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Recently, computer viruses have attracted a high volume of public, media, and 

scientific attention. This is no surprise considering the explosion in the development 

rate of computer virus code. Combine this with the fact that current methods for 

detection of viruses have had limited success. A new approach to the detection of such 

code is needed. We're going to look at two variations on algorithms originally 

developed for string matching. Both modifications allow an increased tolerance for 

variant “strains” of known viruses, especially for the so-called evolutionary class 

which mutate themselves at predetermined intervals. 

First, a randomization scheme can be applied to an established fast substring matching 

procedure (such as the Boyer-Moore algorithm). This randomization allows mutation-

resistant searching. Second, an approximate pattern matching algorithm for a 

maximum number of differences can be used. The algorithm is modified by weighting 

the edit distance metric to make it robust to character padding and removal. Both 

functions are combined to create a generalized detector capable of finding viral 

clones, whether produced by human authors or by automatic variations. 
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Virus Detection: Classification, Methods, and History 

There has been a great deal of interest in the detection of active “viral” code on both 

Macs and mainframes, especially as members of an interconnected network. 

Definitions of the set of programs called viruses have been put forth in many recent 

articles, most notably in the work by Cohen.1 In this work, detection of the virus is 

simply considered a pattern string to be searched for in a larger text (a possibly 

infected program). 

Current viral detection procedures are classified according to a system put forth by the 

Computer Virus Industry Association.2 The association divides anti-viral products 

into three categories: Class 1 antiviruses (“Infection Prevention Products”) halt the 

virus replication and prevent the initial infection from occurring - an example of such 

a program for the Macintosh operating system is the cdev (Control Panel Device) 

Vaccine. Class 2 programs (“Infection Detection Products”) detect infection soon 

after it has occurred and mark specific components of system segments that have 

become infected - they do so by periodically inspecting executable files, and may or 

may not attempt repair of an infected file. An example of a Class 2 program on the 

Macintosh is the INIT package GateKeeper and GateKeeper Aid. Finally, Class 3 

antiviruses (“Infection Identification Products”) identify specific viral strains (see 

below for more information about this topic) on systems that are already infected and 

may remove the virus, returning the system to its state prior to infection. This category 

is most common, although its effectiveness is dependent on the frequency of user 

invocation. McAfee's MS-DOS program SCAN and the Macintosh Disinfectant series 

are Class 3 products. 

At present, three approaches to viral code detection have been prevalent. The first, 

viral signature matching, requires information about the virus. Specifically, a 

signature-based detector requires the virus’ code length and the location of its 

“contagious” segment (which is essential to its replication and transfer among storage 

media, computer memory, and networks). Code enumeration, a second technique, 

involves examining known programs periodically to test whether any unknown 

segments of code have been added to the original file. It is most effective when 

applied before each execution of the program. Finally, checksum methods compare 

the current size of a file and the summed value of its bytes to the same attributes of a 

known uninfected version - an infection will often change these values. None of the 

above methods require the use of the code of the virus itself in its entirety, and all 

three require user action upon discovery of a virus. Usually, the computer user is 

urged to restore an earlier copy of the infected file or files from backup. In specific 

cases, disinfection is possible. 



Most software developers claim that the absence of the actual viral code from a 

detection program prevents its reuse by other virus authors. These authors could 

conceivably design a virus based on the stolen code and thwart the original detection 

program. For this reason, developers choose against using a whole (deactivated) virus 

in detectors. An opposing viewpoint suggests that the only defense against viral code 

that will not inevitably fail is one which does not depend on the secrecy of its internal 

mechanisms. A conflict has arisen between these two opinions as each side handles 

sensitive information very differently. The former advocates secrecy regarding: 

breaches of security, weaknesses in system defenses, and vulnerabilities of protective 

software (which will be discussed later in this article), while the latter believes 

revealing such details will attract support from developers of anti-viral programs and 

prevent unexpected attacks. 

MacDTS has argued that attempting to support anti-viral measures is a futile struggle. 

This viewpoint fails to factor in the practical results approximate methods have had 

with problems which were once considered intractable. On the other hand, algorithmic 

detection of all viruses, including those for which no specimens exist, has been 

established as an intractable problem. It has been shown that to determine whether any 

given program is infected is undecidable.3 However, examination of the sample code 

of a virus, once it has been discovered, allows a signature detection schema to be 

implemented. Extending the use of this necessary information to both increase the 

range of the detectable viral set and decrease the amount of data required to do so is a 

logical goal. It stilll makes sense to include established algorithms suited for such 

detection as part of the process. By tracking down new viruses quickly, their damage 

can be lessened further than by distributing cures long after the spread is under way. 

Viral Variant Detection an Algorithmic Approach 

Choosing an appropriate class of algorithms depends on the treatment of the subject 

data; in this case, it is beneficial to consider viral and program code as text. For this 

problem, it is reasonable to use string matching procedures, which are specifically 

oriented toward character sequences with a pre-defined alphabet (such as the ASCII 

alphabet). In this context, viruses are searched for by two methods similar to the 

“Find” and spelling check commands in most word processors. The unique aspect of 

visrus detection, however, requires the search to be repeated many times (for hundreds 

of small pieces of the virus). The other search, similar to the “Suggest Word” 

command in a spelling checker, looks for approximate matches rather than exact ones. 

Virus detection gives character deletions more importance over inserted characters. 

We have developed algorithms that will detect known viruses and unknown clones 

and mutants of those viruses. For our purposes a viral clone is defined as a known 



virus which has been modified prior to its release without changing its viral properties 

in any appreciable way. For instance, its replication and infection techniques and 

“detonation” effect (damage done when its preset trigger goes off) should remain 

identical. An example of a clone is the Hpat virus, a first-generation modified version 

of the nVIR A Macintosh virus. A viral mutant is defined as a known virus to which 

self-modification parameters have been added which cause it to create successive 

clones of itself at intervals or upon a trigger event - mutation may occur after release 

and may or may not be limited to a finite number of iterations. No Macintosh viral 

mutants currently exist. The term strain is often applied interchangeably to groups of 

clones, mutants, and even unrelated viruses (developed separately) which share any 

common feature. Due to this ambiguity, the expression is not used except in reference 

to sets of viruses previously designated as “strains”, such as nVIR A and B. The word 

variant is applied to mean an altered virus which may or may not be known and whose 

function may or may not have been changed during modification of its code; a variant 

is not necessarily a clone, but all viral clones and generations of mutants are variants 

of their ancestor viruses. Note that viruses of a single strain are not necessarily 

variants of each other under this definition; an example is the WDEF strain 

(Macintosh), with substrains A and B - they are so designated merely because they 

share the same code label. 

