
Generic Virus Detection

Virus Detection - the state of the art solutions

By William Hsu, Millersville, Maryland

Note: Source code files accompanying article are located on MacTech CD-ROM or

source code disks.

About the author

William Hsu is a third-year undergraduate majoring in Computer Science at the

Johns Hopkins University. The following article was based on a paper for an

independent programming workshop under Dr. Steven Salzberg. His Internet address

is hsu@cs.jhu.edu. His research interests include recent advances in computer virus

theory and treatment, program synthesis, and randomized and approximation

algorithms.

Recently, computer viruses have attracted a high volume of public, media, and

scientific attention. This is no surprise considering the explosion in the development

rate of computer virus code. Combine this with the fact that current methods for

detection of viruses have had limited success. A new approach to the detection of such

code is needed. We're going to look at two variations on algorithms originally

developed for string matching. Both modifications allow an increased tolerance for

variant “strains” of known viruses, especially for the so-called evolutionary class

which mutate themselves at predetermined intervals.

First, a randomization scheme can be applied to an established fast substring matching

procedure (such as the Boyer-Moore algorithm). This randomization allows mutation-

resistant searching. Second, an approximate pattern matching algorithm for a

maximum number of differences can be used. The algorithm is modified by weighting

the edit distance metric to make it robust to character padding and removal. Both

functions are combined to create a generalized detector capable of finding viral

clones, whether produced by human authors or by automatic variations.

This article was produced as part of an undergraduate computer science workshop at

Johns Hopkins University. First and foremost, I would like to thank Dr. Steven

Salzberg, my project advisor, for his guidance, insight, and instruction. Many thanks

to the faculty and staff of the JHU Computer Science Department, and to John

Norstad, Brian Seborg, Ephraim Vishniac, and Jan Christian van Winkel for their help

and comments.

https://web.archive.org/web/20041116144109/http:/www.mactech.com:80/articles/mactech/source_index.html
mailto:hsu@cs.jhu.edu

Virus Detection: Classification, Methods, and History

There has been a great deal of interest in the detection of active “viral” code on both

Macs and mainframes, especially as members of an interconnected network.

Definitions of the set of programs called viruses have been put forth in many recent

articles, most notably in the work by Cohen.1 In this work, detection of the virus is

simply considered a pattern string to be searched for in a larger text (a possibly

infected program).

Current viral detection procedures are classified according to a system put forth by the

Computer Virus Industry Association.2 The association divides anti-viral products

into three categories: Class 1 antiviruses (“Infection Prevention Products”) halt the

virus replication and prevent the initial infection from occurring - an example of such

a program for the Macintosh operating system is the cdev (Control Panel Device)

Vaccine. Class 2 programs (“Infection Detection Products”) detect infection soon

after it has occurred and mark specific components of system segments that have

become infected - they do so by periodically inspecting executable files, and may or

may not attempt repair of an infected file. An example of a Class 2 program on the

Macintosh is the INIT package GateKeeper and GateKeeper Aid. Finally, Class 3

antiviruses (“Infection Identification Products”) identify specific viral strains (see

below for more information about this topic) on systems that are already infected and

may remove the virus, returning the system to its state prior to infection. This category

is most common, although its effectiveness is dependent on the frequency of user

invocation. McAfee's MS-DOS program SCAN and the Macintosh Disinfectant series

are Class 3 products.

At present, three approaches to viral code detection have been prevalent. The first,

viral signature matching, requires information about the virus. Specifically, a

signature-based detector requires the virus’ code length and the location of its

“contagious” segment (which is essential to its replication and transfer among storage

media, computer memory, and networks). Code enumeration, a second technique,

involves examining known programs periodically to test whether any unknown

segments of code have been added to the original file. It is most effective when

applied before each execution of the program. Finally, checksum methods compare

the current size of a file and the summed value of its bytes to the same attributes of a

known uninfected version - an infection will often change these values. None of the

above methods require the use of the code of the virus itself in its entirety, and all

three require user action upon discovery of a virus. Usually, the computer user is

urged to restore an earlier copy of the infected file or files from backup. In specific

cases, disinfection is possible.

Most software developers claim that the absence of the actual viral code from a

detection program prevents its reuse by other virus authors. These authors could

conceivably design a virus based on the stolen code and thwart the original detection

program. For this reason, developers choose against using a whole (deactivated) virus

in detectors. An opposing viewpoint suggests that the only defense against viral code

that will not inevitably fail is one which does not depend on the secrecy of its internal

mechanisms. A conflict has arisen between these two opinions as each side handles

sensitive information very differently. The former advocates secrecy regarding:

breaches of security, weaknesses in system defenses, and vulnerabilities of protective

software (which will be discussed later in this article), while the latter believes

revealing such details will attract support from developers of anti-viral programs and

prevent unexpected attacks.

MacDTS has argued that attempting to support anti-viral measures is a futile struggle.

This viewpoint fails to factor in the practical results approximate methods have had

with problems which were once considered intractable. On the other hand, algorithmic

detection of all viruses, including those for which no specimens exist, has been

established as an intractable problem. It has been shown that to determine whether any

given program is infected is undecidable.3 However, examination of the sample code

of a virus, once it has been discovered, allows a signature detection schema to be

implemented. Extending the use of this necessary information to both increase the

range of the detectable viral set and decrease the amount of data required to do so is a

logical goal. It stilll makes sense to include established algorithms suited for such

detection as part of the process. By tracking down new viruses quickly, their damage

can be lessened further than by distributing cures long after the spread is under way.

Viral Variant Detection an Algorithmic Approach

Choosing an appropriate class of algorithms depends on the treatment of the subject

data; in this case, it is beneficial to consider viral and program code as text. For this

problem, it is reasonable to use string matching procedures, which are specifically

oriented toward character sequences with a pre-defined alphabet (such as the ASCII

alphabet). In this context, viruses are searched for by two methods similar to the

“Find” and spelling check commands in most word processors. The unique aspect of

visrus detection, however, requires the search to be repeated many times (for hundreds

of small pieces of the virus). The other search, similar to the “Suggest Word”

command in a spelling checker, looks for approximate matches rather than exact ones.

