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Abstract

This paper demonstrates that the Joint Prob-
ability Distribution (JPD) of a Bayesian net-
work is a random multinomial multifrac-
tal. With sufficient asymmetry in individ-
ual prior and conditional probability distri-
butions, the JPD is not only highly skewed
as shown by Druzdzel [3], but also is stochas-
tically self-similar and has clusters of high-
probability instantiations at all scales. Based
on the discovered multifractal property a
two phase hybrid Sampling-And-Search algo-
rithm for finding the Most Probable Expla-
nation (MPE) is developed and tested. The
experimental results show that the multifrac-
tal property provides a good meta-heuristic
for solving the MPE problem. The multifrac-
tal properties also strengthen the connections
between Bayesian networks and thermody-
namics. These connections have recently
been exploited in popular Bayesian network
inference algorithms based upon models from
statistical physics [16, 11], such as free energy
minimization.

1 INTRODUCTION

Bayesian networks (BNs) [12] provide a compact rep-
resentation of the JPD of a uncertain domain by spec-
ifying the JPD into product of local prior and con-
ditional probability distributions. The JPD over its
variables can be seen as being created by a multiplica-
tive process, combining prior and conditional proba-
bilities of individual variables. By applying the Cen-
tral Limit Theorem, Druzdzel [3] demonstrated that
“... asymmetries in these individual distributions re-
sult in JPDs exhibiting orders of magnitude differences
in probabilities of various states of the model ... In par-
ticular, there is usually a small fraction of states that

cover a large portion of the total probability space ....”
(Druzdzel 94). Druzdzel’s result suggests that consid-
ering only a small number of the most probable states
can lead to good approximations in belief updating.
Some questions of interest are: where and how can we
find these high-probability instantiations in the space
of JPDs? Is there any internal structure in the JPD
that can facilitate search? If so, how can we charac-
terize it? This paper attempts to answer these ques-
tions by demonstrating that the JPD of a BN is a
random multinomial multifractal created from a ran-
dom multinomial multiplicative cascade. By applying
multifractal analysis, we show the existence of mul-
tifractal structure within the JPD. More specifically,
the JPD, as a multifractal measure, can be partitioned
into fractal subsets such that each subset supports a
monofractal measure, and the JPD consists of clusters
of high-probability instantiations at all scales. Based
on these multifractal properties, we have designed and
tested a new Sampling-And-Search algorithm for find-
ing the MPE.

2 MULTIFRACTAL ANALYSIS

2.1 FRACTALS AND MULTIFRACTALS

Fractals are extremely irregular, self-similar sets [9, 4].
A fractal is characterized by its fractal dimension. For
example, the dimension of an irregular coastline may
be greater than 1 but less than 2, indicating that it is
not simply a “line” but has some space-filling charac-
teristics in the plane. The Cantor set [9] is the oldest
and simplest man-made fractal. It is constructed by
removing the middle third from the unit interval, the
remaining two subintervals have their middle third re-
moved, and this continues infinitely. More formally,
the Cantor set is defined as follows:
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The dimension of a fractal set can be calculated by
counting the number of covers that are required to
cover the set of interest. In the Cantor set, when n = 0,
1 box of length 1 is needed to cover K0; when n = 1,
2 boxes of 1/3 are needed for K1, etc. Let Nδ be
the number of boxes with length δ that are required
to cover K, the (Minkowski) fractal dimension is then
defined as:

log Nδn(K)
− log δn

=
log(2n)

− log(3−n)
= log3 2 (3)