A primary method of creating clones and mutants is character padding, the addition of 

code sequences or characters which do not affect the operation of the virus. 

Safeguards against this technique are presented in the algorithm discussions. A more 

difficult strategy is the removal of segments from a known virus - of course, this 

cannot be carried out indefinitely or even for a large portion of the virus. Finally, a 

virus may be designed to relocate itself once appended onto or inserted into a host 

program; auto-propagation is formally considered a feature of worms, but shifting 

code segments is another way of avoiding detection. 

To implement variation-tolerant matching, one of several approaches may be selected. 

First, approximate string matching for a text of length n, a pattern of length m, and an 

integer k is among the most common of these. k is the maximum number of 

differences allowed between a pattern string and the text which is being searched. 

Algorithms exist which can compute an edit distance, based on the number and type 

of differences. The “edit” operations are character deletion, insertion, and “twiddle” 

(transformation of one character to any other). This distance metric can be computed 

by dynamic programming, a method which breaks down problems which would 

otherwise require recursion and solves it by computing a table. A straightforward 

implementation requires O(mn) time; a more complex version solves the problem in 

O(kn) time4 with some overhead. Parallelization of the procedure allows the values to 

be computed in O(k) complexity. 



The second approach uses a fast substring matching function for small segments of 

the viral code which is being searched for. The length of each segment is proportional 

to the expected frequency of variation in the text by addition and deletion of 

characters. Since the base algorithms and user interface used in this project have been 

developed elsewhere, our work focuses on general methods for virus detection, rather 

than implementation issues. 

Experimental Input 

This code was developed on a UNIX machine before porting to the Mac. Input data at 

all stages of program development consisted of ASCII and binary data treated as 

ASCII text (the smallest alphabetic unit was one byte). The “text” used in mainframe 

testing comprises alphanumeric text, compiled binaries (executable and object files), 

and ASCII script files. An application was developed for use on the Mac, for which 

known viruses and their variants exist.5 All text used in the microcomputer 

development stage consisted of resource data because two primary requirements of 

viral code - the abilities to replicate and gain control of the operating system - require 

the execution of the infectious resources. 

During the experimental stage, our pattern and text strings were obtained by 

extracting CODE resource from files found on the average Macintosh hard disk; the 

segments that were used are listed below. All input data was processed with ASCII 

character-handling functions. Simple character arrays were used to store both strings. 

Space requirements were relatively small for the string matching algorithms used. 

Internal data structures included: a matrix of O(2m) size in the first algorithm - the 

array requires O(mn) space, but the dynamic programming method only needs two 

columns at a time - and two arrays for internal computation by the Boyer-Moore 

algorithm. 



 

The Boyer-Moore Algorithm 

The string-matching algorithm developed by Boyer and Moore6 for substring 

matching has proven significantly faster, in practice, than both straightforward 

scanning and the finite-state automaton technique implemented by Knuth, Morris, and 

Pratt. This advantage applies even to binary strings, and becomes increasingly evident 

as the size of the alphabet increases. Thus, the number of character comparisons per 

text character scanned is even lower for executables than for alphanumeric text. The 

Boyer-Moore algorithm employs right-to-left scanning of the pattern string while 

attempting to find a match within the text body. The main savings are achieved by 

computing two failure functions which store, for each character in the pattern and the 

alphabet, respectively, the number of positions to be skipped when a mismatch occurs. 

Boyer and Moore suggest that entries from both arrays be compared and the larger 

skip selected. The Boyer-Moore string search requires m+n comparisons in the worst 

case, and can reliably use n/m steps for large alphabets and short pattern strings. 

Our modification of the Boyer-Moore algorithm involved the introduction of a 

randomized system of string selection. An integer l was chosen to be sufficiently large 

that an accidental match of a substring of length l was extremely unlikely. We 

determined this likelihood experimentally (see the discussion below). The pattern 

source was an original (unmodified) sample of a known virus. Strings of length l were 

chosen randomly by generating an index between 0 and m-l and designating the next l 

characters (including the indexed one) of the source string as the pattern P. It was 



postulated that this probabilistic factor would establish tolerance for simple changes 

made to viral code by a potential author in possession of existing code. These changes 

include: 

• Disassembling the viral code and changing variable identifiers. 

• Padding null characters or sequences to calibrate the virus checksum. 

• Removing small, superfluous amounts of code from the original virus. 

• Automatic padding within a viral mutant. 

• Pasting viral code segments under new labels or merging segments. 

• Reversal of code order using logical jumps. 

The probability of a match is experimentally shown (through the tests described 

below) to be extremely small when a virus is not present - it is clearly possible to 

discriminate with high precision between infected and uninfected files. An exact 

match is a very difficult event to duplicate coincidentally; the likelihood of such a 

match between random strings is infinitesimal even in practice. False positives are 

relatively rare, though more common than false negatives. Thus, use of a randomized 

algorithm appears to be a feasible approach to generalized (“inter-clone”) viral 

detection. 

Manual “mutation” of code is already becoming commonplace, as is evidenced by the 

multiple clones of the nVIR strain which already exist on the Apple Macintosh. 