Virus detection gives character deletions more importance over inserted characters.

We have developed algorithms that will detect known viruses and unknown clones

and mutants of those viruses. For our purposes a viral clone is defined as a known

virus which has been modified prior to its release without changing its viral properties

in any appreciable way. For instance, its replication and infection techniques and

“detonation” effect (damage done when its preset trigger goes off) should remain

identical. An example of a clone is the Hpat virus, a first-generation modified version

of the nVIR A Macintosh virus. A viral mutant is defined as a known virus to which

self-modification parameters have been added which cause it to create successive

clones of itself at intervals or upon a trigger event - mutation may occur after release

and may or may not be limited to a finite number of iterations. No Macintosh viral

mutants currently exist. The term strain is often applied interchangeably to groups of

clones, mutants, and even unrelated viruses (developed separately) which share any

common feature. Due to this ambiguity, the expression is not used except in reference

to sets of viruses previously designated as “strains”, such as nVIR A and B. The word

variant is applied to mean an altered virus which may or may not be known and whose

function may or may not have been changed during modification of its code; a variant

is not necessarily a clone, but all viral clones and generations of mutants are variants

of their ancestor viruses. Note that viruses of a single strain are not necessarily

variants of each other under this definition; an example is the WDEF strain

(Macintosh), with substrains A and B - they are so designated merely because they

share the same code label.

A primary method of creating clones and mutants is character padding, the addition of

code sequences or characters which do not affect the operation of the virus.

Safeguards against this technique are presented in the algorithm discussions. A more

difficult strategy is the removal of segments from a known virus - of course, this

cannot be carried out indefinitely or even for a large portion of the virus. Finally, a

virus may be designed to relocate itself once appended onto or inserted into a host

program; auto-propagation is formally considered a feature of worms, but shifting

code segments is another way of avoiding detection.

To implement variation-tolerant matching, one of several approaches may be selected.

First, approximate string matching for a text of length n, a pattern of length m, and an

integer k is among the most common of these. k is the maximum number of

differences allowed between a pattern string and the text which is being searched.

Algorithms exist which can compute an edit distance, based on the number and type

of differences. The “edit” operations are character deletion, insertion, and “twiddle”

(transformation of one character to any other). This distance metric can be computed

by dynamic programming, a method which breaks down problems which would

otherwise require recursion and solves it by computing a table. A straightforward

implementation requires O(mn) time; a more complex version solves the problem in

O(kn) time4 with some overhead. Parallelization of the procedure allows the values to

be computed in O(k) complexity.

The second approach uses a fast substring matching function for small segments of

the viral code which is being searched for. The length of each segment is proportional

to the expected frequency of variation in the text by addition and deletion of

characters. Since the base algorithms and user interface used in this project have been

developed elsewhere, our work focuses on general methods for virus detection, rather

than implementation issues.

Experimental Input

This code was developed on a UNIX machine before porting to the Mac. Input data at

all stages of program development consisted of ASCII and binary data treated as

ASCII text (the smallest alphabetic unit was one byte). The “text” used in mainframe

testing comprises alphanumeric text, compiled binaries (executable and object files),

and ASCII script files. An application was developed for use on the Mac, for which

known viruses and their variants exist.5 All text used in the microcomputer

development stage consisted of resource data because two primary requirements of

viral code - the abilities to replicate and gain control of the operating system - require

the execution of the infectious resources.

During the experimental stage, our pattern and text strings were obtained by

extracting CODE resource from files found on the average Macintosh hard disk; the

segments that were used are listed below. All input data was processed with ASCII

character-handling functions. Simple character arrays were used to store both strings.

Space requirements were relatively small for the string matching algorithms used.

Internal data structures included: a matrix of O(2m) size in the first algorithm - the

array requires O(mn) space, but the dynamic programming method only needs two

columns at a time - and two arrays for internal computation by the Boyer-Moore

algorithm.

The Boyer-Moore Algorithm

The string-matching algorithm developed by Boyer and Moore6 for substring

matching has proven significantly faster, in practice, than both straightforward

scanning and the finite-state automaton technique implemented by Knuth, Morris, and

Pratt. This advantage applies even to binary strings, and becomes increasingly evident

as the size of the alphabet increases. Thus, the number of character comparisons per

text character scanned is even lower for executables than for alphanumeric text. The

Boyer-Moore algorithm employs right-to-left scanning of the pattern string while

attempting to find a match within the text body. The main savings are achieved by

computing two failure functions which store, for each character in the pattern and the

alphabet, respectively, the number of positions to be skipped when a mismatch occurs.

Boyer and Moore suggest that entries from both arrays be compared and the larger

skip selected. The Boyer-Moore string search requires m+n comparisons in the worst

case, and can reliably use n/m steps for large alphabets and short pattern strings.

Our modification of the Boyer-Moore algorithm involved the introduction of a

randomized system of string selection. An integer l was chosen to be sufficiently large

that an accidental match of a substring of length l was extremely unlikely. We

determined this likelihood experimentally (see the discussion below). The pattern

source was an original (unmodified) sample of a known virus. Strings of length l were

chosen randomly by generating an index between 0 and m-l and designating the next l

characters (including the indexed one) of the source string as the pattern P. It was

postulated that this probabilistic factor would establish tolerance for simple changes

made to viral code by a potential author in possession of existing code. These changes

include:

• Disassembling the viral code and changing variable identifiers.

• Padding null characters or sequences to calibrate the virus checksum.

• Removing small, superfluous amounts of code from the original virus.

• Automatic padding within a viral mutant.

• Pasting viral code segments under new labels or merging segments.

• Reversal of code order using logical jumps.