The main difference between a fractal and a multifrac-
tal is that the former refers to a set while the latter
refers to a measure. A measure µ assigns a quantity to
each member of a set (the measure’s support set), thus
it defines a distribution of that quantity over the sup-
port set. Multifractal analysis [10, 4, 5] is related to
the study of a distribution of physical or other quanti-
ties on a geometric support set. The support may be
a line, plane, or a fractal. Multifractal measures are
highly irregular and self-similar (exactly or stochasti-
cally). For instance, the distribution of gold over a
geographical map of the USA is very irregular. It is
found in high concentrations at only a few places, in
lower concentrations at many places, and in very low
concentrations almost everywhere. This description
holds for all scales - be it on the scale of the whole
country, one state, on the scale of meters, or even at a
microscopic scale. Many other quantities exhibit the
same behavior, i.e., the irregularity is the same at all
scales, or at least statistically [10]. We call this kind
of self-similar measure a multifractal. The concept of
multifractal was originally introduced by Mandelbrot
in the discussions of turbulence [8], and later applied
to many other contexts such as Diffusion Limited Ag-
gregation (DLA) pattern [2], earthquake distribution
analysis [5] , and Internet data traffic modelling [13].
A multifractal is often generated by an elementary it-
erative scheme called multiplicative cascade.

2.2 MULTIFRACTAL SPECTRUM

How can we characterize a multifractal measure?
Clearly, we need more than just a fractal dimension.
Simply counting the boxes as we did to the Cantor
set is like counting coins without caring about the de-
nomination. We must therefore find a description that
assigns the measure in each box a weight [4]. In the
following example, I use the Cantor measure [13] to
illustrate the basic characterization of a multifractal.
Consider the Cantor set again. Now we extend it by

allocating a mass or a probability to each subinterval
at each division. For example, we allocate 2/3 of the
existing probability in an interval being divided to the
right-hand subinterval, and 1/3 to the left-hand.

The first step of multifractal analysis is to define α, the
coarse Hölder exponent [10, 4, 5] , as the logarithm of
µ, the measure of the box, divided by the logarithm of
δ , the size of the box.

α =
log µ(box)

log δ
(4)

The multiplicative construction of µ makes it clear
that the probability µ of a sequence of intervals will de-
cay exponentially fast as the interval is being divided
and shrinks down to a point. Thus α can be thought of
as the local degree of differentiability of the measure,
the rate of local probability change [5], or the strength
of singularity [14]. Once α is defined, we would like to
draw the frequency distribution of α as follows. For
each value of α, we count the number Nδ(α) of boxes
having a coarse Hölder exponent equal to α. Then we
define fδ(α) as the logarithm of Nδ(α) divided by the
logarithm of the size of the box.

fδ(α) = − log Nδ(α)
log δ

(5)

fδ(α) can be loosely interpreted as an approximation
to the Minkowski fractal dimension of the subsets of
boxes of size δ having coarse Hölder exponent α. The
function f(α) = limδ→0 fδ(α) is called the multifractal
spectrum. It characterizes a multifractal. The graph
of f(α), often called f(α) curve [10, 5], is shaped like
symbol “

⋂
”, usually leaning to one side. Usually there

are bounds αmin and αmax such that αmin < α <
αmax. The α value of the peak is called α0. Figure 1
plots the f(α) curve of the Cantor measure.

From the preceding discussion we can see that the ba-
sic idea behind multifractal analysis is to classify the
singularities of the measure by strength. This strength
is denoted by a singularity exponent α - the coarse
Hölder exponent. Points of equal strength lie on inter-
woven fractal subsets. Each of these fractal subset is
a monofractal with a fractal dimension f(α). This is
one of the several reasons for the term multifractal.

2.3 THE BINOMIAL MULTIPLICATIVE
CASCADE ON [0, 1]

Many multifractal measures can be generated from
an elementary iterative procedure called multiplicative
cascade. The binomial measure is the very simplest
multiplicatively generated multifractal measure. Let
m0 and m1 be two positive numbers adding up to 1.
At stage 0 of the cascade, we start the construction



Figure 1: The f(α) Curve of The Cantor Measure

with the uniform measure µ0 on [0, 1]. At step k = 1,
the measure µ1 uniformly spreads mass (or probabil-
ity) equal to m0 on the subinterval [0, 1/2] and mass
equal to m1 on the subinterval [1/2, 1]. At step k = 2,
[0, 1/2] is split into two subintervals [0, 1/4] and [1/4,
1/2], which respectively receive a fraction m0 and m1

of the total mass µ1 on [0, 1/2]. Applying the same
procedure to [1/2, 1], we obtain:

µ2[0, 1/4] = m0m0, µ2[1/4, 1/2] = m0m1 (6)

µ2[1/2, 3/4] = m1m0, µ2[3/4, 1] = m1m1 (7)

Iteration of this procedure generates an infinite se-
quence of measures. At step k + 1, we assume the
measure µk has been defined and µk+1 is defined as
follows. Consider an arbitrary interval [t, t + 2 − k],
where the dyadic number t is of the form:

t = 0.η1η2 . . . ηk =
k∑

i=1

ηi2−k (8)

in the counting base b = 2. We uniformly spread a
fraction of m0 and m1 of the mass µk[t, t+2−k] on the
subinterval [t, t+2−k−1] and [t+2−k−1, t+2−k]. A
repetition of this scheme to all subintervals determines
µk+1. The measure µk+1 now is well defined.

The construction of binomial multifractal can be ex-
tended in several ways. First, at each stage of the
cascade, intervals can be divided not in 2 but in b > 2
intervals of equal size. This defines the class of multi-
nomial multifractals. Second, the allocation of mass
between subintervals at each step of cascade can be
randomized by using a random variable as the mul-
tiplier. This defines random multifractals. Although
the multipliers need not to be discrete, we shall use
discrete ones for simplicity.

2.4 PROBABILISTIC ROOTS OF
MULTIFRACTALS

Because multifractal measures can be generated by,
or mapped onto, multiplicative cascade, the coarse
Hölder exponent can be expressed as a sum of ran-
dom variables by definition [10]. The behavior of sums
of random variables is a central topic in probability
theory. There are three theorems dealing with such
sums: the Law of Large Numbers (LLN), the Central
Limit Theorem (CLT) and the Large Deviation The-
orem (LDT). The LLN says that almost surely (with
probability of 1) the sample average will converge to
the expectation when k increases to infinity. The LLN
guarantees the existence of α0 and its role as the most
probable Hölder exponent. But the LLN only holds
in the limit δ → 0, whereas we are often dealing with
a finite number of multiplicative steps k. Thus, the
deviation from the expected value becomes important
for finite k. The relevant information is yielded by the
CLT and, far more important, by the LDT. The CLT is
concerned with small fluctuations around the expected
value. In this context, it shows that the appearance of
a quadratic maximum in the f(α) of the binomial mea-
sure is not a coincidence. Consider a random variable
with finite expectation EX and Pr(X > EX) > 0.
The large deviation theory is concerned with very large
fluctuations around the expected value, namely the be-
havior of

lim
k→∞

Pr{ 1
K

k∑

h=1

Xh − EX ≥ δ} (9)

as a function δ and k. The LLN tells us that,

lim
k→∞

Pr{ 1
K

k∑

h=1

Xh − EX = 0} = 1 (10)

i.e., the probability converges to 0 for sure as k in-
creases to infinity. The LDT states that it not only
converges to 0, but also does so exponentially fast.
In this section, we omit some details, but generally
speaking, f(α) can be deduced via the large deviation
theory and this provides a probabilistic basis for mul-
tifractals [4, 7]. Furthermore, large deviation theory in
the continuous and/or unbounded cases exists as well,
providing a full justification of the so-called thermody-
namic formalism of multifractals. We refer the reader
to for more details [4, 10, 5, 7].

2.5 THERMODYNAMICS FORMALISM
OF MULTIFRACTALS

There are more than one way to get to the multifractal
spectrum f(α). An alternative method is the method
of Moments in which we first define partition function,



analogous to the partition function in thermodynamics
and statistic physics [4, 10],

Zq(δ) =
N(δ)∑

i=1

µq
i =

N(δ)∑

i=1

(δai)q (11)

Denote the number of boxes for which the coarse
Hölder exponents satisfied α < αi < α + dα by
Nδ(α)dα. The contribution of the subset of boxes with
αi between α and α + dα to Zδ(α) is Nδ(α)(δα)qdα.
Integrating over dα we obtain,