Simple self-modification has been accomplished in the Core Wars class of programs, 

and it is not at all unfeasible for a simple virus to be programmed to pad itself with 

null or checksum-neutral character sequences in an effort to evade detection. Such 

changes would appear trivial under human inspection. The straightforward searching 

techniques used in current commercial products, by contrast, are unable to handle 

even trivial changes. Early efforts to deal with the emergence of viral clones involve 

omission of parts of the viral signature or selectively summing or enumerating only 

specified portions of the suspected code.7 This approach lacks generality, however; it 

is not guaranteed to be proof against even a single revision of a known virus, and is 

certain to fail against an evolutionary version.8 

Important advantages of randomization include the fact that the instructions of viruses 

need not be physically oriented in their order of execution, but may instead be 

scrambled by jump instructions (see Figure 1). A second consideration is that 

preselection of a single segment of code (i.e., the “signature”), as the search pattern, 



renders the anti-viral system susceptible to circumvention. Once the identity of the 

target code is discovered, the procedure may be fooled in one of several ways: by 

specifically changing or deleting the targeted string; by shifting its physical position; 

or by disguising it using character padding. Note that none of the above techniques 

requires real knowledge of how the virus works! A slightly more sophisticated author 

may easily disassemble the executable code and change certain variable identifiers to 

thoroughly mask the virus. These variations, in addition to changes made to hide the 

virus without any detector in mind, may be virtually bypassed when the search string 

is different for each scan run. 

 

Figure 1 

A major concern in refining the probabilistic extension of the Boyer-Moore search is 

the selection of a string length l. This choice is affected by at least three factors, the 

most important of which is the chance of a false positive result. Since a false alarm is 

highly improbable when the pattern and text are unrelated (as is experimentally 

demonstrated and documented in the tables below), its likelihood is low because the 

vast majority of legitimate code lacks viral aspects and is dissimilar to the virus search 

pattern. 

Moreover, false alarms are easily avoided by making l as high as possible. On the 

other hand, l must be made shorter to make the modified Boyer-Moore procedure less 

sensitive to padding. Figure 2 illustrates a padded clone below an original virus. Each 

padding sequence insures that at most l - 1 out of m - l strings will fail to be matched, 

but paddings within l -1 bytes of each other will overlap and “mask” fewer strings. An 

important feature of drawing random strings from the original virus is that the length 

of padding sequences is irrelevant; only their frequency must be considered. 



 

Figure 2 

The second factor in determining l is the instruction length of the viral host machine; 

the unused space in each segment of a binary executable is filled with null (neutral) 

characters, and a selection of sampled pattern strings containing a high proportion of 

such characters is likely to contain an excessive number of strings which match with 

an uninfected text file. One minor weakness will be present regardless of the string 

length chosen: the virus author will always be able to defeat the randomized filter by 

increasing padding frequency (although this cannot be done indefinitely). This is one 

example of the “strength in secrecy” argument in anti-virus programming. On the 

other hand, the dynamic programming method is reasonably tolerant to padding. 

A Dynamic Programming Approach 

While randomized string-search algorithms present a viable next step in developing 

countermeasures to computer virus proliferation, they are only a refinement of the 

simple straightforward technique. An exact match is required for each string, 

regardless of how short it may be or how many others are selected and compared. 

Therefore, it is subject to failure under two conditions, the latter of which results in a 

false alert. 

First, if the length of the randomly selected strings consistently exceeds the distance 

between padded or removed characters, the algorithm will fail to achieve any matches. 

Second, the program will erroneously report viruses when the text contains code 

which is sufficiently similar to the sample virus data to effect more matches than the 

allowable limit. A heuristic is needed which will deterministically verify or refute the 

presence of the virus and yield consistent results on every run. Since we are 

specifically dealing with variants of known viruses, an approximate matching 

procedure is required. 

Fast string matching has traditionally been applied to many text search problems. 

Where a partial match is available, dynamic programming offers an efficient solution. 



The algorithm used in our experiments is a straightforward dynamic implementation 

which relies on a matrix whose components are computed based on previous entries. 

The scan function is designed to return the boolean true upon encountering any 

instance of a k-approximate match between pattern P = p1p2Špm and text T = t1t2Štn 

for a positive integer k. Assume that n is large relative to m. The following rules are 

used.9 

1. Let Dmxn be a matrix of integers for which D[i,j] equals the minimum number of 

differences between p1Špi and a segment of T ending at tj. 

2. A k-approximate match is detected at any j for which D[m,j] ¾ k. 

3. The rules for computing D[i,j] consider each of the possible differences that may 

occur at pi and tj, and the instance for which the two characters match. D[i,j] is 

assigned the minimum of the following three values: 

a) If pi = tj then D[i-1,j-1] else D[i-1,j-1]+a. 

b) D[i-1,j]+b (the case where pi is missing from T (deletions)). 

c) D[i,j-1]+c (the case where tj is missing from P (insertions)). 

a, b, and c are the integer values added whenever a mismatch occurs, and are the 

central parameters in our modification. Each entry is updated by inspection of the 

entries above it, to its left, and to its upper left. 

 



Figure 3 

The computation may be done in O(2m) space since only the current and previous 

columns need to be stored. The work requires O(mn) complexity in the 

straightforward implementation, but can be achieved in O(kn) time using the 

improved serial technique by Landau and Vishkin.10 The standard application of 

string matching by dynamic programming uses a constant value for a, b, and c (for 

instance, 1). Our method boosts tolerance for padded characters by increasing the ratio 

between the parameters b and c. 

Let r be this ratio, a positive integer; if c is assigned a unit value i, then the matching 

function may be made tolerant to cases for which the characters in the text are missing 

from the pattern (i.e., the text has been padded) by setting a and b equal to r •c, 

making the effective “price” for padded characters lower. A final consideration is the 

selection of the “threshold” k. It may be determined based on the expected frequency 

of padding, as is the string length in our randomized Boyer-Moore component. Since r 

has already been defined relative to i and m, it is a fairly simple task to assign k a 

value. Typically, it should be close to r (actually, slightly lower to ensure against false 

alerts) and may be computed using the ratio m/n or simply set to a large fraction of r. 

Our padding-tolerant implementation uses 1 for i and c, 100 for r, a, and b, and 50 for 

k. A false match is possible whenever the ratio r is greater than i. However, this only 

holds in the absolutely worst cases in which an extremely small pattern is matched 

against a text string of very high length. The probability of this event is equal to that 

of the consecutive occurrence of all m characters in P within k+m positions of each 

other. Again, this is experimentally shown to be a statistically rare occurrence, which 

can reliably be ignored as long as the viral segment length m is not much smaller than 

r. Generally, a value for r that is higher than the threshold k can be expected to yield 

few false alarms and will rarely miss a variant created by padding. Conversely, 

tolerance for missing characters may be effected by increasing the ratio between c and 

b; in both cases, a is assigned the larger of the two values. 