The probability of a match is experimentally shown (through the tests described

below) to be extremely small when a virus is not present - it is clearly possible to

discriminate with high precision between infected and uninfected files. An exact

match is a very difficult event to duplicate coincidentally; the likelihood of such a

match between random strings is infinitesimal even in practice. False positives are

relatively rare, though more common than false negatives. Thus, use of a randomized

algorithm appears to be a feasible approach to generalized (“inter-clone”) viral

detection.

Manual “mutation” of code is already becoming commonplace, as is evidenced by the

multiple clones of the nVIR strain which already exist on the Apple Macintosh.

Simple self-modification has been accomplished in the Core Wars class of programs,

and it is not at all unfeasible for a simple virus to be programmed to pad itself with

null or checksum-neutral character sequences in an effort to evade detection. Such

changes would appear trivial under human inspection. The straightforward searching

techniques used in current commercial products, by contrast, are unable to handle

even trivial changes. Early efforts to deal with the emergence of viral clones involve

omission of parts of the viral signature or selectively summing or enumerating only

specified portions of the suspected code.7 This approach lacks generality, however; it

is not guaranteed to be proof against even a single revision of a known virus, and is

certain to fail against an evolutionary version.8

Important advantages of randomization include the fact that the instructions of viruses

need not be physically oriented in their order of execution, but may instead be

scrambled by jump instructions (see Figure 1). A second consideration is that

preselection of a single segment of code (i.e., the “signature”), as the search pattern,

renders the anti-viral system susceptible to circumvention. Once the identity of the

target code is discovered, the procedure may be fooled in one of several ways: by

specifically changing or deleting the targeted string; by shifting its physical position;

or by disguising it using character padding. Note that none of the above techniques

requires real knowledge of how the virus works! A slightly more sophisticated author

may easily disassemble the executable code and change certain variable identifiers to

thoroughly mask the virus. These variations, in addition to changes made to hide the

virus without any detector in mind, may be virtually bypassed when the search string

is different for each scan run.

Figure 1

A major concern in refining the probabilistic extension of the Boyer-Moore search is

the selection of a string length l. This choice is affected by at least three factors, the

most important of which is the chance of a false positive result. Since a false alarm is

highly improbable when the pattern and text are unrelated (as is experimentally

demonstrated and documented in the tables below), its likelihood is low because the

vast majority of legitimate code lacks viral aspects and is dissimilar to the virus search

pattern.

Moreover, false alarms are easily avoided by making l as high as possible. On the

other hand, l must be made shorter to make the modified Boyer-Moore procedure less

sensitive to padding. Figure 2 illustrates a padded clone below an original virus. Each

padding sequence insures that at most l - 1 out of m - l strings will fail to be matched,

but paddings within l -1 bytes of each other will overlap and “mask” fewer strings. An

important feature of drawing random strings from the original virus is that the length

of padding sequences is irrelevant; only their frequency must be considered.

Figure 2

The second factor in determining l is the instruction length of the viral host machine;

the unused space in each segment of a binary executable is filled with null (neutral)

characters, and a selection of sampled pattern strings containing a high proportion of

such characters is likely to contain an excessive number of strings which match with

an uninfected text file. One minor weakness will be present regardless of the string

length chosen: the virus author will always be able to defeat the randomized filter by

increasing padding frequency (although this cannot be done indefinitely). This is one

example of the “strength in secrecy” argument in anti-virus programming. On the

other hand, the dynamic programming method is reasonably tolerant to padding.

A Dynamic Programming Approach

While randomized string-search algorithms present a viable next step in developing

countermeasures to computer virus proliferation, they are only a refinement of the

simple straightforward technique. An exact match is required for each string,

regardless of how short it may be or how many others are selected and compared.

Therefore, it is subject to failure under two conditions, the latter of which results in a

false alert.

First, if the length of the randomly selected strings consistently exceeds the distance

between padded or removed characters, the algorithm will fail to achieve any matches.

Second, the program will erroneously report viruses when the text contains code

which is sufficiently similar to the sample virus data to effect more matches than the

allowable limit. A heuristic is needed which will deterministically verify or refute the

presence of the virus and yield consistent results on every run. Since we are

specifically dealing with variants of known viruses, an approximate matching

procedure is required.

Fast string matching has traditionally been applied to many text search problems.

Where a partial match is available, dynamic programming offers an efficient solution.

The algorithm used in our experiments is a straightforward dynamic implementation

which relies on a matrix whose components are computed based on previous entries.

The scan function is designed to return the boolean true upon encountering any

instance of a k-approximate match between pattern P = p1p2Špm and text T = t1t2Štn

for a positive integer k. Assume that n is large relative to m. The following rules are

used.9

1. Let Dmxn be a matrix of integers for which D[i,j] equals the minimum number of

differences between p1Špi and a segment of T ending at tj.

2. A k-approximate match is detected at any j for which D[m,j] ¾ k.

3. The rules for computing D[i,j] consider each of the possible differences that may

occur at pi and tj, and the instance for which the two characters match. D[i,j] is

assigned the minimum of the following three values:

a) If pi = tj then D[i-1,j-1] else D[i-1,j-1]+a.

b) D[i-1,j]+b (the case where pi is missing from T (deletions)).

c) D[i,j-1]+c (the case where tj is missing from P (insertions)).

a, b, and c are the integer values added whenever a mismatch occurs, and are the

central parameters in our modification. Each entry is updated by inspection of the

entries above it, to its left, and to its upper left.

Figure 3

The computation may be done in O(2m) space since only the current and previous

columns need to be stored. The work requires O(mn) complexity in the

straightforward implementation, but can be achieved in O(kn) time using the

improved serial technique by Landau and Vishkin.10 The standard application of

string matching by dynamic programming uses a constant value for a, b, and c (for

instance, 1). Our method boosts tolerance for padded characters by increasing the ratio

between the parameters b and c.

Let r be this ratio, a positive integer; if c is assigned a unit value i, then the matching

function may be made tolerant to cases for which the characters in the text are missing

from the pattern (i.e., the text has been padded) by setting a and b equal to r •c,

making the effective “price” for padded characters lower. A final consideration is the

selection of the “threshold” k. It may be determined based on the expected frequency

of padding, as is the string length in our randomized Boyer-Moore component. Since r

has already been defined relative to i and m, it is a fairly simple task to assign k a

value. Typically, it should be close to r (actually, slightly lower to ensure against false

alerts) and may be computed using the ratio m/n or simply set to a large fraction of r.