Zq(δ) =
∫

Nδ(α)(δα)qdα (12)

If Zδ(α) ∼ δ−f(α), it follows that

Zq(δ) =
∫

δqα−f(α)dα (13)

Keeping only the dominant contribution in the equa-
tion, and introducing

τ(q) = qα(q)− f(α(q)) (14)

The partition function will scale like Zq(δ) ∼ δτ(q). It
is easy to see that

dτ(q)
dq

= α(q) (15)

This means that f(α) can be computed from τ(q) and
vice versa. The relation between f(α) and τ(q) is
called a Legendre transform [10]. An interesting con-
sequence is that flexibly rich thermodynamic content
hidden in the concept of multifractals. From preceding
discussion, we can easily draw a correspondence be-
tween Z(q) and the thermodynamic partition function
Z(β), between q and the temperature T (as the inverse
of T ), between α and the energy, between f(α) and the
entropy, and between τ(q) = qα− f(α) and the Gibbs
free energy G = H−TS. For more information on this
topic, the interested reader is referred to [10].

3 BAYESIAN NETWORKS AS
RANDOM MULTINOMIAL
MULTIFRACTALS

A Bayesian network [12] is a Directed Acyclic Graph
(DAG) in which nodes represent random variables and
arcs represent conditional dependence relationships
among these variables. Each node Xi has a conditional
probability table (CPT) that contains probabilities of
a variable value given the values of its parent nodes,
denoted as π(Xi). A BN represents the exponentially

sized JPD in a compact manner. Every entry (an in-
stantiation of all nodes) in the JPD can be computed
from the information in the BN by chain rule:

P (x1, . . . , xn) =
n∏

i=1

P (xi|π(xi)) (16)

From the multifractal viewpoint, the JPD defined by
a BN with n nodes is a measure of belief distributed
on an n-dimension space of random events. Given a
topological ordering of all nodes, we can map the n-
dimension space to a linear interval by assigning each
event an integer number as its address on that inter-
val. For example, the linear interval for an 8-node
binary BN is [0, 255]. The JPD of a BN can be con-
sidered as being generated from a multiplicative cas-
cade in which number of steps n equals to the number
of nodes. At each step of the cascade, intervals are
divided into b subintervals where b is the number of
states of the current node, and the multiplier for allo-
cating the probability is a random variable defined by
the CPT of the current node. It is easy to see that in
the most general case a BN corresponds to a multifrac-
tal generated by a random multinomial multiplicative
cascade. The simplest multifractal - the binomial mea-
sure - corresponds to the simplest BN - a binary BN
without links. Consider such an 8-node binary BN in
which each node has a prior probability distribution of
(0.25, 0.75). The cascade contains 8 steps and gener-
ates a JPD of 256 instantiations. This is actually the
simplest multifractal - the binomial measure.

Now let us consider the process of an agent’s incre-
mental understanding of some uncertain domain as a
multiplicative cascade process. At the beginning the
agent first identifies all random variables. Before it
knows anything about the causal relationships between
these variables, it has to assume a uniform distribu-
tion spreading belief evenly to all states. The agent’s
belief is redistributed as it learns more about the do-
main, i.e., the connections between nodes and the CPT
values. The process of belief redistribution is a typi-
cal multiplicative cascade process similar to any other
multiplicative cascade in the context of multifractals.
For example, a turbulence cascade model describes the
nature of energy dissipation in a turbulent fluid flow.
In turbulence the energy is introduced into the system
on a large scale (storms, or stirring a bowl of water),
but can only be dissipated in the form of heat on very
small scales where the effect of velocity, or friction be-
tween particles, becomes important. Cascade models
assume that energy is dissipated through a sequence
of eddies of decreasing size, until it reaches sufficiently
small eddies where the energy is dissipated as heat. In
the case of Bayesian networks, the belief is introduced
to the domain from a high level as a uniform distribu-
tion. As we learn the CPTs, we capture the increas-



Figure 2: (1) Number of Instantiations At Each Order
(2) Probability Sum of Instantiations At Each Order

ingly refined causal structure of the domain. These
substructures keep redistributing our belief until we
learn all about the domain.