 



Future applications (and viral threats) 

The code below introduces two effective methods of computer virus detection, using 

newly developed modifications of proven algorithmic techniques. Though previously 

used in many other applications of computation, these systems are applied here for the 

first time to the problem of viral code identification. Despite the previously 

established results on the intractability of universal detection put forth by Cohen, a 

new class of post-infection scanning methods seems entirely feasible. Further 

investigation into the circumvention of virus concealment techniques produced 

experimental results which have supported our assumptions concerning the 

probabilities of detection and false positives, and support the main premise of both of 

the algorithms used: that a standard string matching program may be adapted for 

tolerance toward modification of the text to be scanned. Two significant questions 

remain concerning general virus detection: First, can clone and mutation detection be 

extended under a strictly algorithmic foundation to include a broader range of 

detectable code - especially groups of viruses which have not yet been developed? 

Second, what optimizations may be performed on the programs to increase speed 

without sacrificing probabilistic safety? One possible solution is offered through the 

accompanying program. 

Work in string matching, like work in virus detection, is by no means complete. 

Modern algorithms make use of parallel hardware and improved data structures, such 

as suffix trees (which may be respectively applied to randomized matching and 

dynamic programming). Mutating viruses are by no means prevalent yet and have 

(fortunately) not appeared in the Macintosh operating system. All recent research in 

“compuvirology”, however, suggests that such programs are feasible and may debut 

soon - if not on the Mac, then possibly on a larger-scale machine. The viral 

“visibility” threshold (i.e., the typical size of a virus compared to the average 

executable size and the machine's general capacity) would even be lower. As an 

illustration, consider that current viruses approach an order of 10 kilobytes in length 

and would be considered gigantic if they appeared on machines of 20 years ago. As 

machine size increases, utilities for virus detection may possess the same precision, 

but this is not sufficient - they must also match the increasingly sophisticated products 

of virus authors. Using advances in fast string matching and parallel computing, the 

software industry can stay not one but many steps ahead of viral attackers. 

Code resources used in Randomized 

Boyer-Moore Experiments 



The randomized Boyer-Moore program was tested on many files to illustrate that on 

an average Macintosh system, the likelihood of false positives is low. To draw this 

conclusion, resources from several common Macintosh programs were extracted and 

searched for variants of nVIR. 

Below is a listing of the origin of each code segment used for the generation of Table 

2, detailing the size of the file and the application name and resource type (required 

for Macintosh operating system classification) from which it was extracted. 

Segment Length 

Group Number Source File (bytes) 

B   1   MS Word, CODE 1 1474 

B  2  Disinfectant 2.0, CODE 7 1116 

B  3  Red Ryder 9.4, CODE 37 2164 

B  4  SuperPaint 2.0, CODE 42 2480 

C  1  WordPerfect, CODE 31 5002 

C  2  Font/DA Mover, CODE 1 4670 

C  3  WordPerfect File, CODE 1 4542 

C  4   ZTerm 0.85, CODE 5 4378 

D  1  HyperCard, CODE "HyperTools 2" 26078 

D  2   Disinfectant 2.0, CODE 5 18720 

D  3   THINK C Debugger, CODE 2 21960 

D  4   SuperPaint 2.0, CODE 20 19754 
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Listing 1: Dynamic.c 

/* Dynamic.c - Functions for dynamic k-approximate virus infection detection. 

 Copyright © 1992 by William H. Hsu. 

 Thanks to John Norstad and Ephraim Vishniac for help and comments.   

Portions of this code are based on [Morton 90], which appears in the  

May 1990 issue of MacTutor.  Reused with permission.  You may copy, alter,  

use, and distribute all code listed here if you leave the file unchanged  

up to this line. 

 Think C version. 

 

Notes: 

•  A main advantage of this code, as explained in the “Methods and History”  

section, is that its effectiveness is not diminished by its availability.  

 No matter how many potential virus authors read it, the algorithm will  

remain equally effective against circumvention. 

•  To use this code in your programs:  

1. It will be necessary to obtain non-functional but significant (larger  

than 300 bytes) resource segments from the virus you are trying to detect. 

2. Using a resource editor, insert the viral data under an unused type,  

such as 'VDAT', used in the code below -- this will render the virus  

code inactive and most likely invisible to conventional (Class 2 and  

3) detection programs. As an added security measure, you may wish to  

include only code segments above 300 bytes (or a similar threshold length)  

to ensure that the virus is crippled. 

3. Both the C routines and the Boyer-Moore routines require an expanded  

512K Mac or later (specifically, System 3.2 or later); they have been  

fully tested on the SE, II, and IIcx. 

4. This function should be run upon first launching your application,  

or, if it is an operating system utility, during a “dormant” or idle  

period. 

5. The code below assumes that the VDAT resource contains all 5 segments  

of nVIR A; change this accordingly by adding additional virus types (under  

a name other than the original infected type) */ 

 

#include "dec.h" 

 

FILE *my_file; 

void dynamic() 

{ 

  char m[MAXSIZE]; 

  int pattern_length, index; 

  MATRIX table; 

  register Handle rsrc; 

  short resCount; 

  ToolBoxInit(); 

  CurResFile(); 

  resCount = Count1Resources ('VDAT');  

 /* how many of this type are there? */ 

  open_file (&my_file, WRITE_MODE); 

#ifdef _REPORT /* developer debug flag */ 

  printf("Searching for <<virus name>>:\n\n"); 



  fprintf(my_file, "Searching for <<virus name>>:\n\n"); 

#endif 

  while (resCount) /* loop down to 1 */ 

  { 

 if (resCount == 3) 

 { 

     printf("\nSearching for <<virus name>>:\n\n"); 

     fprintf(my_file, "\nSearching for <<virus name>>:\n\n"); 

 }  

   rsrc = Get1IndResource ('VDAT', resCount);     

