two aspects. First, in the framework de-
scribed in last section the learned Bayesian network, as a
meta-level reasoner, is mainly used as a classifier to classify
an input instance to the best algorithm to solve it according to
the instance’s descriptive characteristics. In theory any other
classifier should work as well, for example, a decision tree
or a naive Bayes classifier. It is natural to try all these mod-
els, compare their performance and select the best. These
can be seen as meta-meta-level reasoning. Second, it is easy
to extend the system from automatic algorithm selection to
autonomic algorithm selection. The system can be designed
in such a way that it is able to sense and adapt to changes
in the underlying distribution of the input instances so as to
gain a better classification accuracy. Again, this requires a
meta-meta-level reasoner to keep monitoring the environment
changes and being aware of the differences between its meta-
level reasoning model and the changed environment. As sug-
gested in[Lagoudakis and Littman, 2000], one simple way to
do this is to allow most recent data to overshadow old data.

Some future research directions may include (1) the com-
parison of different models in terms of their capability of
knowledge representation, learning, and inference for algo-
rithm selection; (2) the study of characteristics of real world
instances to improve the representativeness of randomly gen-
erated instances and training data; (3) apply the methodology
to other self-managing computing systems.

Acknowledgments
I would like to thank the anonymous reviewer’s valuable com-
ments and advices. I also want to thank my advisor Dr.
William H. Hsu for his continue support to my Ph.D. study
at K-State.

References
[Cheesemanet al., 1991] P. Cheeseman, B. Kanefsky, and

W.M. Taylor. Where the Really Hard Problems Are.
In Proceedings of the Twelfth International Joint Con-
ference on Artificial Intelligence, IJCAI-91, Sidney, Aus-
tralia, pages 331–337, 1991.

[Cooper and Herskovits, 1992] G.F. Cooper and E. Her-
skovits. A bayesian method for the induction of probabilis-



tic networks from data.Machine Learning, 9(4):309–347,
1992.

[Garey and Johnson, 1979] M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide to the Theory of
NPCompleteness. Freeman, 1979.

[Guo, 2002] H. Guo. A bayesian metareasoner for algorithm
selection for real-time bayesian network inference prob-
lems. InAAAI02 Doctoral Consortium Abstract, 2002.

[Homer and Selman, 2001] S. Homer and A.L. Selman.
Computability and Complexity Theory. Springer Verlag
New York, 2001.

[Horvitz et al., 2001] E. Horvitz, Y. Ruan, C. Gomes,
H. Kautz, B. Selman, and D.M. Chickering. A bayesian
approach to tackling hard computational problems. InPro-
ceedings of the Seventeenth Conference on Uncertainty in
Artificial Intelligence, August 2001.

[Houstiset al., 2000] E.N. Houstis, A.C. Catlin, J.R. Rice,
V.S. Verykios, N. Ramakrishnan, and C.E. Houstis.
PYTHIA-II: a knowledge/database system for managing
performance data and recommending scientific software.
TOMS, 26(2):227–253, 2000.

[Johnson, 1996] D. Johnson. A theoretician’s guide to the
experimental analysis of algorithms, 1996.

[Knuth, 1981] D. E. Knuth. The art of computer program-
ming: Sorting and Searching, volume 3. Addison-Wesley,
1981.

[Lagoudakis and Littman, 2000] M.G. Lagoudakis and M.L.
Littman. Algorithm selection using reinforcement learn-
ing. In Proc. 17th International Conf. on Machine Learn-
ing, pages 511–518. Morgan Kaufmann, San Francisco,
CA, 2000.

[Lagoudakis and Littman, 2001] M. G. Lagoudakis and
M.L. Littman. Selecting the right algorithm. InProceed-
ings of the 2001 AAAI Fall Symposium Series: Using
Uncertainty within Computation, Boston, MA, 2001.

[Mannila, 1985] H. Mannila. Instance Complexity for Sort-
ing and NO-complete problems. PhD thesis, Department
of Computer Science, University of Helsiki, 1985.

[Mitchell et al., 1992] D.G. Mitchell, B. Selman, and H.J.
Levesque. Hard and easy distributions for SAT problems.
In Paul Rosenbloom and Peter Szolovits, editors,Proceed-
ings of the Tenth National Conference on Artificial Intel-
ligence, pages 459–465, Menlo Park, California, 1992.
AAAI Press.

[Mitchell, 1997] T. Mitchell. Machine Learning. McGraw
Hill, 1997.

[Neapolitan, 1990] R.E. Neapolitan. Probabilistic Reason-
ing in Expert Systems: Theory and Algorithms. John Wiley
and Sons, New York, 1990.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference. Morgan-
Kaufmann, San Mateo, CA, 1988.

[Rice, 1976] J.R. Rice. The algorithm selection problem,
volume 15, pages 65–118. 1976.

[Russell and Norvig, 1995] S. Russell and P. Norvig.Arti-
ficial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ, 1995.

[Sinclair, 1997] A. Sinclair.Algorithms for Random Genera-
tion and Counting: A Markov Chain Approach. Springer-
Verlag, 1997.

View publication statsView publication stats