4 CASE STUDY: THE ALARM13
NETWORK

4.1 THE JOINT DISTRIBUTION

In this section we analyze the JPD of ALARM13
[3], a subset of ALARM network, to demonstrate
its multifractal characteristic and clustering property.
ALARM13 was the same network analyzed in [3]. It
contains 13 variables, resulting in 525,312 non-zero
states. The probabilities of these states were spread
over 23 orders of magnitude. Figure 2 shows the his-
tograms of the number of instantiations distributed at
each order and their contribution to the total proba-
bility space. The X-axis is the negative order of mag-
nitude in both figures. Figure 2.1 shows that the
histogram of number of instantiations at each order
appears to be a normal distribution. Given the loga-
rithmic scale of the X-axis, it shows that the actual
distribution is a lognormal. The peak of figure 2.1
is at the order of 10−14. It contains 73,256 instan-
tiations, but its contribution to the total probability
space is only 2.9E − 09. From Figure 2.2 we can see
that high-probability instantiations, although few in
number, dominate the joint probability space. Of all
instantiations, there are one with probability around
0.505, 10 with probabilities between [0.1, 0.01] and the

Figure 3: The f(α) Curve of ALARM13’s JPD

total probability of 0.28, 48 with probabilities between
[0.01, 0.001] and the total probability of 0.13, 208
with probabilities between [0.001, 0.0001] and the to-
tal probability of 0.058. The 267 most likely instanti-
ations (0.05% of the total of 525,312) covers 97.45% of
the total probability space. This highly skewed result
has been analyzed by Druzdzel [3]. In the following
we show the multifractal structure of the JPD and the
way instantiations at different orders of magnitudes fill
the space.

4.2 THE MULTIFRACTAL SPECTRUM

[t] Applying multifractal analysis to ALARM13’s JPD,
we get its multifractal spectrum, the f(α) curve, as
shown in Figure 3. The X-axis is the coarse Hölder
exponent α, Y -axis is f(α) - the fractal dimension of
the subset of all instantiations with the same α. This
f(α) curve confirms that the JPD of a Bayesian net-
work is a multifractal. It describes how these instanti-
ations fill the probability space from the point of view
of fractal dimension. We can see in Figure 3 that high-
probability instantiations (corresponding to small α)
have a low dimension, which means that they fill the
probability space in a very “sparse” way, i.e., there are
clusters of high-probability instantiations. The peak of
Figure 3 has a fractal dimension of 0.79, and the corre-
sponding coarse Hölder exponent α is around 2.5. By
the definition of α, this corresponds to instantiations
with probability on the order of 10−15. They are ac-
tually instantiations around the peak of Figure 2.1.
It means that these instantiations fill the probabil-
ity space in a very “dense” way, i.e., they are almost
all over the space. Finally, instantiations with very
low probabilities (α = 3.8) also have low dimensions
(f(α) = 0.32). Again, it means that low-probability
instantiations (rare events) distribute sparsely as well,
and clusters of them can be expected. This yields a



Figure 4: (1) The Clusters of High Probability Instan-
tiations (2) The Clusters of Low Probability Instanti-
ations

mathematical description of the inner structure of the
JPD: there are clusters of high-probability instantia-
tions and low-probability instantiations, but instanti-
ations in the middle are distributed almost all over.
Interestingly, this pattern coincides with the way that
people live in the real world, i.e., high-income people
tend to live in the same community, so do low-income
people, but the middle-class are located all over.

4.3 QUANTIFYING THE CLUSTERING
PROPERTY

To show the clustering property more clearly, we draw
the distribution of high-probability instantiations and
the distribution of low-probability instantiations in
Figure 4. Figure 4.1 contains all instantiations with a
probability higher than 0.0001 in which X-axis is the
“address” of instantiations ranging from 0 to 525,312
and Y -axis is the actual probability value. Figure 4.2
contains all instantiations lower than 10−20 in which
Y -axis is the “address” of instantiations and X-axis
is just the series number of each instantiation (Note
we use a different X-Y here because the actual values
are too small to be drawn neatly). We can see clearly
there are clusters in both graphs.