Our padding-tolerant implementation uses 1 for i and c, 100 for r, a, and b, and 50 for

k. A false match is possible whenever the ratio r is greater than i. However, this only

holds in the absolutely worst cases in which an extremely small pattern is matched

against a text string of very high length. The probability of this event is equal to that

of the consecutive occurrence of all m characters in P within k+m positions of each

other. Again, this is experimentally shown to be a statistically rare occurrence, which

can reliably be ignored as long as the viral segment length m is not much smaller than

r. Generally, a value for r that is higher than the threshold k can be expected to yield

few false alarms and will rarely miss a variant created by padding. Conversely,

tolerance for missing characters may be effected by increasing the ratio between c and

b; in both cases, a is assigned the larger of the two values.

Future applications (and viral threats)

The code below introduces two effective methods of computer virus detection, using

newly developed modifications of proven algorithmic techniques. Though previously

used in many other applications of computation, these systems are applied here for the

first time to the problem of viral code identification. Despite the previously

established results on the intractability of universal detection put forth by Cohen, a

new class of post-infection scanning methods seems entirely feasible. Further

investigation into the circumvention of virus concealment techniques produced

experimental results which have supported our assumptions concerning the

probabilities of detection and false positives, and support the main premise of both of

the algorithms used: that a standard string matching program may be adapted for

tolerance toward modification of the text to be scanned. Two significant questions

remain concerning general virus detection: First, can clone and mutation detection be

extended under a strictly algorithmic foundation to include a broader range of

detectable code - especially groups of viruses which have not yet been developed?

Second, what optimizations may be performed on the programs to increase speed

without sacrificing probabilistic safety? One possible solution is offered through the

accompanying program.

Work in string matching, like work in virus detection, is by no means complete.

Modern algorithms make use of parallel hardware and improved data structures, such

as suffix trees (which may be respectively applied to randomized matching and

dynamic programming). Mutating viruses are by no means prevalent yet and have

(fortunately) not appeared in the Macintosh operating system. All recent research in

“compuvirology”, however, suggests that such programs are feasible and may debut

soon - if not on the Mac, then possibly on a larger-scale machine. The viral

“visibility” threshold (i.e., the typical size of a virus compared to the average

executable size and the machine's general capacity) would even be lower. As an

illustration, consider that current viruses approach an order of 10 kilobytes in length

and would be considered gigantic if they appeared on machines of 20 years ago. As

machine size increases, utilities for virus detection may possess the same precision,

but this is not sufficient - they must also match the increasingly sophisticated products

of virus authors. Using advances in fast string matching and parallel computing, the

software industry can stay not one but many steps ahead of viral attackers.

Code resources used in Randomized

Boyer-Moore Experiments

The randomized Boyer-Moore program was tested on many files to illustrate that on

an average Macintosh system, the likelihood of false positives is low. To draw this

conclusion, resources from several common Macintosh programs were extracted and

searched for variants of nVIR.

Below is a listing of the origin of each code segment used for the generation of Table

2, detailing the size of the file and the application name and resource type (required

for Macintosh operating system classification) from which it was extracted.

Segment Length

Group Number Source File (bytes)

B 1 MS Word, CODE 1 1474

B 2 Disinfectant 2.0, CODE 7 1116

B 3 Red Ryder 9.4, CODE 37 2164

B 4 SuperPaint 2.0, CODE 42 2480

C 1 WordPerfect, CODE 31 5002

C 2 Font/DA Mover, CODE 1 4670

C 3 WordPerfect File, CODE 1 4542

C 4 ZTerm 0.85, CODE 5 4378

D 1 HyperCard, CODE "HyperTools 2" 26078

D 2 Disinfectant 2.0, CODE 5 18720

D 3 THINK C Debugger, CODE 2 21960

D 4 SuperPaint 2.0, CODE 20 19754

References

[Baase 88] Baase, Sara. Computer Algorithms: Introduction to Design and Analysis.

Addison-Wesley, Reading, MA, 1988.

[Boyer 77] Boyer, R.S., Moore, J.S. A Fast String Searching Algorithm. "In

Communications of the ACM", pages 762-772. October, 1977.

[Cohen 86] Cohen, Fred B. Computer Viruses. Phd thesis, Electrical Engineering

Department, University of Southern California, December, 1986.

[Landau 86] Landau, Gad M., Vishkin, Uzi. Introducing Efficient Parallelism Into

Approximate String Matching and a New Serial Algorithm. "In Proceedings of the

18th Annual ACM Symposium on Theory of Computing", pages 220-230. 1986.

[McAfee 88] McAfee, John. Implementing Anti-Viral Programs: Special Report for

the Computer Virus Industry Association. Public Information Packet. InterPath

Corporation, Santa Clara, CA, 1988.

[McAfee 89] McAfee, John. Computer Viruses, Worms, Data Diddlers, Killer

Programs, and Other Threats to Your System: What They Are, How They Work, and

How to Defend Your PC, Mac, or Mainframe. St. Martin's Press, New York, 1989.

Listing 1: Dynamic.c

/* Dynamic.c - Functions for dynamic k-approximate virus infection detection.

 Copyright © 1992 by William H. Hsu.

 Thanks to John Norstad and Ephraim Vishniac for help and comments.

Portions of this code are based on [Morton 90], which appears in the

May 1990 issue of MacTutor. Reused with permission. You may copy, alter,

use, and distribute all code listed here if you leave the file unchanged

up to this line.

 Think C version.

Notes:

• A main advantage of this code, as explained in the “Methods and History”

section, is that its effectiveness is not diminished by its availability.

 No matter how many potential virus authors read it, the algorithm will

remain equally effective against circumvention.