 /* get the resource's handle, but don't load                  it */ 

 index = SizeResource (rsrc); 

 HLock (rsrc); 

 /* load next virus segment */ 

 pattern_length = copy_array (*rsrc, m,                  &index); 

#ifdef _REPORT 

  printf("Next virus segment loaded (length %d).  Resources left to scan:  

%d\n",  pattern_length, resCount); 

 fprintf(my_file, "Next virus segment loaded (length %d).  Resources  

left to scan:    %d\n", pattern_length, resCount); 

#endif 

 HUnlock (rsrc); 

 initialize(&table, pattern_length+1); 

 vResCheck('nVRB', m, pattern_length, table, NO_REPORT); 

#ifdef _REPORT 

 printf("\n"); 

 fprintf(my_file, "\n"); 

#endif 

 vResCheck('nVRA', m, pattern_length, table, NO_REPORT); 

#ifdef _REPORT 

 printf("\n\n"); 

 fprintf(my_file, "\n\n"); 

#endif 

    --resCount; 

  }    

  fclose(my_file); 

} 

 

void initialize(table, length) 

MATRIX *table; 

int length; 

{ 

  allocate_table(table, length); 

  clear_table(*table, length); 

} 

 

void allocate_table(table, size) 

MATRIX *table; 

int size; 

{ 

  int i; 

  *table = (MATRIX)calloc(size, (size_t)sizeof(long *)); 

  for (i = 0; i < size; i++) 

    (*table)[i] = (long *)calloc(2,(size_t)sizeof(long)); 

} 

 

void clear_table(table, length) 



MATRIX table; 

int length; 

{ 

  int i; 

  for (i = 0; i <= length; i++) 

    table[i][0] = (long)UNIT*i; 

} 

 

/* vResCheck - Perform dynamic string search on all resources of a specified  

type in the current application. */ 

void vResCheck (type, m, pattern_length, table, report) 

 register ResType type; /* INPUT: type of resource to sum */ 

 char m[MAXSIZE]; 

 int pattern_length; 

 MATRIX table; 

 register short report; 

/* INPUT: >0 => report errors with debugger */ 

 { 

 register short resCount;  

 /* number of resources of this type */ 

 register Handle rsrc;  /* resource to check */ 

 register short oldResFile; 

 /* for preserving current resource file */ 

 register Boolean oldResLoad; 

 /* for preserving "ResLoad" flag */ 

 Boolean found; 

 char n[MAXSIZE]; 

 int text_length, local_count = 1; 

 int index; 

  

 /* Switch to the application's resource file.  Note that all resource  

calls from here on are the "one deep" calls from Inside Mac, Volume 

IV. */ 

 oldResFile = CurResFile(); 

 /* remember initial resource file */ 

 oldResLoad = ResLoad;  /* remember "ResLoad" state */ 

 resCount = Count1Resources (type); 

 /* how many of this type are there? */ 

  if (report) 

  { 

 fprintf(my_file, "Text string "); 

 printf("Text string "); 

  } 

 while (resCount)/* loop down to 1 */ 

 { /* get the resource's handle, but don't load it */ 

 rsrc = Get1IndResource (type, resCount); 

 /* see if it's already in memory */ 

 if (!rsrc) /* not available? */ 

 { 

 if (report > 0) /* debugging flag */ 

 DebugStr ("\pResource not available!"); 

 goto EXIT; 

 } 

 else 

 { 

 index = SizeResource (rsrc); 

 HLock (rsrc); 



 found = FALSE; 

 while ((text_length = copy_array(*rsrc, n, &index)) && (!found)) 

 { 

 fprintf (my_file, "%dŠ ", local_count); 

 printf ("%dŠ ", local_count); 

 local_count++; 

 clear_table (table, pattern_length); 

 if (pattern_length <= text_length) 

 { 

 if (compare (m, n, pattern_length,  

 text_length, table)) 

   found = TRUE; 

 } 

 } 

 HUnlock (rsrc); 

 } 

 --resCount;/* get next index number */ 

 } /* end of loop through resources */ 

  

 EXIT: /* goto here on tampering or error */ 

 UseResFile (oldResFile); /* restore original resource file */ 

 SetResLoad (oldResLoad); /* restore original loading state */ 

 } /* end of vResCheck() */ 

 

/* compare: the actual dynamic programming algorithm, modified to a level  

of padding tolerance defined by THRESHOLD */ 

char compare(p, t, pattern_length, text_length, table) 

char p[], t[]; 

int pattern_length, text_length; 

MATRIX table; 

{  

  long value1, value2, value3; 

  int i, j, flip, beep; 

  flip = TRUE; 

  for (j = 1; j <= text_length; j++) 

  { 

    table[0][flip] = 0; 

    for (i = 1; i <= pattern_length; i++) 

    { 

 if (p[i-1] == t[j-1]) /* initialize */ 

        value1 = table[i-1][!flip]; 

      else 

        value1 = (table[i-1][!flip])+UNIT; 

      value2 = (table[i-1][flip])+UNIT; 

 /* UNIT: the orginal algorithm uses this  

 weight for all variations in the text */ 

      value3 = (table[i][!flip])+EPSILON; 

 /* EPSILON: small weighted "distance" --     

 as opposed to the single unit */ 

      table[i][flip] = MIN3(value1, value2, value3); 

 /* see discussion of dynamic */ 

    } 

    if (table[pattern_length][flip] <= THRESHOLD) 

    { 

 if (report) 

 { 



      printf("%ld-approximate match found.\n",     

table[pattern_length][flip]); 

      fprintf(my_file, "%ld-approximate match found.\n", 

table[pattern_length][flip]); 

 } 

 return (TRUE); 

    } 

    flip = !(flip);/* only an O(2m)-sized array is needed to simulate  

a "matrix", because only 2 columns are used */ 

  } 

  return (FALSE); 

} 

 

/* data.c: data structure operations (static allocation) for dynamic  

AND Boyer-Moore algs */ 

 

int read_array(fp, array) 

FILE *fp; 

char array[]; 