Figure 5: The Aeverage Hamming Distance Graphs

Having shown the clustering property, the next thing
we want to do is to quantify this property. We use the
Hamming Distance between bit string representations
of two instantiations to measure how far they are lo-
cated from each other. An instantiation is represented
as a bit string “b1b2 . . . bn” where n is the number of
variables in the domain and bi is the state index of
each variable. For example, the Hamming distance
between instantiation “00001100” and “00100001” is
4. Because of the clustering property, high-probability
instantiations should have small Hamming distances
between each other to be a cluster. We draw the Av-
eraging Hamming distance (AHD) graph for the most
likely instantiation in Figure 5.1. The X-axis is the
negative of the order of magnitudes; The Y -axis is
the AHD between the most likely instantiation and
all instantiations at each order of magnitude. From
Figure 5.1 we can see that the instantiations with
lower probabilities have a larger Hamming distance
from the most likely instantiation, i.e., they locate far
away from the most likely instantiation. We also draw
the same figure for the lowest instantiations in Fig-
ure 5.2. In Figure 5.3 we put together 23 AHD graphs
for instantiations of all orders to provide a global pic-
ture. Figure 5.3 consists of 23 segments of curves cor-
responding to 23 orders of magnitudes. Each curve
consists of 23 points, represents the AHD graph of a
randomly picked instantiation at that order. For ex-
ample, the first segment in Figure 5.3 is Figure 5.1,
and the last segment is Figure 5.2. From Figure 5.3
we can see that the instantiations in the middle order
of magnitudes are located at almost the same distance



Input: A BN (G, P ) and an evidence set E.
Output: A complete assignment u = (u1, . . . , un).

Step 1: Use sampling algorithm to generate
a set of initial good points S.

Step 2: For each point in S, start a hill climbing
using Neighborhood Quality as the
evaluation function, put all local optimums
into S∗.

Step 3: For each point in S∗, start a normal
hill climbing, return the best solution
so far as the MPE.

Figure 6: Two Phase Sampling-And-Search Algorithm
for Finding The MPE Using Multifractal Heuristic

from all other orders (7 < AHD < 9), i.e., they can be
found at almost all places. This finding supports our
previous analysis of the expected distribution pattern.

5 A MULTIFRACTAL SEARCH
ALGORITHM FOR FINDING
THE MPE

The JPD’s multifractal property can be used as a
meta-heuristic to develop new search algorithm for
finding the MPE. Since the search space is a multifrac-
tal, good solutions would cluster together, so do bad
solutions. Hence the search should be divided into two
phases: first identify the “good communities”; then lo-
calize the search to these regions. Also, the quality of
the community rather than the current search point
alone should be evaluated and compared to guide the
search. If point A is better than point B but B’s neigh-
bors are better than A’s, then we should move B to
look for the global optimal. This helps the searcher
escape the local optimal where simple hill climber gets
stuck.

Based on these meta-heuristics we have developed a
two phase Sampling-and-Search algorithm to solve the
MPE problem, which is to find the most probable ex-
planation (a complete assignment) given the observed
evidence. The general MPE problem is NP-complete
[15] and even hard to approximate [1]. In the first
phase of the algorithm, forward sampling (or any other
feasible methods) is used to identify a set of good com-
munities quickly. In the second phase, a hill climbing
using Neighborhood Quality as the evaluation function
is started for each community from the previous phase.
An additional “repair” phase can be added by using a
set of “elite solutions” and a set of “worst solutions”
collected during the search process to refine the final
solutions by flipping the variable values that do not

agree with the majority “elite solutions” or these that
agree with most “worst solutions”. When the stop rule
is satisfied, it returns the best solution so far as the
MPE. The algorithm’s performance is determined by
two factors: the reliability of the sampling algorithm
to bring the searcher to places not far away from the
global optimal, and the robustness of the Neighbor-
hood Quality as an evaluation function to bring the
searcher from a near optimal place to the global opti-
mal. The Neighborhood Quality of a search point is
defined as the sum of the likelihoods of all its nearest
neighbors. It can be approximated by randomly draw-
ing samples from its neighbors. The sampling radius
can be set to a small positive value k.