• To use this code in your programs:

1. It will be necessary to obtain non-functional but significant (larger

than 300 bytes) resource segments from the virus you are trying to detect.

2. Using a resource editor, insert the viral data under an unused type,

such as 'VDAT', used in the code below -- this will render the virus

code inactive and most likely invisible to conventional (Class 2 and

3) detection programs. As an added security measure, you may wish to

include only code segments above 300 bytes (or a similar threshold length)

to ensure that the virus is crippled.

3. Both the C routines and the Boyer-Moore routines require an expanded

512K Mac or later (specifically, System 3.2 or later); they have been

fully tested on the SE, II, and IIcx.

4. This function should be run upon first launching your application,

or, if it is an operating system utility, during a “dormant” or idle

period.

5. The code below assumes that the VDAT resource contains all 5 segments

of nVIR A; change this accordingly by adding additional virus types (under

a name other than the original infected type) */

#include "dec.h"

FILE *my_file;

void dynamic()

{

 char m[MAXSIZE];

 int pattern_length, index;

 MATRIX table;

 register Handle rsrc;

 short resCount;

 ToolBoxInit();

 CurResFile();

 resCount = Count1Resources ('VDAT');

 /* how many of this type are there? */

 open_file (&my_file, WRITE_MODE);

#ifdef _REPORT /* developer debug flag */

 printf("Searching for <<virus name>>:\n\n");

 fprintf(my_file, "Searching for <<virus name>>:\n\n");

#endif

 while (resCount) /* loop down to 1 */

 {

 if (resCount == 3)

 {

 printf("\nSearching for <<virus name>>:\n\n");

 fprintf(my_file, "\nSearching for <<virus name>>:\n\n");

 }

 rsrc = Get1IndResource ('VDAT', resCount);

 /* get the resource's handle, but don't load it */

 index = SizeResource (rsrc);

 HLock (rsrc);

 /* load next virus segment */

 pattern_length = copy_array (*rsrc, m, &index);

#ifdef _REPORT

 printf("Next virus segment loaded (length %d). Resources left to scan:

%d\n", pattern_length, resCount);

 fprintf(my_file, "Next virus segment loaded (length %d). Resources

left to scan: %d\n", pattern_length, resCount);

#endif

 HUnlock (rsrc);

 initialize(&table, pattern_length+1);

 vResCheck('nVRB', m, pattern_length, table, NO_REPORT);

#ifdef _REPORT

 printf("\n");

 fprintf(my_file, "\n");

#endif

 vResCheck('nVRA', m, pattern_length, table, NO_REPORT);

#ifdef _REPORT

 printf("\n\n");

 fprintf(my_file, "\n\n");

#endif

 --resCount;

 }

 fclose(my_file);

}

void initialize(table, length)

MATRIX *table;

int length;

{

 allocate_table(table, length);

 clear_table(*table, length);

}

void allocate_table(table, size)

MATRIX *table;

int size;

{

 int i;

 *table = (MATRIX)calloc(size, (size_t)sizeof(long *));

 for (i = 0; i < size; i++)

 (*table)[i] = (long *)calloc(2,(size_t)sizeof(long));

}

void clear_table(table, length)

MATRIX table;

int length;

{

 int i;

 for (i = 0; i <= length; i++)

 table[i][0] = (long)UNIT*i;

}

/* vResCheck - Perform dynamic string search on all resources of a specified

type in the current application. */

void vResCheck (type, m, pattern_length, table, report)

 register ResType type; /* INPUT: type of resource to sum */

 char m[MAXSIZE];

 int pattern_length;

 MATRIX table;

 register short report;

/* INPUT: >0 => report errors with debugger */

 {

 register short resCount;

 /* number of resources of this type */

 register Handle rsrc; /* resource to check */

 register short oldResFile;

 /* for preserving current resource file */

 register Boolean oldResLoad;

 /* for preserving "ResLoad" flag */

 Boolean found;

 char n[MAXSIZE];

 int text_length, local_count = 1;

 int index;

 /* Switch to the application's resource file. Note that all resource

calls from here on are the "one deep" calls from Inside Mac, Volume

IV. */

 oldResFile = CurResFile();

 /* remember initial resource file */

 oldResLoad = ResLoad; /* remember "ResLoad" state */

 resCount = Count1Resources (type);

 /* how many of this type are there? */

 if (report)

 {

 fprintf(my_file, "Text string ");

 printf("Text string ");

 }

 while (resCount)/* loop down to 1 */

 { /* get the resource's handle, but don't load it */

 rsrc = Get1IndResource (type, resCount);

 /* see if it's already in memory */

 if (!rsrc) /* not available? */

 {

 if (report > 0) /* debugging flag */

 DebugStr ("\pResource not available!");

 goto EXIT;

 }

 else

 {

 index = SizeResource (rsrc);

 HLock (rsrc);

 found = FALSE;

 while ((text_length = copy_array(*rsrc, n, &index)) && (!found))

 {

 fprintf (my_file, "%dŠ ", local_count);

 printf ("%dŠ ", local_count);

 local_count++;

 clear_table (table, pattern_length);

 if (pattern_length <= text_length)

 {

 if (compare (m, n, pattern_length,

 text_length, table))

 found = TRUE;

 }

 }

 HUnlock (rsrc);

 }

 --resCount;/* get next index number */

 } /* end of loop through resources */

 EXIT: /* goto here on tampering or error */

 UseResFile (oldResFile); /* restore original resource file */

 SetResLoad (oldResLoad); /* restore original loading state */

 } /* end of vResCheck() */

/* compare: the actual dynamic programming algorithm, modified to a level

of padding tolerance defined by THRESHOLD */

char compare(p, t, pattern_length, text_length, table)

char p[], t[];

int pattern_length, text_length;

MATRIX table;

{

 long value1, value2, value3;

 int i, j, flip, beep;

 flip = TRUE;

 for (j = 1; j <= text_length; j++)

 {

 table[0][flip] = 0;

 for (i = 1; i <= pattern_length; i++)