{ 

  char c; 

  int n; 

  n = 0; 

  while(((c = fgetc(fp)) != EOF) && (n <     MAXSIZE)) /* Read one element  

*/ 

  { 

    array[n] = c; 

    n++; 

  } 

  if (c != EOF) 

    ungetc(c, fp); 

  return(n); 

} 

 

/* fileops.c : file operations for dynamic */ 

 

#include "dec.h" 

#include "errors.h" 

 

char open_file(fp, operation) 

FILE **fp; 

char *operation; 

{ 

  SFReply reply; 

  char filename[BUFSIZ]; 

  GetfileName(&reply); 

  strcpy(filename, (char *)reply.fName); 

  *fp = fopen(filename, operation); 

  if (!(reply.good)) { 

    fprintf(stderr, CANNOT_OPEN_FILE, filename); 

    exit_cleanly(NO_ERROR, EXIT_FAILURE);  

  } 

  else return(TRUE); 

} 

 

/* The following routines deal with the filea. This is all using the  

Macintosh HFS. */ 



  

/* GetfileName: read a file name usign the HFS */ 

GetfileName(reply) 

SFReply *reply; 

{ 

 Point  dlgPoint; 

 Str255 defName = "\pDynamic Output"; 

 int  numTypes = 1; 

 dlgPoint.h = 100; /* position of the 'open' dialog box */ 

 dlgPoint.v = 100; 

 SFPutFile (dlgPoint, "\pSave output file asŠ", defName, NIL_POINTER,  

 

   reply); 

 PtoCstr ((char *) (*reply).fName); 

 /* convert from PASCAL to 'C' string */ 

}/* GetfileName */ 

 

/* dec.h - dynamic definitions and declarations */ 

  

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

#include <math.h> 

  

#define FALSE    0 

#define TRUE1 

#define NO_REPORT-1 

 

#define K 1024 

#define MAXSIZE  8*K 

/* All of the tweaking is done here */ 

#define UNIT1 

#define EPSILON  1 

#define THRESHOLDUNIT*50 

  

#define READ_MODE"r" 

#define WRITE_MODE "w" 

#define APPEND_MODE"a" 

 

#define MIN2(a, b) (((a) < (b)) ? (a) : (b)) 

#define MIN3(a, b, c)((MIN2((a), (b)) < (c)) ? MIN2((a), (b)) : (c)) 

#define MAX2(a, b) (((a) > (b)) ? (a) : (b)) 

 

#define NIL_POINTER0L 

#define NIL_STRING "\p" 

#define IGNORED_STRING  NIL_STRING 

#define NIL_FILE_FILTER   NIL_POINTER 

#define NIL_DIALOG_HOOK NIL_POINTER 

#define VDAT_RES_ID0 

 

typedef long **MATRIX; 

  

void initialize(), clear_table(), vResCheck(), allocate_table(), 

error_message(),  

exit_cleanly(), main(); 

char open_file(), compare(); 

int read_array(); 



 

int copy_array(array1, array2, bytes_left) 

char array1[], array2[]; 

int *bytes_left; 

{ 

  int bytes_gotten = 0; 

  if (!(*bytes_left)) 

    return (FALSE); 

  if (*bytes_left < MAXSIZE) 

  { 

    memmove ((void *)array2, (void *)array1,       (size_t)(*bytes_left)); 

    bytes_gotten = *bytes_left; 

    *bytes_left = 0; 

  } 

  else 

  { 

    memmove ((void *)array2, (void *)array1, (size_t)MAXSIZE); 

    bytes_gotten = MAXSIZE; 

    *bytes_left -= MAXSIZE; 

  } 

  return (bytes_gotten); 

} 

Listing 2:  BoyerMoore.c 

 

/* BoyerMoore.c - Functions for fast, variable- randomized virus infection  

detection. 

 Copyright © 1992 by William H. Hsu. 

 Think C version. 

 

 Notes: 

 • As explained in the dynamic algorithm code, these routines are tolerant  

toward a wide variety of variations, including padded and mutating viral  

code 

 

/* byrmoore.c: main searching file */ 

 

#include "dec.h" 

void boyer_moore() 

{ 

  FILE *my_file; 

  char n[MAXSIZE], *sub_string, **pattern_array; 

  int text_length, i, j, sum, match_count, size, divisor, total_match,  

index, index2, vdat_count,  refNum, files_to_scan = 5, total_virus_length; 

  int *pattern_length_array, *pattern_index_array; /* virus segment lengths  

and delimiters */ 

  long file_size, total_file_size; 

  register Handle rsrc, rsrc2; 

/* Note: the code which scans files in the same way that Disinfectant  

does is far too long to include in this article.  The array used below  

is for the purpose of example only.  John Norstad has made the enumeration  

part of his program publicly available (by FTP at acns.nwu.edu) */ 

  Str255 ResFileArray[5] = {"\pOne*", "\pTwo*",          "\pThree", "\pFour",  

"\pFive"}; 

  Str255 DescriptionArray[5] = {"File 1\t", "File 2\t",        "File  

3\t", "File 4\t", "File 5\t"}; 

  ResType typeName; 

  short resCount, typeCount, resCount2; 



  srand((unsigned)time(NULL)); 

  ToolBoxInit(); 

  open_file (&my_file, WRITE_MODE); 

  csettabs (TABS, stdout); 

#ifdef _REPORT 

  printf("File description\t\t\tScore\tFile size\tAlgorithm's Decision\n"); 

 printf("================\t\t\t=====\t=========\t====================\n\n"); 

  fprintf(my_file, "File description\t\t\tScore\tFile size\tAlgorithm's  

Decision\n"); 

  fprintf(my_file, 

"================\t\t\t=====\t=========\t====================\n\n"); 

#endif 

  sub_string = (char *)calloc(SIZE, sizeof(char)); 

  CurResFile(); 

  resCount = Count1Resources ('VDAT'); 

  vdat_count = resCount; 

  pattern_length_array = (int *)calloc(resCount, sizeof(int)); 

  pattern_index_array = (int *)calloc(resCount, sizeof(int)); 

  pattern_array = (char **)calloc(resCount,  

 sizeof(char *)); 

  while (resCount) /* loop resCount down to 1 */ 

  {/* get handle, but don't load it */ 

    rsrc = Get1IndResource ('VDAT', resCount); 

    index = SizeResource (rsrc); 

    HLock (rsrc); 

    pattern_array[resCount-1] = (char *)           calloc(index, 

sizeof(char)); 

    pattern_length_array[resCount-1] = copy_array (*rsrc, 

pattern_array[resCount-1],  

&index); 

    pattern_index_array[resCount-1] = ((resCount < vdat_count) ? 