We expected the skewness of the CPTs would have an
influence on the performance of the algorithm. So in
our experiments we randomly generated three groups
of networks with different CPT skewness to test the
algorithm: skewed, normal, and unskewed. The skew-
ness of the CPTs is computed as follows [6]. For a vec-
tor (a column of the CPT table), v = (v1, v2, . . . , vm),
of conditional probabilities,

skew(v) =
∑m

i=1 | 1
m − vi|

1− 1
m +

∑m
i=2

1
m

(17)

The skewness for the CPT of a node is the average
of the skewness of all columns. And the skewness
of the network is the average of the skewness of all
nodes. The skewness of these three groups of networks
were set to around 0.9, 0.5, and 0.1 respectively. Each
group consists of 20 networks with binary nodes. The
number of nodes were 100, and the number of edges
were 120 ∼ 150. These networks were set to be sparse
enough so that the exact MPEs can be computed. For
each network, we randomly generated 10 evidence val-
ues hence the size of search space is 290. We used
Hugin to compute the exact MPEs. For each group of
networks, we counted the number of times when exact
MPEs were found. We also computed the average rela-
tive error (ratio of the absolute error to the exact MPE
value) and recorded the average Hamming distance be-
tween the returned MPE and the exact MPE. Table 1
summarizes the experimental results. From the results
we can see that normally-skewed networks are the eas-
iest ones for the algorithm and unskewed networks are
the hardest ones. Of 20 normally-skewed networks we
were able to find exact MPE in 19 of them and even
the one missed is very close to the global optimal (only
2 bits difference out of 100). Of 20 unskewed networks
we were able to find exact MPE in only 4 of them. The
average error and average Hamming distance between
the returned MPE and the exact MPE are also the
largest ones. This results imply that if the network
is unskewed (most distributions are nearly uniform),
finding MPE will be hard because the search space is



Table 1: Results on Randomly Generated Networks

#solved error AHD to exact
skewed 12/20 0.0242 1.25(25/20)
normal 19/20 0.0029 0.1(2/20)

unskewed 4/20 0.0798 3.9(78/20)

flat. In the other hand, if it is highly skewed it will
also bring trouble to the search algorithm because of
the attractiveness of these steep local optimums.

6 CONCLUSION

We have demonstrated that the underlying JPDs of
Bayesian networks are multifractals created by ran-
dom multiplicative cascade processes. The JPD with
many orders of magnitude differences in probabilities
of various instantiations is not only highly skewed, but
also stochastically self-similar and exhibits clustering
properties. The multifractal spectrum of the JPD de-
scribes how instantiations at different orders fill the
joint distribution space with different fractal dimen-
sions. In particular, both high and low probability
instantiations tend to form clusters in the joint dis-
tribution space. Even though we discussed the model
as a whole, the result will hold for its self-contained
parts as well. we also hypothesize that it holds for dy-
namic models. The f(α) curve will show up as long
as a random multiplicative cascade process is involved.
The significance of this analysis is that it provides im-
portant information about characteristics of the joint
probability distribution. Particularly, the clustering
property can be a very useful meta-heuristic for search-
ing the MPE. This research also bridges an analytical
gap between multifractal and BNs and suggests some
very interesting research directions. As we have seen,
multifractals have a deep probabilistic root and a rich
thermodynamic content. The fact of BN being a mul-
tifractal draws our attention to connections between
thermodynamics and BNs [16, 11]. Also, because the
MPE problem is NP -Complete, we should also ex-
pect to observe the same multifractal structure in the
solution space of other hard combinational problems
such as MAXSAT and TSP. Applying the multifractal
meta-heuristic to solve these problems would be a very
interesting topic to investigate in the future.
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