 {

 if (p[i-1] == t[j-1]) /* initialize */

 value1 = table[i-1][!flip];

 else

 value1 = (table[i-1][!flip])+UNIT;

 value2 = (table[i-1][flip])+UNIT;

 /* UNIT: the orginal algorithm uses this

 weight for all variations in the text */

 value3 = (table[i][!flip])+EPSILON;

 /* EPSILON: small weighted "distance" --

 as opposed to the single unit */

 table[i][flip] = MIN3(value1, value2, value3);

 /* see discussion of dynamic */

 }

 if (table[pattern_length][flip] <= THRESHOLD)

 {

 if (report)

 {

 printf("%ld-approximate match found.\n",

table[pattern_length][flip]);

 fprintf(my_file, "%ld-approximate match found.\n",

table[pattern_length][flip]);

 }

 return (TRUE);

 }

 flip = !(flip);/* only an O(2m)-sized array is needed to simulate

a "matrix", because only 2 columns are used */

 }

 return (FALSE);

}

/* data.c: data structure operations (static allocation) for dynamic

AND Boyer-Moore algs */

int read_array(fp, array)

FILE *fp;

char array[];

{

 char c;

 int n;

 n = 0;

 while(((c = fgetc(fp)) != EOF) && (n < MAXSIZE)) /* Read one element

*/

 {

 array[n] = c;

 n++;

 }

 if (c != EOF)

 ungetc(c, fp);

 return(n);

}

/* fileops.c : file operations for dynamic */

#include "dec.h"

#include "errors.h"

char open_file(fp, operation)

FILE **fp;

char *operation;

{

 SFReply reply;

 char filename[BUFSIZ];

 GetfileName(&reply);

 strcpy(filename, (char *)reply.fName);

 *fp = fopen(filename, operation);

 if (!(reply.good)) {

 fprintf(stderr, CANNOT_OPEN_FILE, filename);

 exit_cleanly(NO_ERROR, EXIT_FAILURE);

 }

 else return(TRUE);

}

/* The following routines deal with the filea. This is all using the

Macintosh HFS. */

/* GetfileName: read a file name usign the HFS */

GetfileName(reply)

SFReply *reply;

{

 Point dlgPoint;

 Str255 defName = "\pDynamic Output";

 int numTypes = 1;

 dlgPoint.h = 100; /* position of the 'open' dialog box */

 dlgPoint.v = 100;

 SFPutFile (dlgPoint, "\pSave output file asŠ", defName, NIL_POINTER,

 reply);

 PtoCstr ((char *) (*reply).fName);

 /* convert from PASCAL to 'C' string */

}/* GetfileName */

/* dec.h - dynamic definitions and declarations */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <math.h>

#define FALSE 0

#define TRUE1

#define NO_REPORT-1

#define K 1024

#define MAXSIZE 8*K

/* All of the tweaking is done here */

#define UNIT1

#define EPSILON 1

#define THRESHOLDUNIT*50

#define READ_MODE"r"

#define WRITE_MODE "w"

#define APPEND_MODE"a"

#define MIN2(a, b) (((a) < (b)) ? (a) : (b))

#define MIN3(a, b, c)((MIN2((a), (b)) < (c)) ? MIN2((a), (b)) : (c))

#define MAX2(a, b) (((a) > (b)) ? (a) : (b))

#define NIL_POINTER0L

#define NIL_STRING "\p"

#define IGNORED_STRING NIL_STRING

#define NIL_FILE_FILTER NIL_POINTER

#define NIL_DIALOG_HOOK NIL_POINTER

#define VDAT_RES_ID0

typedef long **MATRIX;

void initialize(), clear_table(), vResCheck(), allocate_table(),

error_message(),

exit_cleanly(), main();

char open_file(), compare();

int read_array();

int copy_array(array1, array2, bytes_left)

char array1[], array2[];

int *bytes_left;

{

 int bytes_gotten = 0;

 if (!(*bytes_left))

 return (FALSE);

 if (*bytes_left < MAXSIZE)

 {

 memmove ((void *)array2, (void *)array1, (size_t)(*bytes_left));

 bytes_gotten = *bytes_left;

 *bytes_left = 0;

 }

 else

 {

 memmove ((void *)array2, (void *)array1, (size_t)MAXSIZE);

 bytes_gotten = MAXSIZE;

 *bytes_left -= MAXSIZE;

 }

 return (bytes_gotten);

}

Listing 2: BoyerMoore.c

/* BoyerMoore.c - Functions for fast, variable- randomized virus infection

detection.

 Copyright © 1992 by William H. Hsu.

 Think C version.

 Notes:

 • As explained in the dynamic algorithm code, these routines are tolerant

toward a wide variety of variations, including padded and mutating viral

code

/* byrmoore.c: main searching file */

#include "dec.h"

void boyer_moore()

{

 FILE *my_file;

 char n[MAXSIZE], *sub_string, **pattern_array;

 int text_length, i, j, sum, match_count, size, divisor, total_match,

index, index2, vdat_count, refNum, files_to_scan = 5, total_virus_length;

 int *pattern_length_array, *pattern_index_array; /* virus segment lengths

and delimiters */

 long file_size, total_file_size;

 register Handle rsrc, rsrc2;

/* Note: the code which scans files in the same way that Disinfectant

does is far too long to include in this article. The array used below

is for the purpose of example only. John Norstad has made the enumeration

part of his program publicly available (by FTP at acns.nwu.edu) */

 Str255 ResFileArray[5] = {"\pOne*", "\pTwo*", "\pThree", "\pFour",

"\pFive"};

 Str255 DescriptionArray[5] = {"File 1\t", "File 2\t", "File

3\t", "File 4\t", "File 5\t"};

 ResType typeName;

 short resCount, typeCount, resCount2;

 srand((unsigned)time(NULL));

 ToolBoxInit();

 open_file (&my_file, WRITE_MODE);

 csettabs (TABS, stdout);