(pattern_length_array[resCount- 

 1] + pattern_index_array[resCount]) : pattern_length_array[resCount-1]); 

    HUnlock (rsrc); 

    --resCount; 

  } 

  total_virus_length = pattern_index_array[0]; 

 

  SetResLoad (true); 

  for (i = 0; i < files_to_scan; i++) 

  { 

    refNum = OpenResFile (ResFileArray[i]); 

    match_count = 0; 

    divisor = 0; 

    for (j = 0; j < ITERATIONS; j++) 

    { 

      total_file_size = 0; 

      sum = 0; 

      while (!random_string(pattern_array, sub_string, pattern_index_array,  

 total_virus_length, SIZE, vdat_count)); 

      typeCount = Count1Types (); 

      while (typeCount) 

      { 

        Get1IndType (&typeName, typeCount); 

        resCount2 = Count1Resources (typeName); 

        while (resCount2) 

        { 



          rsrc2 = Get1IndResource (typeName, resCount2); 

          index2 = SizeResource (rsrc2); 

          file_size = 0; 

          HLock (rsrc2); 

 while (text_length = copy_array (*rsrc2, &index2)) 

          { 

            compare(sub_string, n, SIZE,text_length, &sum); 

            file_size += text_length; 

          } 

          HUnlock (rsrc2); 

          total_file_size += file_size; 

          --resCount2; 

        } 

        --typeCount; 

      } 

      divisor++; 

      if (sum) 

        match_count++; 

    } 

#  ifdef _REPORT 

    printf("%s\t\t", DescriptionArray[i]); 

    fprintf(my_file, "%s\t\t", DescriptionArray[i]); 

    printf("%d\t\t%ld\t", match_count, total_file_size); 

    fprintf(my_file, "%d\t\t%ld\t", match_count, total_file_size); 

#endif 

    if (match_count >= (divisor/LIMIT)) 

    { 

#ifdef _REPORT 

      printf("\t%s\n", INFECTED_STRING); 

      fprintf(my_file, "\t%s\n", INFECTED_STRING); 

#endif 

    } 

    else 

    { 

#ifdef _REPORT 

      printf("\t%s\n", CLEAN_STRING); 

      fprintf(my_file, "\t%s\n", CLEAN_STRING); 

#endif 

    } 

    CloseResFile(refNum); 

  } 

  printf("\nScore represents matches out of %d, with %d needed to diagnose  

infection.\n",   divisor, divisor/LIMIT); 

  fprintf(my_file, "\nScore represents matches out of %d, with %d needed  

to diagnose infection.\n", divisor, divisor/LIMIT); 

  free(sub_string); 

  fclose(my_file); 

} 

 

char random_string(string_array, sub_string, index_array, length, 

substring_length,  

vdat_count) 

char **string_array, sub_string[]; 

int index_array[], length, substring_length, vdat_count; 

{ 

  int location, segment, i, zero_count = 0; 

  Boolean legal = false, In_The_Right_Segment = false;   /* length and  



segments okay? */ 

  segment = vdat_count-1; 

  while (!legal) 

  { 

    location = (int)((rand()/(double)MAXINT)* (length - substring_length)); 

    In_The_Right_Segment = false; 

    while (!In_The_Right_Segment) 

    { 

      if (location <= index_array[segment]) 

      { 

        In_The_Right_Segment = true; 

        if (location <= (index_array[segment] - substring_length + 1)) 

          legal = true; 

        else 

          legal = false; 

      } 

      else 

        segment--; 

    } 

  } 

  if (segment < vdat_count-1) 

    location -= index_array[segment+1]; 

  for (i = location; i < location + substring_length; i++) 

  { 

    sub_string[i-location] =  (string_array[segment])[i]; 

    if (!string_array[segment][i]) 

      zero_count++; 

  } 

  if (zero_count < substring_length/2)  

    return(TRUE); 

  else 

    return(FALSE); 

} 

 

/* compare: the heart of the Boyer-Moore heurstic, similar to Knuth-Morris-

Pratt's  

matching engine */ 

void compare(p, t, pattern_length, text_length, sum) 

char *p, *t; 

int pattern_length, text_length, *sum; 

{ 

  ALPHABET_ARRAY char_jump; 

  int *match_jumps, print; 

  allocate_array(&match_jumps, pattern_length); 

  compute_jumps(p, char_jump, pattern_length-1); 

  compute_match_jumps(p, &match_jumps, pattern_length); 

  if (bm_match(p, t, char_jump, match_jumps, pattern_length, text_length)) 

 (*sum)++; 

  free(match_jumps); 

} 

 

void allocate_array(array, size) 

INDEX_ARRAY array; 

int size; 

{ 

  *array = (int *)calloc(size, sizeof(int)); 

} 



 

/* the bad-character failure function 

NOTE: if the ASCII alphabet, which has size 256, is 

used, this function is not worth computing for resource text strings  

of length ¾ 256 */ 

void compute_jumps(p, char_jump, length) 

char *p; 

ALPHABET_ARRAY char_jump; 

int length; 

{ 

  int c, k; 

  for (c = 0; c < CHARS; c++) 

    char_jump[c] = length; 

  for (k = 0; k < length; k++) 

    char_jump[POSITIVE(p[k])] = length-k-1; 

} 

 

/* implementation of pseudocode from [Baase 88]  

   - uses the good-suffix failure function */ 

void compute_match_jumps(p, match_jump, pattern_length) 

char *p; 

INDEX_ARRAY match_jump; 

int pattern_length; 

{ 

  int m, k, q, qq; 

  int *back; 

  allocate_array(&back, pattern_length+1); 

  m = pattern_length; 

  for (k = 0; k < m; k++) 