#ifdef _REPORT

 printf("File description\t\t\tScore\tFile size\tAlgorithm's Decision\n");

 printf("================\t\t\t=====\t=========\t====================\n\n");

 fprintf(my_file, "File description\t\t\tScore\tFile size\tAlgorithm's

Decision\n");

 fprintf(my_file,

"================\t\t\t=====\t=========\t====================\n\n");

#endif

 sub_string = (char *)calloc(SIZE, sizeof(char));

 CurResFile();

 resCount = Count1Resources ('VDAT');

 vdat_count = resCount;

 pattern_length_array = (int *)calloc(resCount, sizeof(int));

 pattern_index_array = (int *)calloc(resCount, sizeof(int));

 pattern_array = (char **)calloc(resCount,

 sizeof(char *));

 while (resCount) /* loop resCount down to 1 */

 {/* get handle, but don't load it */

 rsrc = Get1IndResource ('VDAT', resCount);

 index = SizeResource (rsrc);

 HLock (rsrc);

 pattern_array[resCount-1] = (char *) calloc(index,

sizeof(char));

 pattern_length_array[resCount-1] = copy_array (*rsrc,

pattern_array[resCount-1],

&index);

 pattern_index_array[resCount-1] = ((resCount < vdat_count) ?

(pattern_length_array[resCount-

 1] + pattern_index_array[resCount]) : pattern_length_array[resCount-1]);

 HUnlock (rsrc);

 --resCount;

 }

 total_virus_length = pattern_index_array[0];

 SetResLoad (true);

 for (i = 0; i < files_to_scan; i++)

 {

 refNum = OpenResFile (ResFileArray[i]);

 match_count = 0;

 divisor = 0;

 for (j = 0; j < ITERATIONS; j++)

 {

 total_file_size = 0;

 sum = 0;

 while (!random_string(pattern_array, sub_string, pattern_index_array,

 total_virus_length, SIZE, vdat_count));

 typeCount = Count1Types ();

 while (typeCount)

 {

 Get1IndType (&typeName, typeCount);

 resCount2 = Count1Resources (typeName);

 while (resCount2)

 {

 rsrc2 = Get1IndResource (typeName, resCount2);

 index2 = SizeResource (rsrc2);

 file_size = 0;

 HLock (rsrc2);

 while (text_length = copy_array (*rsrc2, &index2))

 {

 compare(sub_string, n, SIZE,text_length, &sum);

 file_size += text_length;

 }

 HUnlock (rsrc2);

 total_file_size += file_size;

 --resCount2;

 }

 --typeCount;

 }

 divisor++;

 if (sum)

 match_count++;

 }

ifdef _REPORT

 printf("%s\t\t", DescriptionArray[i]);

 fprintf(my_file, "%s\t\t", DescriptionArray[i]);

 printf("%d\t\t%ld\t", match_count, total_file_size);

 fprintf(my_file, "%d\t\t%ld\t", match_count, total_file_size);

#endif

 if (match_count >= (divisor/LIMIT))

 {

#ifdef _REPORT

 printf("\t%s\n", INFECTED_STRING);

 fprintf(my_file, "\t%s\n", INFECTED_STRING);

#endif

 }

 else

 {

#ifdef _REPORT

 printf("\t%s\n", CLEAN_STRING);

 fprintf(my_file, "\t%s\n", CLEAN_STRING);

#endif

 }

 CloseResFile(refNum);

 }

 printf("\nScore represents matches out of %d, with %d needed to diagnose

infection.\n", divisor, divisor/LIMIT);

 fprintf(my_file, "\nScore represents matches out of %d, with %d needed

to diagnose infection.\n", divisor, divisor/LIMIT);

 free(sub_string);

 fclose(my_file);

}

char random_string(string_array, sub_string, index_array, length,

substring_length,

vdat_count)

char **string_array, sub_string[];

int index_array[], length, substring_length, vdat_count;

{

 int location, segment, i, zero_count = 0;

 Boolean legal = false, In_The_Right_Segment = false; /* length and

segments okay? */

 segment = vdat_count-1;

 while (!legal)

 {

 location = (int)((rand()/(double)MAXINT)* (length - substring_length));

 In_The_Right_Segment = false;

 while (!In_The_Right_Segment)

 {

 if (location <= index_array[segment])

 {

 In_The_Right_Segment = true;

 if (location <= (index_array[segment] - substring_length + 1))

 legal = true;

 else

 legal = false;

 }

 else

 segment--;

 }

 }

 if (segment < vdat_count-1)

 location -= index_array[segment+1];

 for (i = location; i < location + substring_length; i++)

 {

 sub_string[i-location] = (string_array[segment])[i];

 if (!string_array[segment][i])

 zero_count++;

 }

 if (zero_count < substring_length/2)

 return(TRUE);

 else

 return(FALSE);

}

/* compare: the heart of the Boyer-Moore heurstic, similar to Knuth-Morris-

Pratt's

matching engine */

void compare(p, t, pattern_length, text_length, sum)

char *p, *t;

int pattern_length, text_length, *sum;

{

 ALPHABET_ARRAY char_jump;

 int *match_jumps, print;

 allocate_array(&match_jumps, pattern_length);

 compute_jumps(p, char_jump, pattern_length-1);

 compute_match_jumps(p, &match_jumps, pattern_length);

 if (bm_match(p, t, char_jump, match_jumps, pattern_length, text_length))

 (*sum)++;

 free(match_jumps);

}

void allocate_array(array, size)

INDEX_ARRAY array;

int size;

{

 *array = (int *)calloc(size, sizeof(int));

}

/* the bad-character failure function

NOTE: if the ASCII alphabet, which has size 256, is

used, this function is not worth computing for resource text strings

of length ¾ 256 */

void compute_jumps(p, char_jump, length)

char *p;

ALPHABET_ARRAY char_jump;

int length;

{

 int c, k;

 for (c = 0; c < CHARS; c++)

 char_jump[c] = length;

 for (k = 0; k < length; k++)

 char_jump[POSITIVE(p[k])] = length-k-1;

}

/* implementation of pseudocode from [Baase 88]

 - uses the good-suffix failure function */

void compute_match_jumps(p, match_jump, pattern_length)

char *p;

INDEX_ARRAY match_jump;

int pattern_length;

{

 int m, k, q, qq;

 int *back;

 allocate_array(&back, pattern_length+1);

 m = pattern_length;

 for (k = 0; k < m; k++)

 (*match_jump)[k] = 2*m-k-1;

 q = m;

 for (k = m-1; k >= 0; k--)

 {

 back[k] = q;

 while ((q < m) && (p[k] != p[q]))

 {

 (*match_jump)[q] = MIN2((*match_jump)[q], m-k-1);

 q = back[q];

 }

 q--;

 }

 for (k = 0; k < q; k++)

 (*match_jump)[k] = MIN2((*match_jump)[k], m+q-k-1);

 qq = back[q];

 while (q < m)

 {

 while (q < qq)

 {

 (*match_jump)[q] = MIN2((*match_jump)[q], qq-q+m-1);

 q++;

 }

 qq = back[qq];

 }

 free(back);

}

int bm_match(p, t, char_jump, match_jump, pattern_length, text_length)

char *p, *t;

ALPHABET_ARRAY char_jump;

int *match_jump, pattern_length, text_length;

{

 int j, k; /* j indexes text characters; k indexes

 the pattern */

 j = pattern_length - 1;

 k = j;

 while (j < text_length)

 {

 if (k == -1)

 return(TRUE);

 if (t[j] == p[k])

 {

 j--;

 k--;

 }

 else

 {

 j += MAX2(char_jump[POSITIVE(t[j])], match_jump[k]);

 k = pattern_length - 1;

 }

 }

 return(FALSE);

}

/* dec.h - definitions and declarations for bm */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <console.h>

#define TABS4

#define K 1024

#define MAXSIZE 8*K

#define MAXINT 32767

#define MINSUB 8

#define MAXSUB 12

#define STEP4

#define ITERATIONS 1000

#define FALSE 0

#define TRUE1

#define READ_MODE"r"

#define WRITE_MODE "w"

#define APPEND_MODE"a"

#define MIN2(a, b) (((a) < (b)) ? (a) : (b))

#define MIN3(a, b, c)((MIN2((a), (b)) < (c)) ? MIN2((a), (b)) : (c))

#define MAX2(a, b) (((a) > (b)) ? (a) : (b))

#define POSITIVE(a)((abs(a) == (a)) ? (a) : abs(a)+127)

#define CHARS 256

#define NIL_POINTER0L

#define NIL_STRING "\p"

#define IGNORED_STRING NIL_STRING

#define NIL_FILE_FILTER NIL_POINTER

#define NIL_DIALOG_HOOK NIL_POINTER

#define VDAT_RES_ID0

typedef int ALPHABET_ARRAY[CHARS];

typedef int **INDEX_ARRAY;

typedef ResType **ResTypeHandle;

void compare(), allocate_array(), compute_jumps(), compute_match_jumps(),

error_message(), exit_cleanly(), main();

char open_file(), random_string();

int read_array();

Footnotes

1. [Cohen 86] is the most complete and formal of these publications. He gives a full

definition of the term virus and technical discussion of worm propagation and viral

spread.

2. An inter-corporation group comprised of personal computer industry professionals

(generally hardware and software developers) which is devoted to the distribution of

anti-viral information (e.g., training seminars and publications) and tracking of new

viruses. It was founded and is coordinated by John McAfee, the president of InterPath

Corporation in Santa Clara, CA. The full text of his classification schema may be

found in [McAfee 88].

3. This proof is available in its original form in [Cohen 86]; the doctoral thesis is

exclusively published by the micrographics department of the University of Southern

California. [Burger 88], [van Winkel 88], and many other works contain versions of

this reduction of new virus detection to the halting problem [Turing 36].

4. A brief definition of O-notation, from [Baase 88]:

f(n) = O(g(n)) (f is “order of” g) if and only if there exist c > 0, N > 0, such that f(n) ¾

cg(n) for every n N.

Thus an O(mn)-time implementation requires time proportional to the product of the

lengths of the pattern and text strings, in the long run. An O(kn) version requires time

proportional to the product of the maximum acceptable number of differences and the

length of the pattern.

Our implementation of the dynamic programming algorithm was coded in C, using

Pascal-type pseudocode from [Baase 88] (Chapter 6) as a guide. The O(kn) version

can be found in [Landau 86], in the 18th annual ACM STOC Proceedings, with more

general pseudocode.

5. Among the Macintosh viruses with known variants (both strains and clones) are the

following: WDEF, with strains A and B, and nVIR, with very prolific strains A and B,

each with multiple clones found under Hpat, MEV#, AIDS, and other resource titles.

An explicit definition of the terms “strain”, “clone”, and “viral mutant” as they are

used in this article is given in the introduction.

6. The original presentation of the algorithm is given in [Boyer 77], a paper in the

October 1977 CACM; again, pseudocode from [Baase 88] (Chapter 5) was used as a

guide in our implementation.

7. This is the pivotal concept in [Morton 90], a recent article in MacTutor. The evident

weaknesses in this technique are stressed by the author, who recommends user

modification of the anti-viral source code as a means of circumventing viral

tampering. This comment forebodes the use of expert systems techniques in viral code

design; the use of artificial intelligence intermeshed with viral programs has been

predicted in [Cohen 86], and is expected to appear as the availability of compiler tools

increases and the viral visibility threshold decreases.

8. The evolutionary virus is a largely theoretical program, first proposed in [Cohen

86]; however, mildly evolutionary code (viral and otherwise) already exists in

abundance. User modification of an antivirus is nearly certain to leave it “blind” to

successive generations of an automatically self-modifying virus.

9. The table computation rules (with the exception of the distance metric modification

- a, b, and c replace 1 in each rule) are quoted verbatim from [Baase 88], Section 6.3.

10.The article is [Landau 86], in the Proceedings of the 18th Annual ACM STOC.