    (*match_jump)[k] = 2*m-k-1; 

  q = m; 

  for (k = m-1; k >= 0; k--) 

  { 

    back[k] = q; 

    while ((q < m) && (p[k] != p[q])) 

    { 

      (*match_jump)[q] = MIN2((*match_jump)[q], m-k-1); 

      q = back[q]; 

    } 

    q--; 

  } 

  for (k = 0; k < q; k++) 

    (*match_jump)[k] = MIN2((*match_jump)[k], m+q-k-1); 

  qq = back[q]; 

  while (q < m) 

  { 

    while (q < qq) 

    { 

      (*match_jump)[q] = MIN2((*match_jump)[q], qq-q+m-1); 

      q++; 

    } 

    qq = back[qq]; 

  } 

  free(back); 

} 

 

int bm_match(p, t, char_jump, match_jump, pattern_length, text_length) 



char *p, *t; 

ALPHABET_ARRAY char_jump; 

int *match_jump, pattern_length, text_length; 

{ 

  int j, k; /* j indexes text characters; k indexes             

 the pattern */ 

  j = pattern_length - 1; 

  k = j; 

  while (j < text_length) 

  { 

    if (k == -1) 

      return(TRUE); 

    if (t[j] == p[k]) 

    { 

      j--; 

      k--; 

    } 

    else 

    { 

      j += MAX2(char_jump[POSITIVE(t[j])], match_jump[k]); 

      k = pattern_length - 1; 

    } 

  } 

  return(FALSE); 

} 

 

/* dec.h - definitions and declarations for bm */ 

 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

#include <console.h> 

 

#define TABS4 

 

#define K 1024 

#define MAXSIZE  8*K 

#define MAXINT   32767 

#define MINSUB   8 

#define MAXSUB   12 

#define STEP4 

#define ITERATIONS 1000 

 

#define FALSE    0 

#define TRUE1 

 

#define READ_MODE"r" 

#define WRITE_MODE "w" 

#define APPEND_MODE"a" 

 

#define MIN2(a, b) (((a) < (b)) ? (a) : (b)) 

#define MIN3(a, b, c)((MIN2((a), (b)) < (c)) ? MIN2((a), (b)) : (c)) 

#define MAX2(a, b) (((a) > (b)) ? (a) : (b)) 

 

#define POSITIVE(a)((abs(a) == (a)) ? (a) : abs(a)+127) 

 

#define CHARS    256 



 

#define NIL_POINTER0L 

#define NIL_STRING "\p" 

#define IGNORED_STRING  NIL_STRING 

#define NIL_FILE_FILTER   NIL_POINTER 

#define NIL_DIALOG_HOOK   NIL_POINTER 

#define VDAT_RES_ID0 

 

typedef int ALPHABET_ARRAY[CHARS]; 

typedef int **INDEX_ARRAY; 

typedef ResType **ResTypeHandle; 

 

void compare(), allocate_array(), compute_jumps(), compute_match_jumps(),  

error_message(), exit_cleanly(), main(); 

char open_file(), random_string(); 

int read_array(); 

 

Footnotes 

1. [Cohen 86] is the most complete and formal of these publications. He gives a full 

definition of the term virus and technical discussion of worm propagation and viral 

spread. 

2. An inter-corporation group comprised of personal computer industry professionals 

(generally hardware and software developers) which is devoted to the distribution of 

anti-viral information (e.g., training seminars and publications) and tracking of new 

viruses. It was founded and is coordinated by John McAfee, the president of InterPath 

Corporation in Santa Clara, CA. The full text of his classification schema may be 

found in [McAfee 88]. 

3. This proof is available in its original form in [Cohen 86]; the doctoral thesis is 

exclusively published by the micrographics department of the University of Southern 

California. [Burger 88], [van Winkel 88], and many other works contain versions of 

this reduction of new virus detection to the halting problem [Turing 36]. 

4. A brief definition of O-notation, from [Baase 88]: 

f(n) = O(g(n)) (f is “order of” g) if and only if there exist c > 0, N > 0, such that f(n) ¾ 

cg(n) for every n N. 

Thus an O(mn)-time implementation requires time proportional to the product of the 

lengths of the pattern and text strings, in the long run. An O(kn) version requires time 

proportional to the product of the maximum acceptable number of differences and the 

length of the pattern. 



Our implementation of the dynamic programming algorithm was coded in C, using 

Pascal-type pseudocode from [Baase 88] (Chapter 6) as a guide. The O(kn) version 

can be found in [Landau 86], in the 18th annual ACM STOC Proceedings, with more 

general pseudocode. 

5. Among the Macintosh viruses with known variants (both strains and clones) are the 

following: WDEF, with strains A and B, and nVIR, with very prolific strains A and B, 

each with multiple clones found under Hpat, MEV#, AIDS, and other resource titles. 

An explicit definition of the terms “strain”, “clone”, and “viral mutant” as they are 

used in this article is given in the introduction. 

6. The original presentation of the algorithm is given in [Boyer 77], a paper in the 

October 1977 CACM; again, pseudocode from [Baase 88] (Chapter 5) was used as a 

guide in our implementation. 

7. This is the pivotal concept in [Morton 90], a recent article in MacTutor. The evident 

weaknesses in this technique are stressed by the author, who recommends user 

modification of the anti-viral source code as a means of circumventing viral 

tampering. This comment forebodes the use of expert systems techniques in viral code 

design; the use of artificial intelligence intermeshed with viral programs has been 

predicted in [Cohen 86], and is expected to appear as the availability of compiler tools 

increases and the viral visibility threshold decreases. 

8. The evolutionary virus is a largely theoretical program, first proposed in [Cohen 

86]; however, mildly evolutionary code (viral and otherwise) already exists in 

abundance. User modification of an antivirus is nearly certain to leave it “blind” to 

successive generations of an automatically self-modifying virus. 

9. The table computation rules (with the exception of the distance metric modification 

- a, b, and c replace 1 in each rule) are quoted verbatim from [Baase 88], Section 6.3. 

10.The article is [Landau 86], in the Proceedings of the 18th Annual ACM STOC. 

 


